Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | */ |
| 23 | #include <linux/types.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/slab.h> |
| 26 | |
| 27 | #include "processpptables.h" |
| 28 | #include <atom-types.h> |
| 29 | #include <atombios.h> |
| 30 | #include "pptable.h" |
| 31 | #include "power_state.h" |
| 32 | #include "hwmgr.h" |
| 33 | #include "hardwaremanager.h" |
| 34 | |
| 35 | |
| 36 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 |
| 37 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 |
| 38 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 |
| 39 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 |
| 40 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 |
| 41 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 |
| 42 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24 |
| 43 | #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26 |
| 44 | |
| 45 | #define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6 |
| 46 | |
| 47 | static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr, |
| 48 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 49 | { |
| 50 | uint16_t vce_table_offset = 0; |
| 51 | |
| 52 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 53 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 54 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 55 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 56 | |
| 57 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 58 | const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| 59 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 60 | (((unsigned long)powerplay_table3) + |
| 61 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 62 | if (le16_to_cpu(extended_header->usSize) >= |
| 63 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) |
| 64 | vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | return vce_table_offset; |
| 69 | } |
| 70 | |
| 71 | static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr, |
| 72 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 73 | { |
| 74 | uint16_t table_offset = get_vce_table_offset(hwmgr, |
| 75 | powerplay_table); |
| 76 | |
| 77 | if (table_offset > 0) |
| 78 | return table_offset + 1; |
| 79 | |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr, |
| 84 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 85 | { |
| 86 | uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, |
| 87 | powerplay_table); |
| 88 | uint16_t table_size = 0; |
| 89 | |
| 90 | if (table_offset > 0) { |
| 91 | const VCEClockInfoArray *p = (const VCEClockInfoArray *) |
| 92 | (((unsigned long) powerplay_table) + table_offset); |
| 93 | table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo); |
| 94 | } |
| 95 | |
| 96 | return table_size; |
| 97 | } |
| 98 | |
| 99 | static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr, |
| 100 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 101 | { |
| 102 | uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, |
| 103 | powerplay_table); |
| 104 | |
| 105 | if (table_offset > 0) |
| 106 | return table_offset + get_vce_clock_info_array_size(hwmgr, |
| 107 | powerplay_table); |
| 108 | |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr, |
| 113 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 114 | { |
| 115 | uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| 116 | uint16_t table_size = 0; |
| 117 | |
| 118 | if (table_offset > 0) { |
| 119 | const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable = |
| 120 | (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset); |
| 121 | |
| 122 | table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record); |
| 123 | } |
| 124 | return table_size; |
| 125 | } |
| 126 | |
| 127 | static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 128 | { |
| 129 | uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| 130 | |
| 131 | if (table_offset > 0) |
| 132 | return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table); |
| 133 | |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table( |
| 138 | struct pp_hwmgr *hwmgr, |
| 139 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 140 | { |
| 141 | uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table); |
| 142 | |
| 143 | if (table_offset > 0) |
| 144 | return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset); |
| 145 | |
| 146 | return NULL; |
| 147 | } |
| 148 | |
| 149 | static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr, |
| 150 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 151 | { |
| 152 | uint16_t uvd_table_offset = 0; |
| 153 | |
| 154 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 155 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 156 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 157 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 158 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 159 | const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| 160 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 161 | (((unsigned long)powerplay_table3) + |
| 162 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 163 | if (le16_to_cpu(extended_header->usSize) >= |
| 164 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) |
| 165 | uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset); |
| 166 | } |
| 167 | } |
| 168 | return uvd_table_offset; |
| 169 | } |
| 170 | |
| 171 | static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr, |
| 172 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 173 | { |
| 174 | uint16_t table_offset = get_uvd_table_offset(hwmgr, |
| 175 | powerplay_table); |
| 176 | |
| 177 | if (table_offset > 0) |
| 178 | return table_offset + 1; |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr, |
| 183 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 184 | { |
| 185 | uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, |
| 186 | powerplay_table); |
| 187 | uint16_t table_size = 0; |
| 188 | |
| 189 | if (table_offset > 0) { |
| 190 | const UVDClockInfoArray *p = (const UVDClockInfoArray *) |
| 191 | (((unsigned long) powerplay_table) |
| 192 | + table_offset); |
| 193 | table_size = sizeof(UCHAR) + |
| 194 | p->ucNumEntries * sizeof(UVDClockInfo); |
| 195 | } |
| 196 | |
| 197 | return table_size; |
| 198 | } |
| 199 | |
| 200 | static uint16_t get_uvd_clock_voltage_limit_table_offset( |
| 201 | struct pp_hwmgr *hwmgr, |
| 202 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 203 | { |
| 204 | uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, |
| 205 | powerplay_table); |
| 206 | |
| 207 | if (table_offset > 0) |
| 208 | return table_offset + |
| 209 | get_uvd_clock_info_array_size(hwmgr, powerplay_table); |
| 210 | |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr, |
| 215 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 216 | { |
| 217 | uint16_t samu_table_offset = 0; |
| 218 | |
| 219 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 220 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 221 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 222 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 223 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 224 | const ATOM_PPLIB_EXTENDEDHEADER *extended_header = |
| 225 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 226 | (((unsigned long)powerplay_table3) + |
| 227 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 228 | if (le16_to_cpu(extended_header->usSize) >= |
| 229 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) |
| 230 | samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | return samu_table_offset; |
| 235 | } |
| 236 | |
| 237 | static uint16_t get_samu_clock_voltage_limit_table_offset( |
| 238 | struct pp_hwmgr *hwmgr, |
| 239 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 240 | { |
| 241 | uint16_t table_offset = get_samu_table_offset(hwmgr, |
| 242 | powerplay_table); |
| 243 | |
| 244 | if (table_offset > 0) |
| 245 | return table_offset + 1; |
| 246 | |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr, |
| 251 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 252 | { |
| 253 | uint16_t acp_table_offset = 0; |
| 254 | |
| 255 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 256 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 257 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 258 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 259 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 260 | const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| 261 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 262 | (((unsigned long)powerplay_table3) + |
| 263 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 264 | if (le16_to_cpu(pExtendedHeader->usSize) >= |
| 265 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) |
| 266 | acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | return acp_table_offset; |
| 271 | } |
| 272 | |
| 273 | static uint16_t get_acp_clock_voltage_limit_table_offset( |
| 274 | struct pp_hwmgr *hwmgr, |
| 275 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 276 | { |
| 277 | uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table); |
| 278 | |
| 279 | if (tableOffset > 0) |
| 280 | return tableOffset + 1; |
| 281 | |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | static uint16_t get_cacp_tdp_table_offset( |
| 286 | struct pp_hwmgr *hwmgr, |
| 287 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 288 | { |
| 289 | uint16_t cacTdpTableOffset = 0; |
| 290 | |
| 291 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 292 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 293 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 294 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 295 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 296 | const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| 297 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 298 | (((unsigned long)powerplay_table3) + |
| 299 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 300 | if (le16_to_cpu(pExtendedHeader->usSize) >= |
| 301 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) |
| 302 | cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | return cacTdpTableOffset; |
| 307 | } |
| 308 | |
| 309 | static int get_cac_tdp_table(struct pp_hwmgr *hwmgr, |
| 310 | struct phm_cac_tdp_table **ptable, |
| 311 | const ATOM_PowerTune_Table *table, |
| 312 | uint16_t us_maximum_power_delivery_limit) |
| 313 | { |
| 314 | unsigned long table_size; |
| 315 | struct phm_cac_tdp_table *tdp_table; |
| 316 | |
| 317 | table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table); |
| 318 | |
| 319 | tdp_table = kzalloc(table_size, GFP_KERNEL); |
| 320 | if (NULL == tdp_table) |
| 321 | return -ENOMEM; |
| 322 | |
| 323 | tdp_table->usTDP = le16_to_cpu(table->usTDP); |
| 324 | tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP); |
| 325 | tdp_table->usTDC = le16_to_cpu(table->usTDC); |
| 326 | tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit); |
| 327 | tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit); |
| 328 | tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage); |
| 329 | tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage); |
| 330 | tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit; |
| 331 | |
| 332 | *ptable = tdp_table; |
| 333 | |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr, |
| 338 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 339 | { |
| 340 | uint16_t sclk_vdd_gfx_table_offset = 0; |
| 341 | |
| 342 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 343 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { |
| 344 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = |
| 345 | (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 346 | if (powerplay_table3->usExtendendedHeaderOffset > 0) { |
| 347 | const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = |
| 348 | (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 349 | (((unsigned long)powerplay_table3) + |
| 350 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 351 | if (le16_to_cpu(pExtendedHeader->usSize) >= |
| 352 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) |
| 353 | sclk_vdd_gfx_table_offset = |
| 354 | le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | return sclk_vdd_gfx_table_offset; |
| 359 | } |
| 360 | |
| 361 | static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset( |
| 362 | struct pp_hwmgr *hwmgr, |
| 363 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 364 | { |
| 365 | uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table); |
| 366 | |
| 367 | if (tableOffset > 0) |
| 368 | return tableOffset; |
| 369 | |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | |
| 374 | static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, |
| 375 | struct phm_clock_voltage_dependency_table **ptable, |
| 376 | const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table) |
| 377 | { |
| 378 | |
| 379 | unsigned long table_size, i; |
| 380 | struct phm_clock_voltage_dependency_table *dep_table; |
| 381 | |
| 382 | table_size = sizeof(unsigned long) + |
| 383 | sizeof(struct phm_clock_voltage_dependency_table) |
| 384 | * table->ucNumEntries; |
| 385 | |
| 386 | dep_table = kzalloc(table_size, GFP_KERNEL); |
| 387 | if (NULL == dep_table) |
| 388 | return -ENOMEM; |
| 389 | |
| 390 | dep_table->count = (unsigned long)table->ucNumEntries; |
| 391 | |
| 392 | for (i = 0; i < dep_table->count; i++) { |
| 393 | dep_table->entries[i].clk = |
| 394 | ((unsigned long)table->entries[i].ucClockHigh << 16) | |
| 395 | le16_to_cpu(table->entries[i].usClockLow); |
| 396 | dep_table->entries[i].v = |
| 397 | (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| 398 | } |
| 399 | |
| 400 | *ptable = dep_table; |
| 401 | |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | static int get_valid_clk(struct pp_hwmgr *hwmgr, |
| 406 | struct phm_clock_array **ptable, |
| 407 | const struct phm_clock_voltage_dependency_table *table) |
| 408 | { |
| 409 | unsigned long table_size, i; |
| 410 | struct phm_clock_array *clock_table; |
| 411 | |
| 412 | table_size = sizeof(unsigned long) + sizeof(unsigned long) * table->count; |
| 413 | clock_table = kzalloc(table_size, GFP_KERNEL); |
| 414 | if (NULL == clock_table) |
| 415 | return -ENOMEM; |
| 416 | |
| 417 | clock_table->count = (unsigned long)table->count; |
| 418 | |
| 419 | for (i = 0; i < clock_table->count; i++) |
| 420 | clock_table->values[i] = (unsigned long)table->entries[i].clk; |
| 421 | |
| 422 | *ptable = clock_table; |
| 423 | |
| 424 | return 0; |
| 425 | } |
| 426 | |
| 427 | static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr, |
| 428 | struct phm_clock_and_voltage_limits *limits, |
| 429 | const ATOM_PPLIB_Clock_Voltage_Limit_Table *table) |
| 430 | { |
| 431 | limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) | |
| 432 | le16_to_cpu(table->entries[0].usSclkLow); |
| 433 | limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) | |
| 434 | le16_to_cpu(table->entries[0].usMclkLow); |
| 435 | limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc); |
| 436 | limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci); |
| 437 | |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | |
| 442 | static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, |
| 443 | enum phm_platform_caps cap) |
| 444 | { |
| 445 | if (enable) |
| 446 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); |
| 447 | else |
| 448 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); |
| 449 | } |
| 450 | |
| 451 | static int set_platform_caps(struct pp_hwmgr *hwmgr, |
| 452 | unsigned long powerplay_caps) |
| 453 | { |
| 454 | set_hw_cap( |
| 455 | hwmgr, |
| 456 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY), |
| 457 | PHM_PlatformCaps_PowerPlaySupport |
| 458 | ); |
| 459 | |
| 460 | set_hw_cap( |
| 461 | hwmgr, |
| 462 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), |
| 463 | PHM_PlatformCaps_BiosPowerSourceControl |
| 464 | ); |
| 465 | |
| 466 | set_hw_cap( |
| 467 | hwmgr, |
| 468 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s), |
| 469 | PHM_PlatformCaps_EnableASPML0s |
| 470 | ); |
| 471 | |
| 472 | set_hw_cap( |
| 473 | hwmgr, |
| 474 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1), |
| 475 | PHM_PlatformCaps_EnableASPML1 |
| 476 | ); |
| 477 | |
| 478 | set_hw_cap( |
| 479 | hwmgr, |
| 480 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS), |
| 481 | PHM_PlatformCaps_EnableBackbias |
| 482 | ); |
| 483 | |
| 484 | set_hw_cap( |
| 485 | hwmgr, |
| 486 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC), |
| 487 | PHM_PlatformCaps_AutomaticDCTransition |
| 488 | ); |
| 489 | |
| 490 | set_hw_cap( |
| 491 | hwmgr, |
| 492 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY), |
| 493 | PHM_PlatformCaps_GeminiPrimary |
| 494 | ); |
| 495 | |
| 496 | set_hw_cap( |
| 497 | hwmgr, |
| 498 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC), |
| 499 | PHM_PlatformCaps_StepVddc |
| 500 | ); |
| 501 | |
| 502 | set_hw_cap( |
| 503 | hwmgr, |
| 504 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL), |
| 505 | PHM_PlatformCaps_EnableVoltageControl |
| 506 | ); |
| 507 | |
| 508 | set_hw_cap( |
| 509 | hwmgr, |
| 510 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL), |
| 511 | PHM_PlatformCaps_EnableSideportControl |
| 512 | ); |
| 513 | |
| 514 | set_hw_cap( |
| 515 | hwmgr, |
| 516 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1), |
| 517 | PHM_PlatformCaps_TurnOffPll_ASPML1 |
| 518 | ); |
| 519 | |
| 520 | set_hw_cap( |
| 521 | hwmgr, |
| 522 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL), |
| 523 | PHM_PlatformCaps_EnableHTLinkControl |
| 524 | ); |
| 525 | |
| 526 | set_hw_cap( |
| 527 | hwmgr, |
| 528 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL), |
| 529 | PHM_PlatformCaps_EnableMVDDControl |
| 530 | ); |
| 531 | |
| 532 | set_hw_cap( |
| 533 | hwmgr, |
| 534 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL), |
| 535 | PHM_PlatformCaps_ControlVDDCI |
| 536 | ); |
| 537 | |
| 538 | set_hw_cap( |
| 539 | hwmgr, |
| 540 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT), |
| 541 | PHM_PlatformCaps_RegulatorHot |
| 542 | ); |
| 543 | |
| 544 | set_hw_cap( |
| 545 | hwmgr, |
| 546 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT), |
| 547 | PHM_PlatformCaps_BootStateOnAlert |
| 548 | ); |
| 549 | |
| 550 | set_hw_cap( |
| 551 | hwmgr, |
| 552 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT), |
| 553 | PHM_PlatformCaps_DontWaitForVBlankOnAlert |
| 554 | ); |
| 555 | |
| 556 | set_hw_cap( |
| 557 | hwmgr, |
| 558 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO), |
| 559 | PHM_PlatformCaps_BACO |
| 560 | ); |
| 561 | |
| 562 | set_hw_cap( |
| 563 | hwmgr, |
| 564 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE), |
| 565 | PHM_PlatformCaps_NewCACVoltage |
| 566 | ); |
| 567 | |
| 568 | set_hw_cap( |
| 569 | hwmgr, |
| 570 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY), |
| 571 | PHM_PlatformCaps_RevertGPIO5Polarity |
| 572 | ); |
| 573 | |
| 574 | set_hw_cap( |
| 575 | hwmgr, |
| 576 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17), |
| 577 | PHM_PlatformCaps_Thermal2GPIO17 |
| 578 | ); |
| 579 | |
| 580 | set_hw_cap( |
| 581 | hwmgr, |
| 582 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE), |
| 583 | PHM_PlatformCaps_VRHotGPIOConfigurable |
| 584 | ); |
| 585 | |
| 586 | set_hw_cap( |
| 587 | hwmgr, |
| 588 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION), |
| 589 | PHM_PlatformCaps_TempInversion |
| 590 | ); |
| 591 | |
| 592 | set_hw_cap( |
| 593 | hwmgr, |
| 594 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV), |
| 595 | PHM_PlatformCaps_EVV |
| 596 | ); |
| 597 | |
| 598 | set_hw_cap( |
| 599 | hwmgr, |
| 600 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), |
| 601 | PHM_PlatformCaps_CombinePCCWithThermalSignal |
| 602 | ); |
| 603 | |
| 604 | set_hw_cap( |
| 605 | hwmgr, |
| 606 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), |
| 607 | PHM_PlatformCaps_LoadPostProductionFirmware |
| 608 | ); |
| 609 | |
| 610 | set_hw_cap( |
| 611 | hwmgr, |
| 612 | 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC), |
| 613 | PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc |
| 614 | ); |
| 615 | |
| 616 | return 0; |
| 617 | } |
| 618 | |
| 619 | static PP_StateClassificationFlags make_classification_flags( |
| 620 | struct pp_hwmgr *hwmgr, |
| 621 | USHORT classification, |
| 622 | USHORT classification2) |
| 623 | { |
| 624 | PP_StateClassificationFlags result = 0; |
| 625 | |
| 626 | if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) |
| 627 | result |= PP_StateClassificationFlag_Boot; |
| 628 | |
| 629 | if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| 630 | result |= PP_StateClassificationFlag_Thermal; |
| 631 | |
| 632 | if (classification & |
| 633 | ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) |
| 634 | result |= PP_StateClassificationFlag_LimitedPowerSource; |
| 635 | |
| 636 | if (classification & ATOM_PPLIB_CLASSIFICATION_REST) |
| 637 | result |= PP_StateClassificationFlag_Rest; |
| 638 | |
| 639 | if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) |
| 640 | result |= PP_StateClassificationFlag_Forced; |
| 641 | |
| 642 | if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) |
| 643 | result |= PP_StateClassificationFlag_3DPerformance; |
| 644 | |
| 645 | |
| 646 | if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) |
| 647 | result |= PP_StateClassificationFlag_ACOverdriveTemplate; |
| 648 | |
| 649 | if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) |
| 650 | result |= PP_StateClassificationFlag_Uvd; |
| 651 | |
| 652 | if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE) |
| 653 | result |= PP_StateClassificationFlag_UvdHD; |
| 654 | |
| 655 | if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE) |
| 656 | result |= PP_StateClassificationFlag_UvdSD; |
| 657 | |
| 658 | if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE) |
| 659 | result |= PP_StateClassificationFlag_HD2; |
| 660 | |
| 661 | if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) |
| 662 | result |= PP_StateClassificationFlag_ACPI; |
| 663 | |
| 664 | if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) |
| 665 | result |= PP_StateClassificationFlag_LimitedPowerSource_2; |
| 666 | |
| 667 | |
| 668 | if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV) |
| 669 | result |= PP_StateClassificationFlag_ULV; |
| 670 | |
| 671 | if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC) |
| 672 | result |= PP_StateClassificationFlag_UvdMVC; |
| 673 | |
| 674 | return result; |
| 675 | } |
| 676 | |
| 677 | static int init_non_clock_fields(struct pp_hwmgr *hwmgr, |
| 678 | struct pp_power_state *ps, |
| 679 | uint8_t version, |
| 680 | const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) { |
| 681 | unsigned long rrr_index; |
| 682 | unsigned long tmp; |
| 683 | |
| 684 | ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) & |
| 685 | ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| 686 | ps->classification.flags = make_classification_flags(hwmgr, |
| 687 | le16_to_cpu(pnon_clock_info->usClassification), |
| 688 | le16_to_cpu(pnon_clock_info->usClassification2)); |
| 689 | |
| 690 | ps->classification.temporary_state = false; |
| 691 | ps->classification.to_be_deleted = false; |
| 692 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 693 | ATOM_PPLIB_SINGLE_DISPLAY_ONLY; |
| 694 | |
| 695 | ps->validation.singleDisplayOnly = (0 != tmp); |
| 696 | |
| 697 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 698 | ATOM_PPLIB_DISALLOW_ON_DC; |
| 699 | |
| 700 | ps->validation.disallowOnDC = (0 != tmp); |
| 701 | |
| 702 | ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 703 | ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> |
| 704 | ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; |
| 705 | |
| 706 | ps->pcie.lanes = 0; |
| 707 | |
| 708 | ps->display.disableFrameModulation = false; |
| 709 | |
| 710 | rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 711 | ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >> |
| 712 | ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT; |
| 713 | |
| 714 | if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) { |
| 715 | static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \ |
| 716 | { 0, 50, 0 }; |
| 717 | |
| 718 | ps->display.refreshrateSource = PP_RefreshrateSource_Explicit; |
| 719 | ps->display.explicitRefreshrate = look_up[rrr_index]; |
| 720 | ps->display.limitRefreshrate = true; |
| 721 | |
| 722 | if (ps->display.explicitRefreshrate == 0) |
| 723 | ps->display.limitRefreshrate = false; |
| 724 | } else |
| 725 | ps->display.limitRefreshrate = false; |
| 726 | |
| 727 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 728 | ATOM_PPLIB_ENABLE_VARIBRIGHT; |
| 729 | |
| 730 | ps->display.enableVariBright = (0 != tmp); |
| 731 | |
| 732 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 733 | ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF; |
| 734 | |
| 735 | ps->memory.dllOff = (0 != tmp); |
| 736 | |
| 737 | ps->memory.m3arb = (uint8_t)(le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 738 | ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT; |
| 739 | |
| 740 | ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * |
| 741 | pnon_clock_info->ucMinTemperature; |
| 742 | |
| 743 | ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * |
| 744 | pnon_clock_info->ucMaxTemperature; |
| 745 | |
| 746 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 747 | ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING; |
| 748 | |
| 749 | ps->software.disableLoadBalancing = tmp; |
| 750 | |
| 751 | tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & |
| 752 | ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS; |
| 753 | |
| 754 | ps->software.enableSleepForTimestamps = (0 != tmp); |
| 755 | |
| 756 | ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower; |
| 757 | |
| 758 | if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) { |
| 759 | ps->uvd_clocks.VCLK = pnon_clock_info->ulVCLK; |
| 760 | ps->uvd_clocks.DCLK = pnon_clock_info->ulDCLK; |
| 761 | } else { |
| 762 | ps->uvd_clocks.VCLK = 0; |
| 763 | ps->uvd_clocks.DCLK = 0; |
| 764 | } |
| 765 | |
| 766 | return 0; |
| 767 | } |
| 768 | |
| 769 | static ULONG size_of_entry_v2(ULONG num_dpm_levels) |
| 770 | { |
| 771 | return (sizeof(UCHAR) + sizeof(UCHAR) + |
| 772 | (num_dpm_levels * sizeof(UCHAR))); |
| 773 | } |
| 774 | |
| 775 | static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2( |
| 776 | const StateArray * pstate_arrays, |
| 777 | ULONG entry_index) |
| 778 | { |
| 779 | ULONG i; |
| 780 | const ATOM_PPLIB_STATE_V2 *pstate; |
| 781 | |
| 782 | pstate = pstate_arrays->states; |
| 783 | if (entry_index <= pstate_arrays->ucNumEntries) { |
| 784 | for (i = 0; i < entry_index; i++) |
| 785 | pstate = (ATOM_PPLIB_STATE_V2 *)( |
| 786 | (unsigned long)pstate + |
| 787 | size_of_entry_v2(pstate->ucNumDPMLevels)); |
| 788 | } |
| 789 | return pstate; |
| 790 | } |
| 791 | |
| 792 | |
| 793 | static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table( |
| 794 | struct pp_hwmgr *hwmgr) |
| 795 | { |
| 796 | const void *table_addr = NULL; |
| 797 | uint8_t frev, crev; |
| 798 | uint16_t size; |
| 799 | |
| 800 | table_addr = cgs_atom_get_data_table(hwmgr->device, |
| 801 | GetIndexIntoMasterTable(DATA, PowerPlayInfo), |
| 802 | &size, &frev, &crev); |
| 803 | |
| 804 | hwmgr->soft_pp_table = table_addr; |
| 805 | |
| 806 | return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr; |
| 807 | } |
| 808 | |
| 809 | |
| 810 | int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr, |
| 811 | unsigned long *num_of_entries) |
| 812 | { |
| 813 | const StateArray *pstate_arrays; |
| 814 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| 815 | |
| 816 | if (powerplay_table == NULL) |
| 817 | return -1; |
| 818 | |
| 819 | if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { |
| 820 | pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + |
| 821 | le16_to_cpu(powerplay_table->usStateArrayOffset)); |
| 822 | |
| 823 | *num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries); |
| 824 | } else |
| 825 | *num_of_entries = (unsigned long)(powerplay_table->ucNumStates); |
| 826 | |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | int pp_tables_get_entry(struct pp_hwmgr *hwmgr, |
| 831 | unsigned long entry_index, |
| 832 | struct pp_power_state *ps, |
| 833 | pp_tables_hw_clock_info_callback func) |
| 834 | { |
| 835 | int i; |
| 836 | const StateArray *pstate_arrays; |
| 837 | const ATOM_PPLIB_STATE_V2 *pstate_entry_v2; |
| 838 | const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info; |
| 839 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| 840 | int result = 0; |
| 841 | int res = 0; |
| 842 | |
| 843 | const ClockInfoArray *pclock_arrays; |
| 844 | |
| 845 | const NonClockInfoArray *pnon_clock_arrays; |
| 846 | |
| 847 | const ATOM_PPLIB_STATE *pstate_entry; |
| 848 | |
| 849 | if (powerplay_table == NULL) |
| 850 | return -1; |
| 851 | |
| 852 | ps->classification.bios_index = entry_index; |
| 853 | |
| 854 | if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { |
| 855 | pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + |
| 856 | le16_to_cpu(powerplay_table->usStateArrayOffset)); |
| 857 | |
| 858 | if (entry_index > pstate_arrays->ucNumEntries) |
| 859 | return -1; |
| 860 | |
| 861 | pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index); |
| 862 | pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + |
| 863 | le16_to_cpu(powerplay_table->usClockInfoArrayOffset)); |
| 864 | |
| 865 | pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) + |
| 866 | le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset)); |
| 867 | |
| 868 | pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) + |
| 869 | (pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize)); |
| 870 | |
| 871 | result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info); |
| 872 | |
| 873 | for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) { |
| 874 | const void *pclock_info = (const void *)( |
| 875 | (unsigned long)(pclock_arrays->clockInfo) + |
| 876 | (pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize)); |
| 877 | res = func(hwmgr, &ps->hardware, i, pclock_info); |
| 878 | if ((0 == result) && (0 != res)) |
| 879 | result = res; |
| 880 | } |
| 881 | } else { |
| 882 | if (entry_index > powerplay_table->ucNumStates) |
| 883 | return -1; |
| 884 | |
| 885 | pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table + powerplay_table->usStateArrayOffset + |
| 886 | entry_index * powerplay_table->ucStateEntrySize); |
| 887 | |
| 888 | pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table + |
| 889 | le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) + |
| 890 | pstate_entry->ucNonClockStateIndex * |
| 891 | powerplay_table->ucNonClockSize); |
| 892 | |
| 893 | result = init_non_clock_fields(hwmgr, ps, |
| 894 | powerplay_table->ucNonClockSize, |
| 895 | pnon_clock_info); |
| 896 | |
| 897 | for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) { |
| 898 | const void *pclock_info = (const void *)((unsigned long)powerplay_table + |
| 899 | le16_to_cpu(powerplay_table->usClockInfoArrayOffset) + |
| 900 | pstate_entry->ucClockStateIndices[i] * |
| 901 | powerplay_table->ucClockInfoSize); |
| 902 | |
| 903 | int res = func(hwmgr, &ps->hardware, i, pclock_info); |
| 904 | |
| 905 | if ((0 == result) && (0 != res)) |
| 906 | result = res; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | if ((0 == result) && |
| 911 | (0 != (ps->classification.flags & PP_StateClassificationFlag_Boot))) |
| 912 | result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware)); |
| 913 | |
| 914 | return result; |
| 915 | } |
| 916 | |
| 917 | |
| 918 | |
| 919 | static int init_powerplay_tables( |
| 920 | struct pp_hwmgr *hwmgr, |
| 921 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table |
| 922 | ) |
| 923 | { |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | |
| 928 | static int init_thermal_controller( |
| 929 | struct pp_hwmgr *hwmgr, |
| 930 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 931 | { |
| 932 | return 0; |
| 933 | } |
| 934 | |
| 935 | static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr, |
| 936 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, |
| 937 | const ATOM_FIRMWARE_INFO_V1_4 *fw_info) |
| 938 | { |
| 939 | hwmgr->platform_descriptor.overdriveLimit.engineClock = |
| 940 | le32_to_cpu(fw_info->ulASICMaxEngineClock); |
| 941 | |
| 942 | hwmgr->platform_descriptor.overdriveLimit.memoryClock = |
| 943 | le32_to_cpu(fw_info->ulASICMaxMemoryClock); |
| 944 | |
| 945 | hwmgr->platform_descriptor.maxOverdriveVDDC = |
| 946 | le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF; |
| 947 | |
| 948 | hwmgr->platform_descriptor.minOverdriveVDDC = |
| 949 | le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| 950 | |
| 951 | hwmgr->platform_descriptor.maxOverdriveVDDC = |
| 952 | le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| 953 | |
| 954 | hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| 955 | return 0; |
| 956 | } |
| 957 | |
| 958 | static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr, |
| 959 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, |
| 960 | const ATOM_FIRMWARE_INFO_V2_1 *fw_info) |
| 961 | { |
| 962 | const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3; |
| 963 | const ATOM_PPLIB_EXTENDEDHEADER *header; |
| 964 | |
| 965 | if (le16_to_cpu(powerplay_table->usTableSize) < |
| 966 | sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) |
| 967 | return 0; |
| 968 | |
| 969 | powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; |
| 970 | |
| 971 | if (0 == powerplay_table3->usExtendendedHeaderOffset) |
| 972 | return 0; |
| 973 | |
| 974 | header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) + |
| 975 | le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); |
| 976 | |
| 977 | hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock); |
| 978 | hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock); |
| 979 | |
| 980 | |
| 981 | hwmgr->platform_descriptor.minOverdriveVDDC = 0; |
| 982 | hwmgr->platform_descriptor.maxOverdriveVDDC = 0; |
| 983 | hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| 984 | |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | static int init_overdrive_limits(struct pp_hwmgr *hwmgr, |
| 989 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 990 | { |
| 991 | int result; |
| 992 | uint8_t frev, crev; |
| 993 | uint16_t size; |
| 994 | |
| 995 | const ATOM_COMMON_TABLE_HEADER *fw_info = NULL; |
| 996 | |
| 997 | hwmgr->platform_descriptor.overdriveLimit.engineClock = 0; |
| 998 | hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0; |
| 999 | hwmgr->platform_descriptor.minOverdriveVDDC = 0; |
| 1000 | hwmgr->platform_descriptor.maxOverdriveVDDC = 0; |
| 1001 | |
| 1002 | /* We assume here that fw_info is unchanged if this call fails.*/ |
| 1003 | fw_info = cgs_atom_get_data_table(hwmgr->device, |
| 1004 | GetIndexIntoMasterTable(DATA, FirmwareInfo), |
| 1005 | &size, &frev, &crev); |
| 1006 | |
| 1007 | if ((fw_info->ucTableFormatRevision == 1) |
| 1008 | && (fw_info->usStructureSize >= sizeof(ATOM_FIRMWARE_INFO_V1_4))) |
| 1009 | result = init_overdrive_limits_V1_4(hwmgr, |
| 1010 | powerplay_table, |
| 1011 | (const ATOM_FIRMWARE_INFO_V1_4 *)fw_info); |
| 1012 | |
| 1013 | else if ((fw_info->ucTableFormatRevision == 2) |
| 1014 | && (fw_info->usStructureSize >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) |
| 1015 | result = init_overdrive_limits_V2_1(hwmgr, |
| 1016 | powerplay_table, |
| 1017 | (const ATOM_FIRMWARE_INFO_V2_1 *)fw_info); |
| 1018 | |
| 1019 | if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 |
| 1020 | && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0 |
| 1021 | && !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1022 | PHM_PlatformCaps_OverdriveDisabledByPowerBudget)) |
| 1023 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 1024 | PHM_PlatformCaps_ACOverdriveSupport); |
| 1025 | |
| 1026 | return result; |
| 1027 | } |
| 1028 | |
| 1029 | static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| 1030 | struct phm_uvd_clock_voltage_dependency_table **ptable, |
| 1031 | const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table, |
| 1032 | const UVDClockInfoArray *array) |
| 1033 | { |
| 1034 | unsigned long table_size, i; |
| 1035 | struct phm_uvd_clock_voltage_dependency_table *uvd_table; |
| 1036 | |
| 1037 | table_size = sizeof(unsigned long) + |
| 1038 | sizeof(struct phm_uvd_clock_voltage_dependency_table) * |
| 1039 | table->numEntries; |
| 1040 | |
| 1041 | uvd_table = kzalloc(table_size, GFP_KERNEL); |
| 1042 | if (NULL == uvd_table) |
| 1043 | return -ENOMEM; |
| 1044 | |
| 1045 | uvd_table->count = table->numEntries; |
| 1046 | |
| 1047 | for (i = 0; i < table->numEntries; i++) { |
| 1048 | const UVDClockInfo *entry = |
| 1049 | &array->entries[table->entries[i].ucUVDClockInfoIndex]; |
| 1050 | uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| 1051 | uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16) |
| 1052 | | le16_to_cpu(entry->usVClkLow); |
| 1053 | uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16) |
| 1054 | | le16_to_cpu(entry->usDClkLow); |
| 1055 | } |
| 1056 | |
| 1057 | *ptable = uvd_table; |
| 1058 | |
| 1059 | return 0; |
| 1060 | } |
| 1061 | |
| 1062 | static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| 1063 | struct phm_vce_clock_voltage_dependency_table **ptable, |
| 1064 | const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table, |
| 1065 | const VCEClockInfoArray *array) |
| 1066 | { |
| 1067 | unsigned long table_size, i; |
| 1068 | struct phm_vce_clock_voltage_dependency_table *vce_table = NULL; |
| 1069 | |
| 1070 | table_size = sizeof(unsigned long) + |
| 1071 | sizeof(struct phm_vce_clock_voltage_dependency_table) |
| 1072 | * table->numEntries; |
| 1073 | |
| 1074 | vce_table = kzalloc(table_size, GFP_KERNEL); |
| 1075 | if (NULL == vce_table) |
| 1076 | return -ENOMEM; |
| 1077 | |
| 1078 | vce_table->count = table->numEntries; |
| 1079 | for (i = 0; i < table->numEntries; i++) { |
| 1080 | const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex]; |
| 1081 | |
| 1082 | vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| 1083 | vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16) |
| 1084 | | le16_to_cpu(entry->usEVClkLow); |
| 1085 | vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16) |
| 1086 | | le16_to_cpu(entry->usECClkLow); |
| 1087 | } |
| 1088 | |
| 1089 | *ptable = vce_table; |
| 1090 | |
| 1091 | return 0; |
| 1092 | } |
| 1093 | |
| 1094 | static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| 1095 | struct phm_samu_clock_voltage_dependency_table **ptable, |
| 1096 | const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table) |
| 1097 | { |
| 1098 | unsigned long table_size, i; |
| 1099 | struct phm_samu_clock_voltage_dependency_table *samu_table; |
| 1100 | |
| 1101 | table_size = sizeof(unsigned long) + |
| 1102 | sizeof(struct phm_samu_clock_voltage_dependency_table) * |
| 1103 | table->numEntries; |
| 1104 | |
| 1105 | samu_table = kzalloc(table_size, GFP_KERNEL); |
| 1106 | if (NULL == samu_table) |
| 1107 | return -ENOMEM; |
| 1108 | |
| 1109 | samu_table->count = table->numEntries; |
| 1110 | |
| 1111 | for (i = 0; i < table->numEntries; i++) { |
| 1112 | samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| 1113 | samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16) |
| 1114 | | le16_to_cpu(table->entries[i].usSAMClockLow); |
| 1115 | } |
| 1116 | |
| 1117 | *ptable = samu_table; |
| 1118 | |
| 1119 | return 0; |
| 1120 | } |
| 1121 | |
| 1122 | static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, |
| 1123 | struct phm_acp_clock_voltage_dependency_table **ptable, |
| 1124 | const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table) |
| 1125 | { |
| 1126 | unsigned table_size, i; |
| 1127 | struct phm_acp_clock_voltage_dependency_table *acp_table; |
| 1128 | |
| 1129 | table_size = sizeof(unsigned long) + |
| 1130 | sizeof(struct phm_acp_clock_voltage_dependency_table) * |
| 1131 | table->numEntries; |
| 1132 | |
| 1133 | acp_table = kzalloc(table_size, GFP_KERNEL); |
| 1134 | if (NULL == acp_table) |
| 1135 | return -ENOMEM; |
| 1136 | |
| 1137 | acp_table->count = (unsigned long)table->numEntries; |
| 1138 | |
| 1139 | for (i = 0; i < table->numEntries; i++) { |
| 1140 | acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); |
| 1141 | acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16) |
| 1142 | | le16_to_cpu(table->entries[i].usACPClockLow); |
| 1143 | } |
| 1144 | |
| 1145 | *ptable = acp_table; |
| 1146 | |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr, |
| 1151 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 1152 | { |
| 1153 | ATOM_PPLIB_Clock_Voltage_Dependency_Table *table; |
| 1154 | ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table; |
| 1155 | int result = 0; |
| 1156 | |
| 1157 | uint16_t vce_clock_info_array_offset; |
| 1158 | uint16_t uvd_clock_info_array_offset; |
| 1159 | uint16_t table_offset; |
| 1160 | |
| 1161 | hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; |
| 1162 | hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; |
| 1163 | hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; |
| 1164 | hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; |
| 1165 | hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1166 | hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; |
| 1167 | hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1168 | hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; |
| 1169 | hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; |
| 1170 | hwmgr->dyn_state.ppm_parameter_table = NULL; |
| 1171 | hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; |
| 1172 | |
| 1173 | vce_clock_info_array_offset = get_vce_clock_info_array_offset( |
| 1174 | hwmgr, powerplay_table); |
| 1175 | table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, |
| 1176 | powerplay_table); |
| 1177 | if (vce_clock_info_array_offset > 0 && table_offset > 0) { |
| 1178 | const VCEClockInfoArray *array = (const VCEClockInfoArray *) |
| 1179 | (((unsigned long) powerplay_table) + |
| 1180 | vce_clock_info_array_offset); |
| 1181 | const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table = |
| 1182 | (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) |
| 1183 | (((unsigned long) powerplay_table) + table_offset); |
| 1184 | result = get_vce_clock_voltage_limit_table(hwmgr, |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1185 | &hwmgr->dyn_state.vce_clock_voltage_dependency_table, |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1186 | table, array); |
| 1187 | } |
| 1188 | |
| 1189 | uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table); |
| 1190 | table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table); |
| 1191 | |
| 1192 | if (uvd_clock_info_array_offset > 0 && table_offset > 0) { |
| 1193 | const UVDClockInfoArray *array = (const UVDClockInfoArray *) |
| 1194 | (((unsigned long) powerplay_table) + |
| 1195 | uvd_clock_info_array_offset); |
| 1196 | const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable = |
| 1197 | (const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) |
| 1198 | (((unsigned long) powerplay_table) + table_offset); |
| 1199 | result = get_uvd_clock_voltage_limit_table(hwmgr, |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1200 | &hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array); |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1201 | } |
| 1202 | |
| 1203 | table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr, |
| 1204 | powerplay_table); |
| 1205 | |
| 1206 | if (table_offset > 0) { |
| 1207 | const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable = |
| 1208 | (const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) |
| 1209 | (((unsigned long) powerplay_table) + table_offset); |
| 1210 | result = get_samu_clock_voltage_limit_table(hwmgr, |
| 1211 | &hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable); |
| 1212 | } |
| 1213 | |
| 1214 | table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr, |
| 1215 | powerplay_table); |
| 1216 | |
| 1217 | if (table_offset > 0) { |
| 1218 | const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable = |
| 1219 | (const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) |
| 1220 | (((unsigned long) powerplay_table) + table_offset); |
| 1221 | result = get_acp_clock_voltage_limit_table(hwmgr, |
| 1222 | &hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable); |
| 1223 | } |
| 1224 | |
| 1225 | table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table); |
| 1226 | if (table_offset > 0) { |
| 1227 | UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset); |
| 1228 | |
| 1229 | if (rev_id > 0) { |
| 1230 | const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table = |
| 1231 | (const ATOM_PPLIB_POWERTUNE_Table_V1 *) |
| 1232 | (((unsigned long) powerplay_table) + table_offset); |
| 1233 | result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table, |
| 1234 | &tune_table->power_tune_table, |
| 1235 | le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit)); |
| 1236 | hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = |
| 1237 | le16_to_cpu(tune_table->usTjMax); |
| 1238 | } else { |
| 1239 | const ATOM_PPLIB_POWERTUNE_Table *tune_table = |
| 1240 | (const ATOM_PPLIB_POWERTUNE_Table *) |
| 1241 | (((unsigned long) powerplay_table) + table_offset); |
| 1242 | result = get_cac_tdp_table(hwmgr, |
| 1243 | &hwmgr->dyn_state.cac_dtp_table, |
| 1244 | &tune_table->power_tune_table, 255); |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 1249 | sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { |
| 1250 | const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = |
| 1251 | (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; |
| 1252 | if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) { |
| 1253 | table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| 1254 | (((unsigned long) powerplay_table4) + |
| 1255 | powerplay_table4->usVddcDependencyOnSCLKOffset); |
| 1256 | result = get_clock_voltage_dependency_table(hwmgr, |
| 1257 | &hwmgr->dyn_state.vddc_dependency_on_sclk, table); |
| 1258 | } |
| 1259 | |
| 1260 | if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) { |
| 1261 | table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| 1262 | (((unsigned long) powerplay_table4) + |
| 1263 | powerplay_table4->usVddciDependencyOnMCLKOffset); |
| 1264 | result = get_clock_voltage_dependency_table(hwmgr, |
| 1265 | &hwmgr->dyn_state.vddci_dependency_on_mclk, table); |
| 1266 | } |
| 1267 | |
| 1268 | if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) { |
| 1269 | table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| 1270 | (((unsigned long) powerplay_table4) + |
| 1271 | powerplay_table4->usVddcDependencyOnMCLKOffset); |
| 1272 | result = get_clock_voltage_dependency_table(hwmgr, |
| 1273 | &hwmgr->dyn_state.vddc_dependency_on_mclk, table); |
| 1274 | } |
| 1275 | |
| 1276 | if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) { |
| 1277 | limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *) |
| 1278 | (((unsigned long) powerplay_table4) + |
| 1279 | powerplay_table4->usMaxClockVoltageOnDCOffset); |
| 1280 | result = get_clock_voltage_limit(hwmgr, |
| 1281 | &hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table); |
| 1282 | } |
| 1283 | |
| 1284 | if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) && |
| 1285 | (0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count)) |
| 1286 | result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values, |
| 1287 | hwmgr->dyn_state.vddc_dependency_on_mclk); |
| 1288 | |
| 1289 | if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) && |
| 1290 | (0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count)) |
| 1291 | result = get_valid_clk(hwmgr, |
| 1292 | &hwmgr->dyn_state.valid_sclk_values, |
| 1293 | hwmgr->dyn_state.vddc_dependency_on_sclk); |
| 1294 | |
| 1295 | if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) { |
| 1296 | table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| 1297 | (((unsigned long) powerplay_table4) + |
| 1298 | powerplay_table4->usMvddDependencyOnMCLKOffset); |
| 1299 | result = get_clock_voltage_dependency_table(hwmgr, |
| 1300 | &hwmgr->dyn_state.mvdd_dependency_on_mclk, table); |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr, |
| 1305 | powerplay_table); |
| 1306 | |
| 1307 | if (table_offset > 0) { |
| 1308 | table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| 1309 | (((unsigned long) powerplay_table) + table_offset); |
| 1310 | result = get_clock_voltage_dependency_table(hwmgr, |
| 1311 | &hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table); |
| 1312 | } |
| 1313 | |
| 1314 | return result; |
| 1315 | } |
| 1316 | |
| 1317 | static int get_cac_leakage_table(struct pp_hwmgr *hwmgr, |
| 1318 | struct phm_cac_leakage_table **ptable, |
| 1319 | const ATOM_PPLIB_CAC_Leakage_Table *table) |
| 1320 | { |
| 1321 | struct phm_cac_leakage_table *cac_leakage_table; |
| 1322 | unsigned long table_size, i; |
| 1323 | |
| 1324 | table_size = sizeof(ULONG) + |
| 1325 | (sizeof(struct phm_cac_leakage_table) * table->ucNumEntries); |
| 1326 | |
| 1327 | cac_leakage_table = kzalloc(table_size, GFP_KERNEL); |
| 1328 | |
| 1329 | cac_leakage_table->count = (ULONG)table->ucNumEntries; |
| 1330 | |
| 1331 | for (i = 0; i < cac_leakage_table->count; i++) { |
| 1332 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1333 | PHM_PlatformCaps_EVV)) { |
| 1334 | cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1); |
| 1335 | cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2); |
| 1336 | cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3); |
| 1337 | } else { |
| 1338 | cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc); |
| 1339 | cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue); |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | *ptable = cac_leakage_table; |
| 1344 | |
| 1345 | return 0; |
| 1346 | } |
| 1347 | |
| 1348 | static int get_platform_power_management_table(struct pp_hwmgr *hwmgr, |
| 1349 | ATOM_PPLIB_PPM_Table *atom_ppm_table) |
| 1350 | { |
| 1351 | struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_PPLIB_PPM_Table), GFP_KERNEL); |
| 1352 | |
| 1353 | if (NULL == ptr) |
| 1354 | return -ENOMEM; |
| 1355 | |
| 1356 | ptr->ppm_design = atom_ppm_table->ucPpmDesign; |
| 1357 | ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber); |
| 1358 | ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP); |
| 1359 | ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP); |
| 1360 | ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC); |
| 1361 | ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC); |
| 1362 | ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP); |
| 1363 | ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP); |
| 1364 | ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower); |
| 1365 | ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax); |
| 1366 | hwmgr->dyn_state.ppm_parameter_table = ptr; |
| 1367 | |
| 1368 | return 0; |
| 1369 | } |
| 1370 | |
| 1371 | static int init_dpm2_parameters(struct pp_hwmgr *hwmgr, |
| 1372 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 1373 | { |
| 1374 | int result = 0; |
| 1375 | |
| 1376 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 1377 | sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) { |
| 1378 | const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 = |
| 1379 | (const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table; |
| 1380 | const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 = |
| 1381 | (const ATOM_PPLIB_POWERPLAYTABLE4 *) |
| 1382 | (&ptable5->basicTable4); |
| 1383 | const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 = |
| 1384 | (const ATOM_PPLIB_POWERPLAYTABLE3 *) |
| 1385 | (&ptable4->basicTable3); |
| 1386 | const ATOM_PPLIB_EXTENDEDHEADER *extended_header; |
| 1387 | uint16_t table_offset; |
| 1388 | ATOM_PPLIB_PPM_Table *atom_ppm_table; |
| 1389 | |
| 1390 | hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit); |
| 1391 | hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit); |
| 1392 | |
| 1393 | hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit); |
| 1394 | hwmgr->platform_descriptor.TDPAdjustment = 0; |
| 1395 | |
| 1396 | hwmgr->platform_descriptor.VidAdjustment = 0; |
| 1397 | hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; |
| 1398 | hwmgr->platform_descriptor.VidMinLimit = 0; |
| 1399 | hwmgr->platform_descriptor.VidMaxLimit = 1500000; |
| 1400 | hwmgr->platform_descriptor.VidStep = 6250; |
| 1401 | |
| 1402 | hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit); |
| 1403 | |
| 1404 | if (hwmgr->platform_descriptor.TDPODLimit != 0) |
| 1405 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 1406 | PHM_PlatformCaps_PowerControl); |
| 1407 | |
| 1408 | hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold); |
| 1409 | |
| 1410 | hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage); |
| 1411 | |
| 1412 | hwmgr->dyn_state.cac_leakage_table = NULL; |
| 1413 | |
| 1414 | if (0 != ptable5->usCACLeakageTableOffset) { |
| 1415 | const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table = |
| 1416 | (ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) + |
| 1417 | le16_to_cpu(ptable5->usCACLeakageTableOffset)); |
| 1418 | result = get_cac_leakage_table(hwmgr, |
| 1419 | &hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table); |
| 1420 | } |
| 1421 | |
| 1422 | hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope); |
| 1423 | |
| 1424 | hwmgr->dyn_state.ppm_parameter_table = NULL; |
| 1425 | |
| 1426 | if (0 != ptable3->usExtendendedHeaderOffset) { |
| 1427 | extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) |
| 1428 | (((unsigned long)powerplay_table) + |
| 1429 | le16_to_cpu(ptable3->usExtendendedHeaderOffset)); |
| 1430 | if ((extended_header->usPPMTableOffset > 0) && |
| 1431 | le16_to_cpu(extended_header->usSize) >= |
| 1432 | SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) { |
| 1433 | table_offset = le16_to_cpu(extended_header->usPPMTableOffset); |
| 1434 | atom_ppm_table = (ATOM_PPLIB_PPM_Table *) |
| 1435 | (((unsigned long)powerplay_table) + table_offset); |
| 1436 | if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table)) |
| 1437 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 1438 | PHM_PlatformCaps_EnablePlatformPowerManagement); |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | return result; |
| 1443 | } |
| 1444 | |
| 1445 | static int init_phase_shedding_table(struct pp_hwmgr *hwmgr, |
| 1446 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) |
| 1447 | { |
| 1448 | if (le16_to_cpu(powerplay_table->usTableSize) >= |
| 1449 | sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { |
| 1450 | const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = |
| 1451 | (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; |
| 1452 | |
| 1453 | if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) { |
| 1454 | const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable = |
| 1455 | (ATOM_PPLIB_PhaseSheddingLimits_Table *) |
| 1456 | (((unsigned long)powerplay_table4) + |
| 1457 | le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset)); |
| 1458 | struct phm_phase_shedding_limits_table *table; |
| 1459 | unsigned long size, i; |
| 1460 | |
| 1461 | |
| 1462 | size = sizeof(unsigned long) + |
| 1463 | (sizeof(struct phm_phase_shedding_limits_table) * |
| 1464 | ptable->ucNumEntries); |
| 1465 | |
| 1466 | table = kzalloc(size, GFP_KERNEL); |
| 1467 | |
| 1468 | table->count = (unsigned long)ptable->ucNumEntries; |
| 1469 | |
| 1470 | for (i = 0; i < table->count; i++) { |
| 1471 | table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage); |
| 1472 | table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16) |
| 1473 | | le16_to_cpu(ptable->entries[i].usSclkLow); |
| 1474 | table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16) |
| 1475 | | le16_to_cpu(ptable->entries[i].usMclkLow); |
| 1476 | } |
| 1477 | hwmgr->dyn_state.vddc_phase_shed_limits_table = table; |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | return 0; |
| 1482 | } |
| 1483 | |
| 1484 | int get_number_of_vce_state_table_entries( |
| 1485 | struct pp_hwmgr *hwmgr) |
| 1486 | { |
| 1487 | const ATOM_PPLIB_POWERPLAYTABLE *table = |
| 1488 | get_powerplay_table(hwmgr); |
| 1489 | const ATOM_PPLIB_VCE_State_Table *vce_table = |
| 1490 | get_vce_state_table(hwmgr, table); |
| 1491 | |
| 1492 | if (vce_table > 0) |
| 1493 | return vce_table->numEntries; |
| 1494 | |
| 1495 | return 0; |
| 1496 | } |
| 1497 | |
| 1498 | int get_vce_state_table_entry(struct pp_hwmgr *hwmgr, |
| 1499 | unsigned long i, |
| 1500 | struct PP_VCEState *vce_state, |
| 1501 | void **clock_info, |
| 1502 | unsigned long *flag) |
| 1503 | { |
| 1504 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); |
| 1505 | |
| 1506 | const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table); |
| 1507 | |
| 1508 | unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table); |
| 1509 | |
| 1510 | const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset); |
| 1511 | |
| 1512 | const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + powerplay_table->usClockInfoArrayOffset); |
| 1513 | |
| 1514 | const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i]; |
| 1515 | |
| 1516 | const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex]; |
| 1517 | |
| 1518 | unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F; |
| 1519 | |
| 1520 | *flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX); |
| 1521 | |
| 1522 | vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | vce_clock_info->usEVClkLow; |
| 1523 | vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | vce_clock_info->usECClkLow; |
| 1524 | |
| 1525 | *clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize)); |
| 1526 | |
| 1527 | return 0; |
| 1528 | } |
| 1529 | |
| 1530 | |
| 1531 | static int pp_tables_initialize(struct pp_hwmgr *hwmgr) |
| 1532 | { |
| 1533 | int result; |
| 1534 | const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table; |
| 1535 | |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1536 | hwmgr->need_pp_table_upload = true; |
| 1537 | |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1538 | powerplay_table = get_powerplay_table(hwmgr); |
| 1539 | |
| 1540 | result = init_powerplay_tables(hwmgr, powerplay_table); |
| 1541 | |
| 1542 | if (0 == result) |
| 1543 | result = set_platform_caps(hwmgr, |
| 1544 | le32_to_cpu(powerplay_table->ulPlatformCaps)); |
| 1545 | |
| 1546 | if (0 == result) |
| 1547 | result = init_thermal_controller(hwmgr, powerplay_table); |
| 1548 | |
| 1549 | if (0 == result) |
| 1550 | result = init_overdrive_limits(hwmgr, powerplay_table); |
| 1551 | |
| 1552 | if (0 == result) |
| 1553 | result = init_clock_voltage_dependency(hwmgr, |
| 1554 | powerplay_table); |
| 1555 | |
| 1556 | if (0 == result) |
| 1557 | result = init_dpm2_parameters(hwmgr, powerplay_table); |
| 1558 | |
| 1559 | if (0 == result) |
| 1560 | result = init_phase_shedding_table(hwmgr, powerplay_table); |
| 1561 | |
| 1562 | return result; |
| 1563 | } |
| 1564 | |
| 1565 | static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr) |
| 1566 | { |
| 1567 | if (NULL != hwmgr->soft_pp_table) { |
| 1568 | kfree(hwmgr->soft_pp_table); |
| 1569 | hwmgr->soft_pp_table = NULL; |
| 1570 | } |
| 1571 | |
| 1572 | if (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) { |
| 1573 | kfree(hwmgr->dyn_state.vddc_dependency_on_sclk); |
| 1574 | hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; |
| 1575 | } |
| 1576 | |
| 1577 | if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
| 1578 | kfree(hwmgr->dyn_state.vddci_dependency_on_mclk); |
| 1579 | hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; |
| 1580 | } |
| 1581 | |
| 1582 | if (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) { |
| 1583 | kfree(hwmgr->dyn_state.vddc_dependency_on_mclk); |
| 1584 | hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; |
| 1585 | } |
| 1586 | |
| 1587 | if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) { |
| 1588 | kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk); |
| 1589 | hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; |
| 1590 | } |
| 1591 | |
| 1592 | if (NULL != hwmgr->dyn_state.valid_mclk_values) { |
| 1593 | kfree(hwmgr->dyn_state.valid_mclk_values); |
| 1594 | hwmgr->dyn_state.valid_mclk_values = NULL; |
| 1595 | } |
| 1596 | |
| 1597 | if (NULL != hwmgr->dyn_state.valid_sclk_values) { |
| 1598 | kfree(hwmgr->dyn_state.valid_sclk_values); |
| 1599 | hwmgr->dyn_state.valid_sclk_values = NULL; |
| 1600 | } |
| 1601 | |
| 1602 | if (NULL != hwmgr->dyn_state.cac_leakage_table) { |
| 1603 | kfree(hwmgr->dyn_state.cac_leakage_table); |
| 1604 | hwmgr->dyn_state.cac_leakage_table = NULL; |
| 1605 | } |
| 1606 | |
| 1607 | if (NULL != hwmgr->dyn_state.vddc_phase_shed_limits_table) { |
| 1608 | kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table); |
| 1609 | hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL; |
| 1610 | } |
| 1611 | |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1612 | if (NULL != hwmgr->dyn_state.vce_clock_voltage_dependency_table) { |
| 1613 | kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table); |
| 1614 | hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1615 | } |
| 1616 | |
Alex Deucher | 9c0bad9 | 2015-11-13 23:51:40 -0500 | [diff] [blame^] | 1617 | if (NULL != hwmgr->dyn_state.uvd_clock_voltage_dependency_table) { |
| 1618 | kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table); |
| 1619 | hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; |
Jammy Zhou | 3bace35 | 2015-07-21 21:18:15 +0800 | [diff] [blame] | 1620 | } |
| 1621 | |
| 1622 | if (NULL != hwmgr->dyn_state.samu_clock_voltage_dependency_table) { |
| 1623 | kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table); |
| 1624 | hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; |
| 1625 | } |
| 1626 | |
| 1627 | if (NULL != hwmgr->dyn_state.acp_clock_voltage_dependency_table) { |
| 1628 | kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table); |
| 1629 | hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; |
| 1630 | } |
| 1631 | |
| 1632 | if (NULL != hwmgr->dyn_state.cac_dtp_table) { |
| 1633 | kfree(hwmgr->dyn_state.cac_dtp_table); |
| 1634 | hwmgr->dyn_state.cac_dtp_table = NULL; |
| 1635 | } |
| 1636 | |
| 1637 | if (NULL != hwmgr->dyn_state.ppm_parameter_table) { |
| 1638 | kfree(hwmgr->dyn_state.ppm_parameter_table); |
| 1639 | hwmgr->dyn_state.ppm_parameter_table = NULL; |
| 1640 | } |
| 1641 | |
| 1642 | if (NULL != hwmgr->dyn_state.vdd_gfx_dependency_on_sclk) { |
| 1643 | kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk); |
| 1644 | hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; |
| 1645 | } |
| 1646 | |
| 1647 | if (NULL != hwmgr->dyn_state.vq_budgeting_table) { |
| 1648 | kfree(hwmgr->dyn_state.vq_budgeting_table); |
| 1649 | hwmgr->dyn_state.vq_budgeting_table = NULL; |
| 1650 | } |
| 1651 | |
| 1652 | return 0; |
| 1653 | } |
| 1654 | |
| 1655 | const struct pp_table_func pptable_funcs = { |
| 1656 | .pptable_init = pp_tables_initialize, |
| 1657 | .pptable_fini = pp_tables_uninitialize, |
| 1658 | .pptable_get_number_of_vce_state_table_entries = |
| 1659 | get_number_of_vce_state_table_entries, |
| 1660 | .pptable_get_vce_state_table_entry = |
| 1661 | get_vce_state_table_entry, |
| 1662 | }; |
| 1663 | |