Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/fs/partitions/acorn.c |
| 3 | * |
| 4 | * Copyright (c) 1996-2000 Russell King. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * Scan ADFS partitions on hard disk drives. Unfortunately, there |
| 11 | * isn't a standard for partitioning drives on Acorn machines, so |
| 12 | * every single manufacturer of SCSI and IDE cards created their own |
| 13 | * method. |
| 14 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 15 | #include <linux/buffer_head.h> |
| 16 | #include <linux/adfs_fs.h> |
| 17 | |
| 18 | #include "check.h" |
| 19 | #include "acorn.h" |
| 20 | |
| 21 | /* |
| 22 | * Partition types. (Oh for reusability) |
| 23 | */ |
| 24 | #define PARTITION_RISCIX_MFM 1 |
| 25 | #define PARTITION_RISCIX_SCSI 2 |
| 26 | #define PARTITION_LINUX 9 |
| 27 | |
| 28 | static struct adfs_discrecord * |
| 29 | adfs_partition(struct parsed_partitions *state, char *name, char *data, |
| 30 | unsigned long first_sector, int slot) |
| 31 | { |
| 32 | struct adfs_discrecord *dr; |
| 33 | unsigned int nr_sects; |
| 34 | |
| 35 | if (adfs_checkbblk(data)) |
| 36 | return NULL; |
| 37 | |
| 38 | dr = (struct adfs_discrecord *)(data + 0x1c0); |
| 39 | |
| 40 | if (dr->disc_size == 0 && dr->disc_size_high == 0) |
| 41 | return NULL; |
| 42 | |
| 43 | nr_sects = (le32_to_cpu(dr->disc_size_high) << 23) | |
| 44 | (le32_to_cpu(dr->disc_size) >> 9); |
| 45 | |
| 46 | if (name) |
| 47 | printk(" [%s]", name); |
| 48 | put_partition(state, slot, first_sector, nr_sects); |
| 49 | return dr; |
| 50 | } |
| 51 | |
| 52 | #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| 53 | |
| 54 | struct riscix_part { |
| 55 | __le32 start; |
| 56 | __le32 length; |
| 57 | __le32 one; |
| 58 | char name[16]; |
| 59 | }; |
| 60 | |
| 61 | struct riscix_record { |
| 62 | __le32 magic; |
| 63 | #define RISCIX_MAGIC cpu_to_le32(0x4a657320) |
| 64 | __le32 date; |
| 65 | struct riscix_part part[8]; |
| 66 | }; |
| 67 | |
| 68 | static int |
| 69 | riscix_partition(struct parsed_partitions *state, struct block_device *bdev, |
| 70 | unsigned long first_sect, int slot, unsigned long nr_sects) |
| 71 | { |
| 72 | Sector sect; |
| 73 | struct riscix_record *rr; |
| 74 | |
| 75 | rr = (struct riscix_record *)read_dev_sector(bdev, first_sect, §); |
| 76 | if (!rr) |
| 77 | return -1; |
| 78 | |
| 79 | printk(" [RISCiX]"); |
| 80 | |
| 81 | |
| 82 | if (rr->magic == RISCIX_MAGIC) { |
| 83 | unsigned long size = nr_sects > 2 ? 2 : nr_sects; |
| 84 | int part; |
| 85 | |
| 86 | printk(" <"); |
| 87 | |
| 88 | put_partition(state, slot++, first_sect, size); |
| 89 | for (part = 0; part < 8; part++) { |
| 90 | if (rr->part[part].one && |
| 91 | memcmp(rr->part[part].name, "All\0", 4)) { |
| 92 | put_partition(state, slot++, |
| 93 | le32_to_cpu(rr->part[part].start), |
| 94 | le32_to_cpu(rr->part[part].length)); |
| 95 | printk("(%s)", rr->part[part].name); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | printk(" >\n"); |
| 100 | } else { |
| 101 | put_partition(state, slot++, first_sect, nr_sects); |
| 102 | } |
| 103 | |
| 104 | put_dev_sector(sect); |
| 105 | return slot; |
| 106 | } |
| 107 | #endif |
| 108 | |
| 109 | #define LINUX_NATIVE_MAGIC 0xdeafa1de |
| 110 | #define LINUX_SWAP_MAGIC 0xdeafab1e |
| 111 | |
| 112 | struct linux_part { |
| 113 | __le32 magic; |
| 114 | __le32 start_sect; |
| 115 | __le32 nr_sects; |
| 116 | }; |
| 117 | |
| 118 | static int |
| 119 | linux_partition(struct parsed_partitions *state, struct block_device *bdev, |
| 120 | unsigned long first_sect, int slot, unsigned long nr_sects) |
| 121 | { |
| 122 | Sector sect; |
| 123 | struct linux_part *linuxp; |
| 124 | unsigned long size = nr_sects > 2 ? 2 : nr_sects; |
| 125 | |
| 126 | printk(" [Linux]"); |
| 127 | |
| 128 | put_partition(state, slot++, first_sect, size); |
| 129 | |
| 130 | linuxp = (struct linux_part *)read_dev_sector(bdev, first_sect, §); |
| 131 | if (!linuxp) |
| 132 | return -1; |
| 133 | |
| 134 | printk(" <"); |
| 135 | while (linuxp->magic == cpu_to_le32(LINUX_NATIVE_MAGIC) || |
| 136 | linuxp->magic == cpu_to_le32(LINUX_SWAP_MAGIC)) { |
| 137 | if (slot == state->limit) |
| 138 | break; |
| 139 | put_partition(state, slot++, first_sect + |
| 140 | le32_to_cpu(linuxp->start_sect), |
| 141 | le32_to_cpu(linuxp->nr_sects)); |
| 142 | linuxp ++; |
| 143 | } |
| 144 | printk(" >"); |
| 145 | |
| 146 | put_dev_sector(sect); |
| 147 | return slot; |
| 148 | } |
| 149 | |
| 150 | #ifdef CONFIG_ACORN_PARTITION_CUMANA |
| 151 | int |
| 152 | adfspart_check_CUMANA(struct parsed_partitions *state, struct block_device *bdev) |
| 153 | { |
| 154 | unsigned long first_sector = 0; |
| 155 | unsigned int start_blk = 0; |
| 156 | Sector sect; |
| 157 | unsigned char *data; |
| 158 | char *name = "CUMANA/ADFS"; |
| 159 | int first = 1; |
| 160 | int slot = 1; |
| 161 | |
| 162 | /* |
| 163 | * Try Cumana style partitions - sector 6 contains ADFS boot block |
| 164 | * with pointer to next 'drive'. |
| 165 | * |
| 166 | * There are unknowns in this code - is the 'cylinder number' of the |
| 167 | * next partition relative to the start of this one - I'm assuming |
| 168 | * it is. |
| 169 | * |
| 170 | * Also, which ID did Cumana use? |
| 171 | * |
| 172 | * This is totally unfinished, and will require more work to get it |
| 173 | * going. Hence it is totally untested. |
| 174 | */ |
| 175 | do { |
| 176 | struct adfs_discrecord *dr; |
| 177 | unsigned int nr_sects; |
| 178 | |
| 179 | data = read_dev_sector(bdev, start_blk * 2 + 6, §); |
| 180 | if (!data) |
| 181 | return -1; |
| 182 | |
| 183 | if (slot == state->limit) |
| 184 | break; |
| 185 | |
| 186 | dr = adfs_partition(state, name, data, first_sector, slot++); |
| 187 | if (!dr) |
| 188 | break; |
| 189 | |
| 190 | name = NULL; |
| 191 | |
| 192 | nr_sects = (data[0x1fd] + (data[0x1fe] << 8)) * |
| 193 | (dr->heads + (dr->lowsector & 0x40 ? 1 : 0)) * |
| 194 | dr->secspertrack; |
| 195 | |
| 196 | if (!nr_sects) |
| 197 | break; |
| 198 | |
| 199 | first = 0; |
| 200 | first_sector += nr_sects; |
| 201 | start_blk += nr_sects >> (BLOCK_SIZE_BITS - 9); |
| 202 | nr_sects = 0; /* hmm - should be partition size */ |
| 203 | |
| 204 | switch (data[0x1fc] & 15) { |
| 205 | case 0: /* No partition / ADFS? */ |
| 206 | break; |
| 207 | |
| 208 | #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| 209 | case PARTITION_RISCIX_SCSI: |
| 210 | /* RISCiX - we don't know how to find the next one. */ |
| 211 | slot = riscix_partition(state, bdev, first_sector, |
| 212 | slot, nr_sects); |
| 213 | break; |
| 214 | #endif |
| 215 | |
| 216 | case PARTITION_LINUX: |
| 217 | slot = linux_partition(state, bdev, first_sector, |
| 218 | slot, nr_sects); |
| 219 | break; |
| 220 | } |
| 221 | put_dev_sector(sect); |
| 222 | if (slot == -1) |
| 223 | return -1; |
| 224 | } while (1); |
| 225 | put_dev_sector(sect); |
| 226 | return first ? 0 : 1; |
| 227 | } |
| 228 | #endif |
| 229 | |
| 230 | #ifdef CONFIG_ACORN_PARTITION_ADFS |
| 231 | /* |
| 232 | * Purpose: allocate ADFS partitions. |
| 233 | * |
| 234 | * Params : hd - pointer to gendisk structure to store partition info. |
| 235 | * dev - device number to access. |
| 236 | * |
| 237 | * Returns: -1 on error, 0 for no ADFS boot sector, 1 for ok. |
| 238 | * |
| 239 | * Alloc : hda = whole drive |
| 240 | * hda1 = ADFS partition on first drive. |
| 241 | * hda2 = non-ADFS partition. |
| 242 | */ |
| 243 | int |
| 244 | adfspart_check_ADFS(struct parsed_partitions *state, struct block_device *bdev) |
| 245 | { |
| 246 | unsigned long start_sect, nr_sects, sectscyl, heads; |
| 247 | Sector sect; |
| 248 | unsigned char *data; |
| 249 | struct adfs_discrecord *dr; |
| 250 | unsigned char id; |
| 251 | int slot = 1; |
| 252 | |
| 253 | data = read_dev_sector(bdev, 6, §); |
| 254 | if (!data) |
| 255 | return -1; |
| 256 | |
| 257 | dr = adfs_partition(state, "ADFS", data, 0, slot++); |
| 258 | if (!dr) { |
| 259 | put_dev_sector(sect); |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | heads = dr->heads + ((dr->lowsector >> 6) & 1); |
| 264 | sectscyl = dr->secspertrack * heads; |
| 265 | start_sect = ((data[0x1fe] << 8) + data[0x1fd]) * sectscyl; |
| 266 | id = data[0x1fc] & 15; |
| 267 | put_dev_sector(sect); |
| 268 | |
| 269 | #ifdef CONFIG_BLK_DEV_MFM |
| 270 | if (MAJOR(bdev->bd_dev) == MFM_ACORN_MAJOR) { |
| 271 | extern void xd_set_geometry(struct block_device *, |
| 272 | unsigned char, unsigned char, unsigned int); |
| 273 | xd_set_geometry(bdev, dr->secspertrack, heads, 1); |
Peter Zijlstra | 96018fd | 2007-05-06 14:49:55 -0700 | [diff] [blame^] | 274 | invalidate_bh_lrus(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 275 | truncate_inode_pages(bdev->bd_inode->i_mapping, 0); |
| 276 | } |
| 277 | #endif |
| 278 | |
| 279 | /* |
| 280 | * Work out start of non-adfs partition. |
| 281 | */ |
| 282 | nr_sects = (bdev->bd_inode->i_size >> 9) - start_sect; |
| 283 | |
| 284 | if (start_sect) { |
| 285 | switch (id) { |
| 286 | #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| 287 | case PARTITION_RISCIX_SCSI: |
| 288 | case PARTITION_RISCIX_MFM: |
| 289 | slot = riscix_partition(state, bdev, start_sect, |
| 290 | slot, nr_sects); |
| 291 | break; |
| 292 | #endif |
| 293 | |
| 294 | case PARTITION_LINUX: |
| 295 | slot = linux_partition(state, bdev, start_sect, |
| 296 | slot, nr_sects); |
| 297 | break; |
| 298 | } |
| 299 | } |
| 300 | printk("\n"); |
| 301 | return 1; |
| 302 | } |
| 303 | #endif |
| 304 | |
| 305 | #ifdef CONFIG_ACORN_PARTITION_ICS |
| 306 | |
| 307 | struct ics_part { |
| 308 | __le32 start; |
| 309 | __le32 size; |
| 310 | }; |
| 311 | |
| 312 | static int adfspart_check_ICSLinux(struct block_device *bdev, unsigned long block) |
| 313 | { |
| 314 | Sector sect; |
| 315 | unsigned char *data = read_dev_sector(bdev, block, §); |
| 316 | int result = 0; |
| 317 | |
| 318 | if (data) { |
| 319 | if (memcmp(data, "LinuxPart", 9) == 0) |
| 320 | result = 1; |
| 321 | put_dev_sector(sect); |
| 322 | } |
| 323 | |
| 324 | return result; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * Check for a valid ICS partition using the checksum. |
| 329 | */ |
| 330 | static inline int valid_ics_sector(const unsigned char *data) |
| 331 | { |
| 332 | unsigned long sum; |
| 333 | int i; |
| 334 | |
| 335 | for (i = 0, sum = 0x50617274; i < 508; i++) |
| 336 | sum += data[i]; |
| 337 | |
| 338 | sum -= le32_to_cpu(*(__le32 *)(&data[508])); |
| 339 | |
| 340 | return sum == 0; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Purpose: allocate ICS partitions. |
| 345 | * Params : hd - pointer to gendisk structure to store partition info. |
| 346 | * dev - device number to access. |
| 347 | * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. |
| 348 | * Alloc : hda = whole drive |
| 349 | * hda1 = ADFS partition 0 on first drive. |
| 350 | * hda2 = ADFS partition 1 on first drive. |
| 351 | * ..etc.. |
| 352 | */ |
| 353 | int |
| 354 | adfspart_check_ICS(struct parsed_partitions *state, struct block_device *bdev) |
| 355 | { |
| 356 | const unsigned char *data; |
| 357 | const struct ics_part *p; |
| 358 | int slot; |
| 359 | Sector sect; |
| 360 | |
| 361 | /* |
| 362 | * Try ICS style partitions - sector 0 contains partition info. |
| 363 | */ |
| 364 | data = read_dev_sector(bdev, 0, §); |
| 365 | if (!data) |
| 366 | return -1; |
| 367 | |
| 368 | if (!valid_ics_sector(data)) { |
| 369 | put_dev_sector(sect); |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | printk(" [ICS]"); |
| 374 | |
| 375 | for (slot = 1, p = (const struct ics_part *)data; p->size; p++) { |
| 376 | u32 start = le32_to_cpu(p->start); |
| 377 | s32 size = le32_to_cpu(p->size); /* yes, it's signed. */ |
| 378 | |
| 379 | if (slot == state->limit) |
| 380 | break; |
| 381 | |
| 382 | /* |
| 383 | * Negative sizes tell the RISC OS ICS driver to ignore |
| 384 | * this partition - in effect it says that this does not |
| 385 | * contain an ADFS filesystem. |
| 386 | */ |
| 387 | if (size < 0) { |
| 388 | size = -size; |
| 389 | |
| 390 | /* |
| 391 | * Our own extension - We use the first sector |
| 392 | * of the partition to identify what type this |
| 393 | * partition is. We must not make this visible |
| 394 | * to the filesystem. |
| 395 | */ |
| 396 | if (size > 1 && adfspart_check_ICSLinux(bdev, start)) { |
| 397 | start += 1; |
| 398 | size -= 1; |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | if (size) |
| 403 | put_partition(state, slot++, start, size); |
| 404 | } |
| 405 | |
| 406 | put_dev_sector(sect); |
| 407 | printk("\n"); |
| 408 | return 1; |
| 409 | } |
| 410 | #endif |
| 411 | |
| 412 | #ifdef CONFIG_ACORN_PARTITION_POWERTEC |
| 413 | struct ptec_part { |
| 414 | __le32 unused1; |
| 415 | __le32 unused2; |
| 416 | __le32 start; |
| 417 | __le32 size; |
| 418 | __le32 unused5; |
| 419 | char type[8]; |
| 420 | }; |
| 421 | |
| 422 | static inline int valid_ptec_sector(const unsigned char *data) |
| 423 | { |
| 424 | unsigned char checksum = 0x2a; |
| 425 | int i; |
| 426 | |
| 427 | /* |
| 428 | * If it looks like a PC/BIOS partition, then it |
| 429 | * probably isn't PowerTec. |
| 430 | */ |
| 431 | if (data[510] == 0x55 && data[511] == 0xaa) |
| 432 | return 0; |
| 433 | |
| 434 | for (i = 0; i < 511; i++) |
| 435 | checksum += data[i]; |
| 436 | |
| 437 | return checksum == data[511]; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * Purpose: allocate ICS partitions. |
| 442 | * Params : hd - pointer to gendisk structure to store partition info. |
| 443 | * dev - device number to access. |
| 444 | * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. |
| 445 | * Alloc : hda = whole drive |
| 446 | * hda1 = ADFS partition 0 on first drive. |
| 447 | * hda2 = ADFS partition 1 on first drive. |
| 448 | * ..etc.. |
| 449 | */ |
| 450 | int |
| 451 | adfspart_check_POWERTEC(struct parsed_partitions *state, struct block_device *bdev) |
| 452 | { |
| 453 | Sector sect; |
| 454 | const unsigned char *data; |
| 455 | const struct ptec_part *p; |
| 456 | int slot = 1; |
| 457 | int i; |
| 458 | |
| 459 | data = read_dev_sector(bdev, 0, §); |
| 460 | if (!data) |
| 461 | return -1; |
| 462 | |
| 463 | if (!valid_ptec_sector(data)) { |
| 464 | put_dev_sector(sect); |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | printk(" [POWERTEC]"); |
| 469 | |
| 470 | for (i = 0, p = (const struct ptec_part *)data; i < 12; i++, p++) { |
| 471 | u32 start = le32_to_cpu(p->start); |
| 472 | u32 size = le32_to_cpu(p->size); |
| 473 | |
| 474 | if (size) |
| 475 | put_partition(state, slot++, start, size); |
| 476 | } |
| 477 | |
| 478 | put_dev_sector(sect); |
| 479 | printk("\n"); |
| 480 | return 1; |
| 481 | } |
| 482 | #endif |
| 483 | |
| 484 | #ifdef CONFIG_ACORN_PARTITION_EESOX |
| 485 | struct eesox_part { |
| 486 | char magic[6]; |
| 487 | char name[10]; |
| 488 | __le32 start; |
| 489 | __le32 unused6; |
| 490 | __le32 unused7; |
| 491 | __le32 unused8; |
| 492 | }; |
| 493 | |
| 494 | /* |
| 495 | * Guess who created this format? |
| 496 | */ |
| 497 | static const char eesox_name[] = { |
| 498 | 'N', 'e', 'i', 'l', ' ', |
| 499 | 'C', 'r', 'i', 't', 'c', 'h', 'e', 'l', 'l', ' ', ' ' |
| 500 | }; |
| 501 | |
| 502 | /* |
| 503 | * EESOX SCSI partition format. |
| 504 | * |
| 505 | * This is a goddamned awful partition format. We don't seem to store |
| 506 | * the size of the partition in this table, only the start addresses. |
| 507 | * |
| 508 | * There are two possibilities where the size comes from: |
| 509 | * 1. The individual ADFS boot block entries that are placed on the disk. |
| 510 | * 2. The start address of the next entry. |
| 511 | */ |
| 512 | int |
| 513 | adfspart_check_EESOX(struct parsed_partitions *state, struct block_device *bdev) |
| 514 | { |
| 515 | Sector sect; |
| 516 | const unsigned char *data; |
| 517 | unsigned char buffer[256]; |
| 518 | struct eesox_part *p; |
| 519 | sector_t start = 0; |
| 520 | int i, slot = 1; |
| 521 | |
| 522 | data = read_dev_sector(bdev, 7, §); |
| 523 | if (!data) |
| 524 | return -1; |
| 525 | |
| 526 | /* |
| 527 | * "Decrypt" the partition table. God knows why... |
| 528 | */ |
| 529 | for (i = 0; i < 256; i++) |
| 530 | buffer[i] = data[i] ^ eesox_name[i & 15]; |
| 531 | |
| 532 | put_dev_sector(sect); |
| 533 | |
| 534 | for (i = 0, p = (struct eesox_part *)buffer; i < 8; i++, p++) { |
| 535 | sector_t next; |
| 536 | |
| 537 | if (memcmp(p->magic, "Eesox", 6)) |
| 538 | break; |
| 539 | |
| 540 | next = le32_to_cpu(p->start); |
| 541 | if (i) |
| 542 | put_partition(state, slot++, start, next - start); |
| 543 | start = next; |
| 544 | } |
| 545 | |
| 546 | if (i != 0) { |
| 547 | sector_t size; |
| 548 | |
| 549 | size = get_capacity(bdev->bd_disk); |
| 550 | put_partition(state, slot++, start, size - start); |
| 551 | printk("\n"); |
| 552 | } |
| 553 | |
| 554 | return i ? 1 : 0; |
| 555 | } |
| 556 | #endif |