blob: e3557b987efd93be0b65fdc59364aa554cf342c2 [file] [log] [blame]
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +04001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
34 *
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
38 *
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
42 *
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
50 *
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
56 * damaged.
57 */
58
59#include <linux/crc32.h>
60#include <linux/err.h>
61#include <asm/div64.h>
62#include "ubi.h"
63
64#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65static void paranoid_vtbl_check(const struct ubi_device *ubi);
66#else
67#define paranoid_vtbl_check(ubi)
68#endif
69
70/* Empty volume table record */
71static struct ubi_vtbl_record empty_vtbl_record;
72
73/**
74 * ubi_change_vtbl_record - change volume table record.
75 * @ubi: UBI device description object
76 * @idx: table index to change
77 * @vtbl_rec: new volume table record
78 *
79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80 * volume table record is written. The caller does not have to calculate CRC of
81 * the record as it is done by this function. Returns zero in case of success
82 * and a negative error code in case of failure.
83 */
84int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 struct ubi_vtbl_record *vtbl_rec)
86{
87 int i, err;
88 uint32_t crc;
89
90 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
91
92 if (!vtbl_rec)
93 vtbl_rec = &empty_vtbl_record;
94 else {
95 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
96 vtbl_rec->crc = cpu_to_ubi32(crc);
97 }
98
99 dbg_msg("change record %d", idx);
100 ubi_dbg_dump_vtbl_record(vtbl_rec, idx);
101
102 mutex_lock(&ubi->vtbl_mutex);
103 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
104 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
105 err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i);
106 if (err) {
107 mutex_unlock(&ubi->vtbl_mutex);
108 return err;
109 }
110 err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0,
111 ubi->vtbl_size, UBI_LONGTERM);
112 if (err) {
113 mutex_unlock(&ubi->vtbl_mutex);
114 return err;
115 }
116 }
117
118 paranoid_vtbl_check(ubi);
119 mutex_unlock(&ubi->vtbl_mutex);
120 return ubi_wl_flush(ubi);
121}
122
123/**
124 * vol_til_check - check if volume table is not corrupted and contains sensible
125 * data.
126 *
127 * @ubi: UBI device description object
128 * @vtbl: volume table
129 *
130 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
131 * and %-EINVAL if it contains inconsistent data.
132 */
133static int vtbl_check(const struct ubi_device *ubi,
134 const struct ubi_vtbl_record *vtbl)
135{
136 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
137 int upd_marker;
138 uint32_t crc;
139 const char *name;
140
141 for (i = 0; i < ubi->vtbl_slots; i++) {
142 cond_resched();
143
144 reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs);
145 alignment = ubi32_to_cpu(vtbl[i].alignment);
146 data_pad = ubi32_to_cpu(vtbl[i].data_pad);
147 upd_marker = vtbl[i].upd_marker;
148 vol_type = vtbl[i].vol_type;
149 name_len = ubi16_to_cpu(vtbl[i].name_len);
150 name = &vtbl[i].name[0];
151
152 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
153 if (ubi32_to_cpu(vtbl[i].crc) != crc) {
154 ubi_err("bad CRC at record %u: %#08x, not %#08x",
155 i, crc, ubi32_to_cpu(vtbl[i].crc));
156 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
157 return 1;
158 }
159
160 if (reserved_pebs == 0) {
161 if (memcmp(&vtbl[i], &empty_vtbl_record,
162 UBI_VTBL_RECORD_SIZE)) {
163 dbg_err("bad empty record");
164 goto bad;
165 }
166 continue;
167 }
168
169 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
170 name_len < 0) {
171 dbg_err("negative values");
172 goto bad;
173 }
174
175 if (alignment > ubi->leb_size || alignment == 0) {
176 dbg_err("bad alignment");
177 goto bad;
178 }
179
180 n = alignment % ubi->min_io_size;
181 if (alignment != 1 && n) {
182 dbg_err("alignment is not multiple of min I/O unit");
183 goto bad;
184 }
185
186 n = ubi->leb_size % alignment;
187 if (data_pad != n) {
188 dbg_err("bad data_pad, has to be %d", n);
189 goto bad;
190 }
191
192 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
193 dbg_err("bad vol_type");
194 goto bad;
195 }
196
197 if (upd_marker != 0 && upd_marker != 1) {
198 dbg_err("bad upd_marker");
199 goto bad;
200 }
201
202 if (reserved_pebs > ubi->good_peb_count) {
203 dbg_err("too large reserved_pebs, good PEBs %d",
204 ubi->good_peb_count);
205 goto bad;
206 }
207
208 if (name_len > UBI_VOL_NAME_MAX) {
209 dbg_err("too long volume name, max %d",
210 UBI_VOL_NAME_MAX);
211 goto bad;
212 }
213
214 if (name[0] == '\0') {
215 dbg_err("NULL volume name");
216 goto bad;
217 }
218
219 if (name_len != strnlen(name, name_len + 1)) {
220 dbg_err("bad name_len");
221 goto bad;
222 }
223 }
224
225 /* Checks that all names are unique */
226 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
227 for (n = i + 1; n < ubi->vtbl_slots; n++) {
228 int len1 = ubi16_to_cpu(vtbl[i].name_len);
229 int len2 = ubi16_to_cpu(vtbl[n].name_len);
230
231 if (len1 > 0 && len1 == len2 &&
232 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
233 ubi_err("volumes %d and %d have the same name"
234 " \"%s\"", i, n, vtbl[i].name);
235 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
236 ubi_dbg_dump_vtbl_record(&vtbl[n], n);
237 return -EINVAL;
238 }
239 }
240 }
241
242 return 0;
243
244bad:
245 ubi_err("volume table check failed, record %d", i);
246 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
247 return -EINVAL;
248}
249
250/**
251 * create_vtbl - create a copy of volume table.
252 * @ubi: UBI device description object
253 * @si: scanning information
254 * @copy: number of the volume table copy
255 * @vtbl: contents of the volume table
256 *
257 * This function returns zero in case of success and a negative error code in
258 * case of failure.
259 */
260static int create_vtbl(const struct ubi_device *ubi, struct ubi_scan_info *si,
261 int copy, void *vtbl)
262{
263 int err, tries = 0;
264 static struct ubi_vid_hdr *vid_hdr;
265 struct ubi_scan_volume *sv;
266 struct ubi_scan_leb *new_seb, *old_seb = NULL;
267
268 ubi_msg("create volume table (copy #%d)", copy + 1);
269
270 vid_hdr = ubi_zalloc_vid_hdr(ubi);
271 if (!vid_hdr)
272 return -ENOMEM;
273
274 /*
275 * Check if there is a logical eraseblock which would have to contain
276 * this volume table copy was found during scanning. It has to be wiped
277 * out.
278 */
279 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
280 if (sv)
281 old_seb = ubi_scan_find_seb(sv, copy);
282
283retry:
284 new_seb = ubi_scan_get_free_peb(ubi, si);
285 if (IS_ERR(new_seb)) {
286 err = PTR_ERR(new_seb);
287 goto out_free;
288 }
289
290 vid_hdr->vol_type = UBI_VID_DYNAMIC;
291 vid_hdr->vol_id = cpu_to_ubi32(UBI_LAYOUT_VOL_ID);
292 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
293 vid_hdr->data_size = vid_hdr->used_ebs =
294 vid_hdr->data_pad = cpu_to_ubi32(0);
295 vid_hdr->lnum = cpu_to_ubi32(copy);
296 vid_hdr->sqnum = cpu_to_ubi64(++si->max_sqnum);
297 vid_hdr->leb_ver = cpu_to_ubi32(old_seb ? old_seb->leb_ver + 1: 0);
298
299 /* The EC header is already there, write the VID header */
300 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
301 if (err)
302 goto write_error;
303
304 /* Write the layout volume contents */
305 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
306 if (err)
307 goto write_error;
308
309 /*
310 * And add it to the scanning information. Don't delete the old
311 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
312 */
313 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
314 vid_hdr, 0);
315 kfree(new_seb);
316 ubi_free_vid_hdr(ubi, vid_hdr);
317 return err;
318
319write_error:
Artem Bityutskiy78d87c92007-05-05 11:24:02 +0300320 if (err == -EIO && ++tries <= 5) {
321 /*
322 * Probably this physical eraseblock went bad, try to pick
323 * another one.
324 */
325 list_add_tail(&new_seb->u.list, &si->corr);
Florin Malitac4e90ec2007-05-03 11:49:57 -0400326 goto retry;
Artem Bityutskiy78d87c92007-05-05 11:24:02 +0300327 }
328 kfree(new_seb);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400329out_free:
330 ubi_free_vid_hdr(ubi, vid_hdr);
331 return err;
332
333}
334
335/**
336 * process_lvol - process the layout volume.
337 * @ubi: UBI device description object
338 * @si: scanning information
339 * @sv: layout volume scanning information
340 *
341 * This function is responsible for reading the layout volume, ensuring it is
342 * not corrupted, and recovering from corruptions if needed. Returns volume
343 * table in case of success and a negative error code in case of failure.
344 */
345static struct ubi_vtbl_record *process_lvol(const struct ubi_device *ubi,
346 struct ubi_scan_info *si,
347 struct ubi_scan_volume *sv)
348{
349 int err;
350 struct rb_node *rb;
351 struct ubi_scan_leb *seb;
352 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
353 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
354
355 /*
356 * UBI goes through the following steps when it changes the layout
357 * volume:
358 * a. erase LEB 0;
359 * b. write new data to LEB 0;
360 * c. erase LEB 1;
361 * d. write new data to LEB 1.
362 *
363 * Before the change, both LEBs contain the same data.
364 *
365 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
366 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
367 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
368 * finally, unclean reboots may result in a situation when neither LEB
369 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
370 * 0 contains more recent information.
371 *
372 * So the plan is to first check LEB 0. Then
373 * a. if LEB 0 is OK, it must be containing the most resent data; then
374 * we compare it with LEB 1, and if they are different, we copy LEB
375 * 0 to LEB 1;
376 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
377 * to LEB 0.
378 */
379
380 dbg_msg("check layout volume");
381
382 /* Read both LEB 0 and LEB 1 into memory */
383 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300384 leb[seb->lnum] = vmalloc(ubi->vtbl_size);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400385 if (!leb[seb->lnum]) {
386 err = -ENOMEM;
387 goto out_free;
388 }
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300389 memset(leb[seb->lnum], 0, ubi->vtbl_size);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400390
391 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
392 ubi->vtbl_size);
393 if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
394 /* Scrub the PEB later */
395 seb->scrub = 1;
396 else if (err)
397 goto out_free;
398 }
399
400 err = -EINVAL;
401 if (leb[0]) {
402 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
403 if (leb_corrupted[0] < 0)
404 goto out_free;
405 }
406
407 if (!leb_corrupted[0]) {
408 /* LEB 0 is OK */
409 if (leb[1])
410 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
411 if (leb_corrupted[1]) {
412 ubi_warn("volume table copy #2 is corrupted");
413 err = create_vtbl(ubi, si, 1, leb[0]);
414 if (err)
415 goto out_free;
416 ubi_msg("volume table was restored");
417 }
418
419 /* Both LEB 1 and LEB 2 are OK and consistent */
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300420 vfree(leb[1]);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400421 return leb[0];
422 } else {
423 /* LEB 0 is corrupted or does not exist */
424 if (leb[1]) {
425 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
426 if (leb_corrupted[1] < 0)
427 goto out_free;
428 }
429 if (leb_corrupted[1]) {
430 /* Both LEB 0 and LEB 1 are corrupted */
431 ubi_err("both volume tables are corrupted");
432 goto out_free;
433 }
434
435 ubi_warn("volume table copy #1 is corrupted");
436 err = create_vtbl(ubi, si, 0, leb[1]);
437 if (err)
438 goto out_free;
439 ubi_msg("volume table was restored");
440
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300441 vfree(leb[0]);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400442 return leb[1];
443 }
444
445out_free:
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300446 vfree(leb[0]);
447 vfree(leb[1]);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400448 return ERR_PTR(err);
449}
450
451/**
452 * create_empty_lvol - create empty layout volume.
453 * @ubi: UBI device description object
454 * @si: scanning information
455 *
456 * This function returns volume table contents in case of success and a
457 * negative error code in case of failure.
458 */
459static struct ubi_vtbl_record *create_empty_lvol(const struct ubi_device *ubi,
460 struct ubi_scan_info *si)
461{
462 int i;
463 struct ubi_vtbl_record *vtbl;
464
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300465 vtbl = vmalloc(ubi->vtbl_size);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400466 if (!vtbl)
467 return ERR_PTR(-ENOMEM);
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300468 memset(vtbl, 0, ubi->vtbl_size);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400469
470 for (i = 0; i < ubi->vtbl_slots; i++)
471 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
472
473 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
474 int err;
475
476 err = create_vtbl(ubi, si, i, vtbl);
477 if (err) {
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300478 vfree(vtbl);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400479 return ERR_PTR(err);
480 }
481 }
482
483 return vtbl;
484}
485
486/**
487 * init_volumes - initialize volume information for existing volumes.
488 * @ubi: UBI device description object
489 * @si: scanning information
490 * @vtbl: volume table
491 *
492 * This function allocates volume description objects for existing volumes.
493 * Returns zero in case of success and a negative error code in case of
494 * failure.
495 */
496static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
497 const struct ubi_vtbl_record *vtbl)
498{
499 int i, reserved_pebs = 0;
500 struct ubi_scan_volume *sv;
501 struct ubi_volume *vol;
502
503 for (i = 0; i < ubi->vtbl_slots; i++) {
504 cond_resched();
505
506 if (ubi32_to_cpu(vtbl[i].reserved_pebs) == 0)
507 continue; /* Empty record */
508
509 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
510 if (!vol)
511 return -ENOMEM;
512
513 vol->reserved_pebs = ubi32_to_cpu(vtbl[i].reserved_pebs);
514 vol->alignment = ubi32_to_cpu(vtbl[i].alignment);
515 vol->data_pad = ubi32_to_cpu(vtbl[i].data_pad);
516 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
517 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
518 vol->name_len = ubi16_to_cpu(vtbl[i].name_len);
519 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
520 memcpy(vol->name, vtbl[i].name, vol->name_len);
521 vol->name[vol->name_len] = '\0';
522 vol->vol_id = i;
523
524 ubi_assert(!ubi->volumes[i]);
525 ubi->volumes[i] = vol;
526 ubi->vol_count += 1;
527 vol->ubi = ubi;
528 reserved_pebs += vol->reserved_pebs;
529
530 /*
531 * In case of dynamic volume UBI knows nothing about how many
532 * data is stored there. So assume the whole volume is used.
533 */
534 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
535 vol->used_ebs = vol->reserved_pebs;
536 vol->last_eb_bytes = vol->usable_leb_size;
537 vol->used_bytes = vol->used_ebs * vol->usable_leb_size;
538 continue;
539 }
540
541 /* Static volumes only */
542 sv = ubi_scan_find_sv(si, i);
543 if (!sv) {
544 /*
545 * No eraseblocks belonging to this volume found. We
546 * don't actually know whether this static volume is
547 * completely corrupted or just contains no data. And
548 * we cannot know this as long as data size is not
549 * stored on flash. So we just assume the volume is
550 * empty. FIXME: this should be handled.
551 */
552 continue;
553 }
554
555 if (sv->leb_count != sv->used_ebs) {
556 /*
557 * We found a static volume which misses several
558 * eraseblocks. Treat it as corrupted.
559 */
560 ubi_warn("static volume %d misses %d LEBs - corrupted",
561 sv->vol_id, sv->used_ebs - sv->leb_count);
562 vol->corrupted = 1;
563 continue;
564 }
565
566 vol->used_ebs = sv->used_ebs;
567 vol->used_bytes = (vol->used_ebs - 1) * vol->usable_leb_size;
568 vol->used_bytes += sv->last_data_size;
569 vol->last_eb_bytes = sv->last_data_size;
570 }
571
572 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
573 if (!vol)
574 return -ENOMEM;
575
576 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
577 vol->alignment = 1;
578 vol->vol_type = UBI_DYNAMIC_VOLUME;
579 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
580 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
581 vol->usable_leb_size = ubi->leb_size;
582 vol->used_ebs = vol->reserved_pebs;
583 vol->last_eb_bytes = vol->reserved_pebs;
584 vol->used_bytes = vol->used_ebs * (ubi->leb_size - vol->data_pad);
585 vol->vol_id = UBI_LAYOUT_VOL_ID;
586
587 ubi_assert(!ubi->volumes[i]);
588 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
589 reserved_pebs += vol->reserved_pebs;
590 ubi->vol_count += 1;
591 vol->ubi = ubi;
592
593 if (reserved_pebs > ubi->avail_pebs)
594 ubi_err("not enough PEBs, required %d, available %d",
595 reserved_pebs, ubi->avail_pebs);
596 ubi->rsvd_pebs += reserved_pebs;
597 ubi->avail_pebs -= reserved_pebs;
598
599 return 0;
600}
601
602/**
603 * check_sv - check volume scanning information.
604 * @vol: UBI volume description object
605 * @sv: volume scanning information
606 *
607 * This function returns zero if the volume scanning information is consistent
608 * to the data read from the volume tabla, and %-EINVAL if not.
609 */
610static int check_sv(const struct ubi_volume *vol,
611 const struct ubi_scan_volume *sv)
612{
613 if (sv->highest_lnum >= vol->reserved_pebs) {
614 dbg_err("bad highest_lnum");
615 goto bad;
616 }
617 if (sv->leb_count > vol->reserved_pebs) {
618 dbg_err("bad leb_count");
619 goto bad;
620 }
621 if (sv->vol_type != vol->vol_type) {
622 dbg_err("bad vol_type");
623 goto bad;
624 }
625 if (sv->used_ebs > vol->reserved_pebs) {
626 dbg_err("bad used_ebs");
627 goto bad;
628 }
629 if (sv->data_pad != vol->data_pad) {
630 dbg_err("bad data_pad");
631 goto bad;
632 }
633 return 0;
634
635bad:
636 ubi_err("bad scanning information");
637 ubi_dbg_dump_sv(sv);
638 ubi_dbg_dump_vol_info(vol);
639 return -EINVAL;
640}
641
642/**
643 * check_scanning_info - check that scanning information.
644 * @ubi: UBI device description object
645 * @si: scanning information
646 *
647 * Even though we protect on-flash data by CRC checksums, we still don't trust
648 * the media. This function ensures that scanning information is consistent to
649 * the information read from the volume table. Returns zero if the scanning
650 * information is OK and %-EINVAL if it is not.
651 */
652static int check_scanning_info(const struct ubi_device *ubi,
653 struct ubi_scan_info *si)
654{
655 int err, i;
656 struct ubi_scan_volume *sv;
657 struct ubi_volume *vol;
658
659 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
660 ubi_err("scanning found %d volumes, maximum is %d + %d",
661 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
662 return -EINVAL;
663 }
664
665 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
666 si->highest_vol_id < UBI_INTERNAL_VOL_START) {
667 ubi_err("too large volume ID %d found by scanning",
668 si->highest_vol_id);
669 return -EINVAL;
670 }
671
672
673 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
674 cond_resched();
675
676 sv = ubi_scan_find_sv(si, i);
677 vol = ubi->volumes[i];
678 if (!vol) {
679 if (sv)
680 ubi_scan_rm_volume(si, sv);
681 continue;
682 }
683
684 if (vol->reserved_pebs == 0) {
685 ubi_assert(i < ubi->vtbl_slots);
686
687 if (!sv)
688 continue;
689
690 /*
691 * During scanning we found a volume which does not
692 * exist according to the information in the volume
693 * table. This must have happened due to an unclean
694 * reboot while the volume was being removed. Discard
695 * these eraseblocks.
696 */
697 ubi_msg("finish volume %d removal", sv->vol_id);
698 ubi_scan_rm_volume(si, sv);
699 } else if (sv) {
700 err = check_sv(vol, sv);
701 if (err)
702 return err;
703 }
704 }
705
706 return 0;
707}
708
709/**
710 * ubi_read_volume_table - read volume table.
711 * information.
712 * @ubi: UBI device description object
713 * @si: scanning information
714 *
715 * This function reads volume table, checks it, recover from errors if needed,
716 * or creates it if needed. Returns zero in case of success and a negative
717 * error code in case of failure.
718 */
719int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
720{
721 int i, err;
722 struct ubi_scan_volume *sv;
723
724 empty_vtbl_record.crc = cpu_to_ubi32(0xf116c36b);
725
726 /*
727 * The number of supported volumes is limited by the eraseblock size
728 * and by the UBI_MAX_VOLUMES constant.
729 */
730 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
731 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
732 ubi->vtbl_slots = UBI_MAX_VOLUMES;
733
734 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
735 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
736
737 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
738 if (!sv) {
739 /*
740 * No logical eraseblocks belonging to the layout volume were
741 * found. This could mean that the flash is just empty. In
742 * this case we create empty layout volume.
743 *
744 * But if flash is not empty this must be a corruption or the
745 * MTD device just contains garbage.
746 */
747 if (si->is_empty) {
748 ubi->vtbl = create_empty_lvol(ubi, si);
749 if (IS_ERR(ubi->vtbl))
750 return PTR_ERR(ubi->vtbl);
751 } else {
752 ubi_err("the layout volume was not found");
753 return -EINVAL;
754 }
755 } else {
756 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
757 /* This must not happen with proper UBI images */
758 dbg_err("too many LEBs (%d) in layout volume",
759 sv->leb_count);
760 return -EINVAL;
761 }
762
763 ubi->vtbl = process_lvol(ubi, si, sv);
764 if (IS_ERR(ubi->vtbl))
765 return PTR_ERR(ubi->vtbl);
766 }
767
768 ubi->avail_pebs = ubi->good_peb_count;
769
770 /*
771 * The layout volume is OK, initialize the corresponding in-RAM data
772 * structures.
773 */
774 err = init_volumes(ubi, si, ubi->vtbl);
775 if (err)
776 goto out_free;
777
778 /*
779 * Get sure that the scanning information is consistent to the
780 * information stored in the volume table.
781 */
782 err = check_scanning_info(ubi, si);
783 if (err)
784 goto out_free;
785
786 return 0;
787
788out_free:
Artem Bityutskiy92ad8f32007-05-06 16:12:54 +0300789 vfree(ubi->vtbl);
Artem B. Bityutskiy801c1352006-06-27 12:22:22 +0400790 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
791 if (ubi->volumes[i]) {
792 kfree(ubi->volumes[i]);
793 ubi->volumes[i] = NULL;
794 }
795 return err;
796}
797
798#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
799
800/**
801 * paranoid_vtbl_check - check volume table.
802 * @ubi: UBI device description object
803 */
804static void paranoid_vtbl_check(const struct ubi_device *ubi)
805{
806 if (vtbl_check(ubi, ubi->vtbl)) {
807 ubi_err("paranoid check failed");
808 BUG();
809 }
810}
811
812#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */