Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/mm_types.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/types.h> |
Ingo Molnar | 3f07c01 | 2017-02-08 18:51:30 +0100 | [diff] [blame] | 26 | #include <linux/sched/signal.h> |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 27 | #include <linux/uaccess.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/mman.h> |
| 30 | #include <linux/memory.h> |
| 31 | #include "kfd_priv.h" |
| 32 | #include "kfd_events.h" |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 33 | #include <linux/device.h> |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 34 | |
| 35 | /* |
| 36 | * A task can only be on a single wait_queue at a time, but we need to support |
| 37 | * waiting on multiple events (any/all). |
| 38 | * Instead of each event simply having a wait_queue with sleeping tasks, it |
| 39 | * has a singly-linked list of tasks. |
| 40 | * A thread that wants to sleep creates an array of these, one for each event |
| 41 | * and adds one to each event's waiter chain. |
| 42 | */ |
| 43 | struct kfd_event_waiter { |
| 44 | struct list_head waiters; |
| 45 | struct task_struct *sleeping_task; |
| 46 | |
| 47 | /* Transitions to true when the event this belongs to is signaled. */ |
| 48 | bool activated; |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 49 | |
| 50 | /* Event */ |
| 51 | struct kfd_event *event; |
| 52 | uint32_t input_index; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 53 | }; |
| 54 | |
| 55 | /* |
| 56 | * Over-complicated pooled allocator for event notification slots. |
| 57 | * |
| 58 | * Each signal event needs a 64-bit signal slot where the signaler will write |
| 59 | * a 1 before sending an interrupt.l (This is needed because some interrupts |
| 60 | * do not contain enough spare data bits to identify an event.) |
| 61 | * We get whole pages from vmalloc and map them to the process VA. |
| 62 | * Individual signal events are then allocated a slot in a page. |
| 63 | */ |
| 64 | |
| 65 | struct signal_page { |
| 66 | struct list_head event_pages; /* kfd_process.signal_event_pages */ |
| 67 | uint64_t *kernel_address; |
| 68 | uint64_t __user *user_address; |
| 69 | uint32_t page_index; /* Index into the mmap aperture. */ |
| 70 | unsigned int free_slots; |
| 71 | unsigned long used_slot_bitmap[0]; |
| 72 | }; |
| 73 | |
| 74 | #define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT |
| 75 | #define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) |
| 76 | #define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) |
| 77 | #define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ |
| 78 | SLOT_BITMAP_SIZE * sizeof(long)) |
| 79 | |
| 80 | /* |
| 81 | * For signal events, the event ID is used as the interrupt user data. |
| 82 | * For SQ s_sendmsg interrupts, this is limited to 8 bits. |
| 83 | */ |
| 84 | |
| 85 | #define INTERRUPT_DATA_BITS 8 |
| 86 | #define SIGNAL_EVENT_ID_SLOT_SHIFT 0 |
| 87 | |
| 88 | static uint64_t *page_slots(struct signal_page *page) |
| 89 | { |
| 90 | return page->kernel_address; |
| 91 | } |
| 92 | |
| 93 | static bool allocate_free_slot(struct kfd_process *process, |
| 94 | struct signal_page **out_page, |
| 95 | unsigned int *out_slot_index) |
| 96 | { |
| 97 | struct signal_page *page; |
| 98 | |
| 99 | list_for_each_entry(page, &process->signal_event_pages, event_pages) { |
| 100 | if (page->free_slots > 0) { |
| 101 | unsigned int slot = |
| 102 | find_first_zero_bit(page->used_slot_bitmap, |
| 103 | SLOTS_PER_PAGE); |
| 104 | |
| 105 | __set_bit(slot, page->used_slot_bitmap); |
| 106 | page->free_slots--; |
| 107 | |
| 108 | page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; |
| 109 | |
| 110 | *out_page = page; |
| 111 | *out_slot_index = slot; |
| 112 | |
| 113 | pr_debug("allocated event signal slot in page %p, slot %d\n", |
| 114 | page, slot); |
| 115 | |
| 116 | return true; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | pr_debug("No free event signal slots were found for process %p\n", |
| 121 | process); |
| 122 | |
| 123 | return false; |
| 124 | } |
| 125 | |
| 126 | #define list_tail_entry(head, type, member) \ |
| 127 | list_entry((head)->prev, type, member) |
| 128 | |
| 129 | static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) |
| 130 | { |
| 131 | void *backing_store; |
| 132 | struct signal_page *page; |
| 133 | |
| 134 | page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); |
| 135 | if (!page) |
| 136 | goto fail_alloc_signal_page; |
| 137 | |
| 138 | page->free_slots = SLOTS_PER_PAGE; |
| 139 | |
| 140 | backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| 141 | get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| 142 | if (!backing_store) |
| 143 | goto fail_alloc_signal_store; |
| 144 | |
| 145 | /* prevent user-mode info leaks */ |
| 146 | memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, |
| 147 | KFD_SIGNAL_EVENT_LIMIT * 8); |
| 148 | |
| 149 | page->kernel_address = backing_store; |
| 150 | |
| 151 | if (list_empty(&p->signal_event_pages)) |
| 152 | page->page_index = 0; |
| 153 | else |
| 154 | page->page_index = list_tail_entry(&p->signal_event_pages, |
| 155 | struct signal_page, |
| 156 | event_pages)->page_index + 1; |
| 157 | |
| 158 | pr_debug("allocated new event signal page at %p, for process %p\n", |
| 159 | page, p); |
| 160 | pr_debug("page index is %d\n", page->page_index); |
| 161 | |
| 162 | list_add(&page->event_pages, &p->signal_event_pages); |
| 163 | |
| 164 | return true; |
| 165 | |
| 166 | fail_alloc_signal_store: |
| 167 | kfree(page); |
| 168 | fail_alloc_signal_page: |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | static bool allocate_event_notification_slot(struct file *devkfd, |
| 173 | struct kfd_process *p, |
| 174 | struct signal_page **page, |
| 175 | unsigned int *signal_slot_index) |
| 176 | { |
| 177 | bool ret; |
| 178 | |
| 179 | ret = allocate_free_slot(p, page, signal_slot_index); |
Edward O'Callaghan | 991ca8e | 2016-05-01 00:06:27 +1000 | [diff] [blame] | 180 | if (!ret) { |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 181 | ret = allocate_signal_page(devkfd, p); |
Edward O'Callaghan | 991ca8e | 2016-05-01 00:06:27 +1000 | [diff] [blame] | 182 | if (ret) |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 183 | ret = allocate_free_slot(p, page, signal_slot_index); |
| 184 | } |
| 185 | |
| 186 | return ret; |
| 187 | } |
| 188 | |
| 189 | /* Assumes that the process's event_mutex is locked. */ |
| 190 | static void release_event_notification_slot(struct signal_page *page, |
| 191 | size_t slot_index) |
| 192 | { |
| 193 | __clear_bit(slot_index, page->used_slot_bitmap); |
| 194 | page->free_slots++; |
| 195 | |
| 196 | /* We don't free signal pages, they are retained by the process |
| 197 | * and reused until it exits. */ |
| 198 | } |
| 199 | |
| 200 | static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, |
| 201 | unsigned int page_index) |
| 202 | { |
| 203 | struct signal_page *page; |
| 204 | |
| 205 | /* |
| 206 | * This is safe because we don't delete signal pages until the |
| 207 | * process exits. |
| 208 | */ |
| 209 | list_for_each_entry(page, &p->signal_event_pages, event_pages) |
| 210 | if (page->page_index == page_index) |
| 211 | return page; |
| 212 | |
| 213 | return NULL; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Assumes that p->event_mutex is held and of course that p is not going |
| 218 | * away (current or locked). |
| 219 | */ |
| 220 | static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) |
| 221 | { |
| 222 | struct kfd_event *ev; |
| 223 | |
| 224 | hash_for_each_possible(p->events, ev, events, id) |
| 225 | if (ev->event_id == id) |
| 226 | return ev; |
| 227 | |
| 228 | return NULL; |
| 229 | } |
| 230 | |
| 231 | static u32 make_signal_event_id(struct signal_page *page, |
| 232 | unsigned int signal_slot_index) |
| 233 | { |
| 234 | return page->page_index | |
| 235 | (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Produce a kfd event id for a nonsignal event. |
| 240 | * These are arbitrary numbers, so we do a sequential search through |
| 241 | * the hash table for an unused number. |
| 242 | */ |
| 243 | static u32 make_nonsignal_event_id(struct kfd_process *p) |
| 244 | { |
| 245 | u32 id; |
| 246 | |
| 247 | for (id = p->next_nonsignal_event_id; |
| 248 | id < KFD_LAST_NONSIGNAL_EVENT_ID && |
| 249 | lookup_event_by_id(p, id) != NULL; |
| 250 | id++) |
| 251 | ; |
| 252 | |
| 253 | if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { |
| 254 | |
| 255 | /* |
| 256 | * What if id == LAST_NONSIGNAL_EVENT_ID - 1? |
| 257 | * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so |
| 258 | * the first loop fails immediately and we proceed with the |
| 259 | * wraparound loop below. |
| 260 | */ |
| 261 | p->next_nonsignal_event_id = id + 1; |
| 262 | |
| 263 | return id; |
| 264 | } |
| 265 | |
| 266 | for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| 267 | id < KFD_LAST_NONSIGNAL_EVENT_ID && |
| 268 | lookup_event_by_id(p, id) != NULL; |
| 269 | id++) |
| 270 | ; |
| 271 | |
| 272 | |
| 273 | if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { |
| 274 | p->next_nonsignal_event_id = id + 1; |
| 275 | return id; |
| 276 | } |
| 277 | |
| 278 | p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, |
| 283 | struct signal_page *page, |
| 284 | unsigned int signal_slot) |
| 285 | { |
| 286 | return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); |
| 287 | } |
| 288 | |
| 289 | static int create_signal_event(struct file *devkfd, |
| 290 | struct kfd_process *p, |
| 291 | struct kfd_event *ev) |
| 292 | { |
| 293 | if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { |
| 294 | pr_warn("amdkfd: Signal event wasn't created because limit was reached\n"); |
| 295 | return -ENOMEM; |
| 296 | } |
| 297 | |
| 298 | if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, |
| 299 | &ev->signal_slot_index)) { |
| 300 | pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n"); |
| 301 | return -ENOMEM; |
| 302 | } |
| 303 | |
| 304 | p->signal_event_count++; |
| 305 | |
| 306 | ev->user_signal_address = |
| 307 | &ev->signal_page->user_address[ev->signal_slot_index]; |
| 308 | |
| 309 | ev->event_id = make_signal_event_id(ev->signal_page, |
| 310 | ev->signal_slot_index); |
| 311 | |
| 312 | pr_debug("signal event number %zu created with id %d, address %p\n", |
| 313 | p->signal_event_count, ev->event_id, |
| 314 | ev->user_signal_address); |
| 315 | |
Oded Gabbay | 6235e15 | 2015-04-30 18:05:36 +0300 | [diff] [blame] | 316 | pr_debug("signal event number %zu created with id %d, address %p\n", |
| 317 | p->signal_event_count, ev->event_id, |
| 318 | ev->user_signal_address); |
| 319 | |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 320 | return 0; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * No non-signal events are supported yet. |
| 325 | * We create them as events that never signal. |
| 326 | * Set event calls from user-mode are failed. |
| 327 | */ |
| 328 | static int create_other_event(struct kfd_process *p, struct kfd_event *ev) |
| 329 | { |
| 330 | ev->event_id = make_nonsignal_event_id(p); |
| 331 | if (ev->event_id == 0) |
| 332 | return -ENOMEM; |
| 333 | |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | void kfd_event_init_process(struct kfd_process *p) |
| 338 | { |
| 339 | mutex_init(&p->event_mutex); |
| 340 | hash_init(p->events); |
| 341 | INIT_LIST_HEAD(&p->signal_event_pages); |
| 342 | p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| 343 | p->signal_event_count = 0; |
| 344 | } |
| 345 | |
| 346 | static void destroy_event(struct kfd_process *p, struct kfd_event *ev) |
| 347 | { |
| 348 | if (ev->signal_page != NULL) { |
| 349 | release_event_notification_slot(ev->signal_page, |
| 350 | ev->signal_slot_index); |
| 351 | p->signal_event_count--; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Abandon the list of waiters. Individual waiting threads will |
| 356 | * clean up their own data. |
| 357 | */ |
| 358 | list_del(&ev->waiters); |
| 359 | |
| 360 | hash_del(&ev->events); |
| 361 | kfree(ev); |
| 362 | } |
| 363 | |
| 364 | static void destroy_events(struct kfd_process *p) |
| 365 | { |
| 366 | struct kfd_event *ev; |
| 367 | struct hlist_node *tmp; |
| 368 | unsigned int hash_bkt; |
| 369 | |
| 370 | hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) |
| 371 | destroy_event(p, ev); |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * We assume that the process is being destroyed and there is no need to |
| 376 | * unmap the pages or keep bookkeeping data in order. |
| 377 | */ |
| 378 | static void shutdown_signal_pages(struct kfd_process *p) |
| 379 | { |
| 380 | struct signal_page *page, *tmp; |
| 381 | |
| 382 | list_for_each_entry_safe(page, tmp, &p->signal_event_pages, |
| 383 | event_pages) { |
| 384 | free_pages((unsigned long)page->kernel_address, |
| 385 | get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| 386 | kfree(page); |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | void kfd_event_free_process(struct kfd_process *p) |
| 391 | { |
| 392 | destroy_events(p); |
| 393 | shutdown_signal_pages(p); |
| 394 | } |
| 395 | |
| 396 | static bool event_can_be_gpu_signaled(const struct kfd_event *ev) |
| 397 | { |
| 398 | return ev->type == KFD_EVENT_TYPE_SIGNAL || |
| 399 | ev->type == KFD_EVENT_TYPE_DEBUG; |
| 400 | } |
| 401 | |
| 402 | static bool event_can_be_cpu_signaled(const struct kfd_event *ev) |
| 403 | { |
| 404 | return ev->type == KFD_EVENT_TYPE_SIGNAL; |
| 405 | } |
| 406 | |
| 407 | int kfd_event_create(struct file *devkfd, struct kfd_process *p, |
| 408 | uint32_t event_type, bool auto_reset, uint32_t node_id, |
| 409 | uint32_t *event_id, uint32_t *event_trigger_data, |
| 410 | uint64_t *event_page_offset, uint32_t *event_slot_index) |
| 411 | { |
| 412 | int ret = 0; |
| 413 | struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); |
| 414 | |
| 415 | if (!ev) |
| 416 | return -ENOMEM; |
| 417 | |
| 418 | ev->type = event_type; |
| 419 | ev->auto_reset = auto_reset; |
| 420 | ev->signaled = false; |
| 421 | |
| 422 | INIT_LIST_HEAD(&ev->waiters); |
| 423 | |
| 424 | *event_page_offset = 0; |
| 425 | |
| 426 | mutex_lock(&p->event_mutex); |
| 427 | |
| 428 | switch (event_type) { |
| 429 | case KFD_EVENT_TYPE_SIGNAL: |
| 430 | case KFD_EVENT_TYPE_DEBUG: |
| 431 | ret = create_signal_event(devkfd, p, ev); |
| 432 | if (!ret) { |
| 433 | *event_page_offset = (ev->signal_page->page_index | |
| 434 | KFD_MMAP_EVENTS_MASK); |
| 435 | *event_page_offset <<= PAGE_SHIFT; |
| 436 | *event_slot_index = ev->signal_slot_index; |
| 437 | } |
| 438 | break; |
| 439 | default: |
| 440 | ret = create_other_event(p, ev); |
| 441 | break; |
| 442 | } |
| 443 | |
| 444 | if (!ret) { |
| 445 | hash_add(p->events, &ev->events, ev->event_id); |
| 446 | |
| 447 | *event_id = ev->event_id; |
| 448 | *event_trigger_data = ev->event_id; |
| 449 | } else { |
| 450 | kfree(ev); |
| 451 | } |
| 452 | |
| 453 | mutex_unlock(&p->event_mutex); |
| 454 | |
| 455 | return ret; |
| 456 | } |
| 457 | |
| 458 | /* Assumes that p is current. */ |
| 459 | int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) |
| 460 | { |
| 461 | struct kfd_event *ev; |
| 462 | int ret = 0; |
| 463 | |
| 464 | mutex_lock(&p->event_mutex); |
| 465 | |
| 466 | ev = lookup_event_by_id(p, event_id); |
| 467 | |
| 468 | if (ev) |
| 469 | destroy_event(p, ev); |
| 470 | else |
| 471 | ret = -EINVAL; |
| 472 | |
| 473 | mutex_unlock(&p->event_mutex); |
| 474 | return ret; |
| 475 | } |
| 476 | |
| 477 | static void set_event(struct kfd_event *ev) |
| 478 | { |
| 479 | struct kfd_event_waiter *waiter; |
| 480 | struct kfd_event_waiter *next; |
| 481 | |
| 482 | /* Auto reset if the list is non-empty and we're waking someone. */ |
| 483 | ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); |
| 484 | |
| 485 | list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { |
| 486 | waiter->activated = true; |
| 487 | |
| 488 | /* _init because free_waiters will call list_del */ |
| 489 | list_del_init(&waiter->waiters); |
| 490 | |
| 491 | wake_up_process(waiter->sleeping_task); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /* Assumes that p is current. */ |
| 496 | int kfd_set_event(struct kfd_process *p, uint32_t event_id) |
| 497 | { |
| 498 | int ret = 0; |
| 499 | struct kfd_event *ev; |
| 500 | |
| 501 | mutex_lock(&p->event_mutex); |
| 502 | |
| 503 | ev = lookup_event_by_id(p, event_id); |
| 504 | |
| 505 | if (ev && event_can_be_cpu_signaled(ev)) |
| 506 | set_event(ev); |
| 507 | else |
| 508 | ret = -EINVAL; |
| 509 | |
| 510 | mutex_unlock(&p->event_mutex); |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | static void reset_event(struct kfd_event *ev) |
| 515 | { |
| 516 | ev->signaled = false; |
| 517 | } |
| 518 | |
| 519 | /* Assumes that p is current. */ |
| 520 | int kfd_reset_event(struct kfd_process *p, uint32_t event_id) |
| 521 | { |
| 522 | int ret = 0; |
| 523 | struct kfd_event *ev; |
| 524 | |
| 525 | mutex_lock(&p->event_mutex); |
| 526 | |
| 527 | ev = lookup_event_by_id(p, event_id); |
| 528 | |
| 529 | if (ev && event_can_be_cpu_signaled(ev)) |
| 530 | reset_event(ev); |
| 531 | else |
| 532 | ret = -EINVAL; |
| 533 | |
| 534 | mutex_unlock(&p->event_mutex); |
| 535 | return ret; |
| 536 | |
| 537 | } |
| 538 | |
| 539 | static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) |
| 540 | { |
| 541 | page_slots(ev->signal_page)[ev->signal_slot_index] = |
| 542 | UNSIGNALED_EVENT_SLOT; |
| 543 | } |
| 544 | |
| 545 | static bool is_slot_signaled(struct signal_page *page, unsigned int index) |
| 546 | { |
| 547 | return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; |
| 548 | } |
| 549 | |
| 550 | static void set_event_from_interrupt(struct kfd_process *p, |
| 551 | struct kfd_event *ev) |
| 552 | { |
| 553 | if (ev && event_can_be_gpu_signaled(ev)) { |
| 554 | acknowledge_signal(p, ev); |
| 555 | set_event(ev); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, |
| 560 | uint32_t valid_id_bits) |
| 561 | { |
| 562 | struct kfd_event *ev; |
| 563 | |
| 564 | /* |
| 565 | * Because we are called from arbitrary context (workqueue) as opposed |
| 566 | * to process context, kfd_process could attempt to exit while we are |
| 567 | * running so the lookup function returns a locked process. |
| 568 | */ |
| 569 | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| 570 | |
| 571 | if (!p) |
| 572 | return; /* Presumably process exited. */ |
| 573 | |
| 574 | mutex_lock(&p->event_mutex); |
| 575 | |
| 576 | if (valid_id_bits >= INTERRUPT_DATA_BITS) { |
| 577 | /* Partial ID is a full ID. */ |
| 578 | ev = lookup_event_by_id(p, partial_id); |
| 579 | set_event_from_interrupt(p, ev); |
| 580 | } else { |
| 581 | /* |
| 582 | * Partial ID is in fact partial. For now we completely |
| 583 | * ignore it, but we could use any bits we did receive to |
| 584 | * search faster. |
| 585 | */ |
| 586 | struct signal_page *page; |
| 587 | unsigned i; |
| 588 | |
| 589 | list_for_each_entry(page, &p->signal_event_pages, event_pages) |
| 590 | for (i = 0; i < SLOTS_PER_PAGE; i++) |
| 591 | if (is_slot_signaled(page, i)) { |
| 592 | ev = lookup_event_by_page_slot(p, |
| 593 | page, i); |
| 594 | set_event_from_interrupt(p, ev); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | mutex_unlock(&p->event_mutex); |
| 599 | mutex_unlock(&p->mutex); |
| 600 | } |
| 601 | |
| 602 | static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) |
| 603 | { |
| 604 | struct kfd_event_waiter *event_waiters; |
| 605 | uint32_t i; |
| 606 | |
| 607 | event_waiters = kmalloc_array(num_events, |
| 608 | sizeof(struct kfd_event_waiter), |
| 609 | GFP_KERNEL); |
| 610 | |
| 611 | for (i = 0; (event_waiters) && (i < num_events) ; i++) { |
| 612 | INIT_LIST_HEAD(&event_waiters[i].waiters); |
| 613 | event_waiters[i].sleeping_task = current; |
| 614 | event_waiters[i].activated = false; |
| 615 | } |
| 616 | |
| 617 | return event_waiters; |
| 618 | } |
| 619 | |
| 620 | static int init_event_waiter(struct kfd_process *p, |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 621 | struct kfd_event_waiter *waiter, |
| 622 | uint32_t event_id, |
| 623 | uint32_t input_index) |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 624 | { |
| 625 | struct kfd_event *ev = lookup_event_by_id(p, event_id); |
| 626 | |
| 627 | if (!ev) |
| 628 | return -EINVAL; |
| 629 | |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 630 | waiter->event = ev; |
| 631 | waiter->input_index = input_index; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 632 | waiter->activated = ev->signaled; |
| 633 | ev->signaled = ev->signaled && !ev->auto_reset; |
| 634 | |
| 635 | list_add(&waiter->waiters, &ev->waiters); |
| 636 | |
| 637 | return 0; |
| 638 | } |
| 639 | |
| 640 | static bool test_event_condition(bool all, uint32_t num_events, |
| 641 | struct kfd_event_waiter *event_waiters) |
| 642 | { |
| 643 | uint32_t i; |
| 644 | uint32_t activated_count = 0; |
| 645 | |
| 646 | for (i = 0; i < num_events; i++) { |
| 647 | if (event_waiters[i].activated) { |
| 648 | if (!all) |
| 649 | return true; |
| 650 | |
| 651 | activated_count++; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | return activated_count == num_events; |
| 656 | } |
| 657 | |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 658 | /* |
| 659 | * Copy event specific data, if defined. |
| 660 | * Currently only memory exception events have additional data to copy to user |
| 661 | */ |
| 662 | static bool copy_signaled_event_data(uint32_t num_events, |
| 663 | struct kfd_event_waiter *event_waiters, |
| 664 | struct kfd_event_data __user *data) |
| 665 | { |
| 666 | struct kfd_hsa_memory_exception_data *src; |
| 667 | struct kfd_hsa_memory_exception_data __user *dst; |
| 668 | struct kfd_event_waiter *waiter; |
| 669 | struct kfd_event *event; |
| 670 | uint32_t i; |
| 671 | |
| 672 | for (i = 0; i < num_events; i++) { |
| 673 | waiter = &event_waiters[i]; |
| 674 | event = waiter->event; |
| 675 | if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { |
| 676 | dst = &data[waiter->input_index].memory_exception_data; |
| 677 | src = &event->memory_exception_data; |
| 678 | if (copy_to_user(dst, src, |
| 679 | sizeof(struct kfd_hsa_memory_exception_data))) |
| 680 | return false; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | return true; |
| 685 | |
| 686 | } |
| 687 | |
| 688 | |
| 689 | |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 690 | static long user_timeout_to_jiffies(uint32_t user_timeout_ms) |
| 691 | { |
| 692 | if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) |
| 693 | return 0; |
| 694 | |
| 695 | if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) |
| 696 | return MAX_SCHEDULE_TIMEOUT; |
| 697 | |
| 698 | /* |
| 699 | * msecs_to_jiffies interprets all values above 2^31-1 as infinite, |
| 700 | * but we consider them finite. |
| 701 | * This hack is wrong, but nobody is likely to notice. |
| 702 | */ |
| 703 | user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); |
| 704 | |
| 705 | return msecs_to_jiffies(user_timeout_ms) + 1; |
| 706 | } |
| 707 | |
| 708 | static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) |
| 709 | { |
| 710 | uint32_t i; |
| 711 | |
| 712 | for (i = 0; i < num_events; i++) |
| 713 | list_del(&waiters[i].waiters); |
| 714 | |
| 715 | kfree(waiters); |
| 716 | } |
| 717 | |
| 718 | int kfd_wait_on_events(struct kfd_process *p, |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 719 | uint32_t num_events, void __user *data, |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 720 | bool all, uint32_t user_timeout_ms, |
| 721 | enum kfd_event_wait_result *wait_result) |
| 722 | { |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 723 | struct kfd_event_data __user *events = |
| 724 | (struct kfd_event_data __user *) data; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 725 | uint32_t i; |
| 726 | int ret = 0; |
| 727 | struct kfd_event_waiter *event_waiters = NULL; |
| 728 | long timeout = user_timeout_to_jiffies(user_timeout_ms); |
| 729 | |
| 730 | mutex_lock(&p->event_mutex); |
| 731 | |
| 732 | event_waiters = alloc_event_waiters(num_events); |
| 733 | if (!event_waiters) { |
| 734 | ret = -ENOMEM; |
| 735 | goto fail; |
| 736 | } |
| 737 | |
| 738 | for (i = 0; i < num_events; i++) { |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 739 | struct kfd_event_data event_data; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 740 | |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 741 | if (copy_from_user(&event_data, &events[i], |
Pan Bian | 8bf7938 | 2016-12-01 16:10:42 +0800 | [diff] [blame] | 742 | sizeof(struct kfd_event_data))) { |
| 743 | ret = -EFAULT; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 744 | goto fail; |
Pan Bian | 8bf7938 | 2016-12-01 16:10:42 +0800 | [diff] [blame] | 745 | } |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 746 | |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 747 | ret = init_event_waiter(p, &event_waiters[i], |
| 748 | event_data.event_id, i); |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 749 | if (ret) |
| 750 | goto fail; |
| 751 | } |
| 752 | |
| 753 | mutex_unlock(&p->event_mutex); |
| 754 | |
| 755 | while (true) { |
| 756 | if (fatal_signal_pending(current)) { |
| 757 | ret = -EINTR; |
| 758 | break; |
| 759 | } |
| 760 | |
| 761 | if (signal_pending(current)) { |
| 762 | /* |
| 763 | * This is wrong when a nonzero, non-infinite timeout |
| 764 | * is specified. We need to use |
| 765 | * ERESTARTSYS_RESTARTBLOCK, but struct restart_block |
| 766 | * contains a union with data for each user and it's |
| 767 | * in generic kernel code that I don't want to |
| 768 | * touch yet. |
| 769 | */ |
| 770 | ret = -ERESTARTSYS; |
| 771 | break; |
| 772 | } |
| 773 | |
| 774 | if (test_event_condition(all, num_events, event_waiters)) { |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 775 | if (copy_signaled_event_data(num_events, |
| 776 | event_waiters, events)) |
| 777 | *wait_result = KFD_WAIT_COMPLETE; |
| 778 | else |
| 779 | *wait_result = KFD_WAIT_ERROR; |
Andrew Lewycky | f3a3981 | 2015-05-10 12:15:46 +0300 | [diff] [blame] | 780 | break; |
| 781 | } |
| 782 | |
| 783 | if (timeout <= 0) { |
| 784 | *wait_result = KFD_WAIT_TIMEOUT; |
| 785 | break; |
| 786 | } |
| 787 | |
| 788 | timeout = schedule_timeout_interruptible(timeout); |
| 789 | } |
| 790 | __set_current_state(TASK_RUNNING); |
| 791 | |
| 792 | mutex_lock(&p->event_mutex); |
| 793 | free_waiters(num_events, event_waiters); |
| 794 | mutex_unlock(&p->event_mutex); |
| 795 | |
| 796 | return ret; |
| 797 | |
| 798 | fail: |
| 799 | if (event_waiters) |
| 800 | free_waiters(num_events, event_waiters); |
| 801 | |
| 802 | mutex_unlock(&p->event_mutex); |
| 803 | |
| 804 | *wait_result = KFD_WAIT_ERROR; |
| 805 | |
| 806 | return ret; |
| 807 | } |
| 808 | |
| 809 | int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) |
| 810 | { |
| 811 | |
| 812 | unsigned int page_index; |
| 813 | unsigned long pfn; |
| 814 | struct signal_page *page; |
| 815 | |
| 816 | /* check required size is logical */ |
| 817 | if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != |
| 818 | get_order(vma->vm_end - vma->vm_start)) { |
| 819 | pr_err("amdkfd: event page mmap requested illegal size\n"); |
| 820 | return -EINVAL; |
| 821 | } |
| 822 | |
| 823 | page_index = vma->vm_pgoff; |
| 824 | |
| 825 | page = lookup_signal_page_by_index(p, page_index); |
| 826 | if (!page) { |
| 827 | /* Probably KFD bug, but mmap is user-accessible. */ |
| 828 | pr_debug("signal page could not be found for page_index %u\n", |
| 829 | page_index); |
| 830 | return -EINVAL; |
| 831 | } |
| 832 | |
| 833 | pfn = __pa(page->kernel_address); |
| 834 | pfn >>= PAGE_SHIFT; |
| 835 | |
| 836 | vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
| 837 | | VM_DONTDUMP | VM_PFNMAP; |
| 838 | |
| 839 | pr_debug("mapping signal page\n"); |
| 840 | pr_debug(" start user address == 0x%08lx\n", vma->vm_start); |
| 841 | pr_debug(" end user address == 0x%08lx\n", vma->vm_end); |
| 842 | pr_debug(" pfn == 0x%016lX\n", pfn); |
| 843 | pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); |
| 844 | pr_debug(" size == 0x%08lX\n", |
| 845 | vma->vm_end - vma->vm_start); |
| 846 | |
| 847 | page->user_address = (uint64_t __user *)vma->vm_start; |
| 848 | |
| 849 | /* mapping the page to user process */ |
| 850 | return remap_pfn_range(vma, vma->vm_start, pfn, |
| 851 | vma->vm_end - vma->vm_start, vma->vm_page_prot); |
| 852 | } |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 853 | |
| 854 | /* |
| 855 | * Assumes that p->event_mutex is held and of course |
| 856 | * that p is not going away (current or locked). |
| 857 | */ |
| 858 | static void lookup_events_by_type_and_signal(struct kfd_process *p, |
| 859 | int type, void *event_data) |
| 860 | { |
| 861 | struct kfd_hsa_memory_exception_data *ev_data; |
| 862 | struct kfd_event *ev; |
| 863 | int bkt; |
| 864 | bool send_signal = true; |
| 865 | |
| 866 | ev_data = (struct kfd_hsa_memory_exception_data *) event_data; |
| 867 | |
| 868 | hash_for_each(p->events, bkt, ev, events) |
| 869 | if (ev->type == type) { |
| 870 | send_signal = false; |
| 871 | dev_dbg(kfd_device, |
| 872 | "Event found: id %X type %d", |
| 873 | ev->event_id, ev->type); |
| 874 | set_event(ev); |
| 875 | if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) |
| 876 | ev->memory_exception_data = *ev_data; |
| 877 | } |
| 878 | |
| 879 | /* Send SIGTERM no event of type "type" has been found*/ |
| 880 | if (send_signal) { |
Oded Gabbay | 8166301 | 2014-12-24 13:30:52 +0200 | [diff] [blame] | 881 | if (send_sigterm) { |
| 882 | dev_warn(kfd_device, |
| 883 | "Sending SIGTERM to HSA Process with PID %d ", |
| 884 | p->lead_thread->pid); |
| 885 | send_sig(SIGTERM, p->lead_thread, 0); |
| 886 | } else { |
| 887 | dev_err(kfd_device, |
| 888 | "HSA Process (PID %d) got unhandled exception", |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 889 | p->lead_thread->pid); |
Oded Gabbay | 8166301 | 2014-12-24 13:30:52 +0200 | [diff] [blame] | 890 | } |
Alexey Skidanov | 59d3e8b | 2015-04-14 18:05:49 +0300 | [diff] [blame] | 891 | } |
| 892 | } |
| 893 | |
| 894 | void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, |
| 895 | unsigned long address, bool is_write_requested, |
| 896 | bool is_execute_requested) |
| 897 | { |
| 898 | struct kfd_hsa_memory_exception_data memory_exception_data; |
| 899 | struct vm_area_struct *vma; |
| 900 | |
| 901 | /* |
| 902 | * Because we are called from arbitrary context (workqueue) as opposed |
| 903 | * to process context, kfd_process could attempt to exit while we are |
| 904 | * running so the lookup function returns a locked process. |
| 905 | */ |
| 906 | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| 907 | |
| 908 | if (!p) |
| 909 | return; /* Presumably process exited. */ |
| 910 | |
| 911 | memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| 912 | |
| 913 | down_read(&p->mm->mmap_sem); |
| 914 | vma = find_vma(p->mm, address); |
| 915 | |
| 916 | memory_exception_data.gpu_id = dev->id; |
| 917 | memory_exception_data.va = address; |
| 918 | /* Set failure reason */ |
| 919 | memory_exception_data.failure.NotPresent = 1; |
| 920 | memory_exception_data.failure.NoExecute = 0; |
| 921 | memory_exception_data.failure.ReadOnly = 0; |
| 922 | if (vma) { |
| 923 | if (vma->vm_start > address) { |
| 924 | memory_exception_data.failure.NotPresent = 1; |
| 925 | memory_exception_data.failure.NoExecute = 0; |
| 926 | memory_exception_data.failure.ReadOnly = 0; |
| 927 | } else { |
| 928 | memory_exception_data.failure.NotPresent = 0; |
| 929 | if (is_write_requested && !(vma->vm_flags & VM_WRITE)) |
| 930 | memory_exception_data.failure.ReadOnly = 1; |
| 931 | else |
| 932 | memory_exception_data.failure.ReadOnly = 0; |
| 933 | if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) |
| 934 | memory_exception_data.failure.NoExecute = 1; |
| 935 | else |
| 936 | memory_exception_data.failure.NoExecute = 0; |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | up_read(&p->mm->mmap_sem); |
| 941 | |
| 942 | mutex_lock(&p->event_mutex); |
| 943 | |
| 944 | /* Lookup events by type and signal them */ |
| 945 | lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, |
| 946 | &memory_exception_data); |
| 947 | |
| 948 | mutex_unlock(&p->event_mutex); |
| 949 | mutex_unlock(&p->mutex); |
| 950 | } |
Alexey Skidanov | 930c5ff | 2014-11-25 10:34:31 +0200 | [diff] [blame] | 951 | |
| 952 | void kfd_signal_hw_exception_event(unsigned int pasid) |
| 953 | { |
| 954 | /* |
| 955 | * Because we are called from arbitrary context (workqueue) as opposed |
| 956 | * to process context, kfd_process could attempt to exit while we are |
| 957 | * running so the lookup function returns a locked process. |
| 958 | */ |
| 959 | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| 960 | |
| 961 | if (!p) |
| 962 | return; /* Presumably process exited. */ |
| 963 | |
| 964 | mutex_lock(&p->event_mutex); |
| 965 | |
| 966 | /* Lookup events by type and signal them */ |
| 967 | lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); |
| 968 | |
| 969 | mutex_unlock(&p->event_mutex); |
| 970 | mutex_unlock(&p->mutex); |
| 971 | } |