Matthias Kaehlcke | 9dee7a7 | 2017-04-07 12:51:58 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for voltage controller regulators |
| 3 | * |
| 4 | * Copyright (C) 2017 Google, Inc. |
| 5 | * |
| 6 | * This software is licensed under the terms of the GNU General Public |
| 7 | * License version 2, as published by the Free Software Foundation, and |
| 8 | * may be copied, distributed, and modified under those terms. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/err.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/of.h> |
| 21 | #include <linux/of_device.h> |
| 22 | #include <linux/regulator/driver.h> |
| 23 | #include <linux/regulator/of_regulator.h> |
| 24 | #include <linux/sort.h> |
| 25 | |
| 26 | struct vctrl_voltage_range { |
| 27 | int min_uV; |
| 28 | int max_uV; |
| 29 | }; |
| 30 | |
| 31 | struct vctrl_voltage_ranges { |
| 32 | struct vctrl_voltage_range ctrl; |
| 33 | struct vctrl_voltage_range out; |
| 34 | }; |
| 35 | |
| 36 | struct vctrl_voltage_table { |
| 37 | int ctrl; |
| 38 | int out; |
| 39 | int ovp_min_sel; |
| 40 | }; |
| 41 | |
| 42 | struct vctrl_data { |
| 43 | struct regulator_dev *rdev; |
| 44 | struct regulator_desc desc; |
| 45 | struct regulator *ctrl_reg; |
| 46 | bool enabled; |
| 47 | unsigned int min_slew_down_rate; |
| 48 | unsigned int ovp_threshold; |
| 49 | struct vctrl_voltage_ranges vrange; |
| 50 | struct vctrl_voltage_table *vtable; |
| 51 | unsigned int sel; |
| 52 | }; |
| 53 | |
| 54 | static int vctrl_calc_ctrl_voltage(struct vctrl_data *vctrl, int out_uV) |
| 55 | { |
| 56 | struct vctrl_voltage_range *ctrl = &vctrl->vrange.ctrl; |
| 57 | struct vctrl_voltage_range *out = &vctrl->vrange.out; |
| 58 | |
| 59 | return ctrl->min_uV + |
| 60 | DIV_ROUND_CLOSEST_ULL((s64)(out_uV - out->min_uV) * |
| 61 | (ctrl->max_uV - ctrl->min_uV), |
| 62 | out->max_uV - out->min_uV); |
| 63 | } |
| 64 | |
| 65 | static int vctrl_calc_output_voltage(struct vctrl_data *vctrl, int ctrl_uV) |
| 66 | { |
| 67 | struct vctrl_voltage_range *ctrl = &vctrl->vrange.ctrl; |
| 68 | struct vctrl_voltage_range *out = &vctrl->vrange.out; |
| 69 | |
| 70 | if (ctrl_uV < 0) { |
| 71 | pr_err("vctrl: failed to get control voltage\n"); |
| 72 | return ctrl_uV; |
| 73 | } |
| 74 | |
| 75 | if (ctrl_uV < ctrl->min_uV) |
| 76 | return out->min_uV; |
| 77 | |
| 78 | if (ctrl_uV > ctrl->max_uV) |
| 79 | return out->max_uV; |
| 80 | |
| 81 | return out->min_uV + |
| 82 | DIV_ROUND_CLOSEST_ULL((s64)(ctrl_uV - ctrl->min_uV) * |
| 83 | (out->max_uV - out->min_uV), |
| 84 | ctrl->max_uV - ctrl->min_uV); |
| 85 | } |
| 86 | |
| 87 | static int vctrl_get_voltage(struct regulator_dev *rdev) |
| 88 | { |
| 89 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 90 | int ctrl_uV = regulator_get_voltage(vctrl->ctrl_reg); |
| 91 | |
| 92 | return vctrl_calc_output_voltage(vctrl, ctrl_uV); |
| 93 | } |
| 94 | |
| 95 | static int vctrl_set_voltage(struct regulator_dev *rdev, |
| 96 | int req_min_uV, int req_max_uV, |
| 97 | unsigned int *selector) |
| 98 | { |
| 99 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 100 | struct regulator *ctrl_reg = vctrl->ctrl_reg; |
| 101 | int orig_ctrl_uV = regulator_get_voltage(ctrl_reg); |
| 102 | int uV = vctrl_calc_output_voltage(vctrl, orig_ctrl_uV); |
| 103 | int ret; |
| 104 | |
| 105 | if (req_min_uV >= uV || !vctrl->ovp_threshold) |
| 106 | /* voltage rising or no OVP */ |
| 107 | return regulator_set_voltage( |
| 108 | ctrl_reg, |
| 109 | vctrl_calc_ctrl_voltage(vctrl, req_min_uV), |
| 110 | vctrl_calc_ctrl_voltage(vctrl, req_max_uV)); |
| 111 | |
| 112 | while (uV > req_min_uV) { |
| 113 | int max_drop_uV = (uV * vctrl->ovp_threshold) / 100; |
| 114 | int next_uV; |
| 115 | int next_ctrl_uV; |
| 116 | int delay; |
| 117 | |
| 118 | /* Make sure no infinite loop even in crazy cases */ |
| 119 | if (max_drop_uV == 0) |
| 120 | max_drop_uV = 1; |
| 121 | |
| 122 | next_uV = max_t(int, req_min_uV, uV - max_drop_uV); |
| 123 | next_ctrl_uV = vctrl_calc_ctrl_voltage(vctrl, next_uV); |
| 124 | |
| 125 | ret = regulator_set_voltage(ctrl_reg, |
| 126 | next_ctrl_uV, |
| 127 | next_ctrl_uV); |
| 128 | if (ret) |
| 129 | goto err; |
| 130 | |
| 131 | delay = DIV_ROUND_UP(uV - next_uV, vctrl->min_slew_down_rate); |
| 132 | usleep_range(delay, delay + DIV_ROUND_UP(delay, 10)); |
| 133 | |
| 134 | uV = next_uV; |
| 135 | } |
| 136 | |
| 137 | return 0; |
| 138 | |
| 139 | err: |
| 140 | /* Try to go back to original voltage */ |
| 141 | regulator_set_voltage(ctrl_reg, orig_ctrl_uV, orig_ctrl_uV); |
| 142 | |
| 143 | return ret; |
| 144 | } |
| 145 | |
| 146 | static int vctrl_get_voltage_sel(struct regulator_dev *rdev) |
| 147 | { |
| 148 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 149 | |
| 150 | return vctrl->sel; |
| 151 | } |
| 152 | |
| 153 | static int vctrl_set_voltage_sel(struct regulator_dev *rdev, |
| 154 | unsigned int selector) |
| 155 | { |
| 156 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 157 | struct regulator *ctrl_reg = vctrl->ctrl_reg; |
| 158 | unsigned int orig_sel = vctrl->sel; |
| 159 | int ret; |
| 160 | |
| 161 | if (selector >= rdev->desc->n_voltages) |
| 162 | return -EINVAL; |
| 163 | |
| 164 | if (selector >= vctrl->sel || !vctrl->ovp_threshold) { |
| 165 | /* voltage rising or no OVP */ |
| 166 | ret = regulator_set_voltage(ctrl_reg, |
| 167 | vctrl->vtable[selector].ctrl, |
| 168 | vctrl->vtable[selector].ctrl); |
| 169 | if (!ret) |
| 170 | vctrl->sel = selector; |
| 171 | |
| 172 | return ret; |
| 173 | } |
| 174 | |
| 175 | while (vctrl->sel != selector) { |
| 176 | unsigned int next_sel; |
| 177 | int delay; |
| 178 | |
| 179 | if (selector >= vctrl->vtable[vctrl->sel].ovp_min_sel) |
| 180 | next_sel = selector; |
| 181 | else |
| 182 | next_sel = vctrl->vtable[vctrl->sel].ovp_min_sel; |
| 183 | |
| 184 | ret = regulator_set_voltage(ctrl_reg, |
| 185 | vctrl->vtable[next_sel].ctrl, |
| 186 | vctrl->vtable[next_sel].ctrl); |
| 187 | if (ret) { |
| 188 | dev_err(&rdev->dev, |
| 189 | "failed to set control voltage to %duV\n", |
| 190 | vctrl->vtable[next_sel].ctrl); |
| 191 | goto err; |
| 192 | } |
| 193 | vctrl->sel = next_sel; |
| 194 | |
| 195 | delay = DIV_ROUND_UP(vctrl->vtable[vctrl->sel].out - |
| 196 | vctrl->vtable[next_sel].out, |
| 197 | vctrl->min_slew_down_rate); |
| 198 | usleep_range(delay, delay + DIV_ROUND_UP(delay, 10)); |
| 199 | } |
| 200 | |
| 201 | return 0; |
| 202 | |
| 203 | err: |
| 204 | if (vctrl->sel != orig_sel) { |
| 205 | /* Try to go back to original voltage */ |
| 206 | if (!regulator_set_voltage(ctrl_reg, |
| 207 | vctrl->vtable[orig_sel].ctrl, |
| 208 | vctrl->vtable[orig_sel].ctrl)) |
| 209 | vctrl->sel = orig_sel; |
| 210 | else |
| 211 | dev_warn(&rdev->dev, |
| 212 | "failed to restore original voltage\n"); |
| 213 | } |
| 214 | |
| 215 | return ret; |
| 216 | } |
| 217 | |
| 218 | static int vctrl_list_voltage(struct regulator_dev *rdev, |
| 219 | unsigned int selector) |
| 220 | { |
| 221 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 222 | |
| 223 | if (selector >= rdev->desc->n_voltages) |
| 224 | return -EINVAL; |
| 225 | |
| 226 | return vctrl->vtable[selector].out; |
| 227 | } |
| 228 | |
| 229 | static int vctrl_parse_dt(struct platform_device *pdev, |
| 230 | struct vctrl_data *vctrl) |
| 231 | { |
| 232 | int ret; |
| 233 | struct device_node *np = pdev->dev.of_node; |
| 234 | u32 pval; |
| 235 | u32 vrange_ctrl[2]; |
| 236 | |
| 237 | vctrl->ctrl_reg = devm_regulator_get(&pdev->dev, "ctrl"); |
| 238 | if (IS_ERR(vctrl->ctrl_reg)) |
| 239 | return PTR_ERR(vctrl->ctrl_reg); |
| 240 | |
| 241 | ret = of_property_read_u32(np, "ovp-threshold-percent", &pval); |
| 242 | if (!ret) { |
| 243 | vctrl->ovp_threshold = pval; |
| 244 | if (vctrl->ovp_threshold > 100) { |
| 245 | dev_err(&pdev->dev, |
| 246 | "ovp-threshold-percent (%u) > 100\n", |
| 247 | vctrl->ovp_threshold); |
| 248 | return -EINVAL; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | ret = of_property_read_u32(np, "min-slew-down-rate", &pval); |
| 253 | if (!ret) { |
| 254 | vctrl->min_slew_down_rate = pval; |
| 255 | |
| 256 | /* We use the value as int and as divider; sanity check */ |
| 257 | if (vctrl->min_slew_down_rate == 0) { |
| 258 | dev_err(&pdev->dev, |
| 259 | "min-slew-down-rate must not be 0\n"); |
| 260 | return -EINVAL; |
| 261 | } else if (vctrl->min_slew_down_rate > INT_MAX) { |
| 262 | dev_err(&pdev->dev, "min-slew-down-rate (%u) too big\n", |
| 263 | vctrl->min_slew_down_rate); |
| 264 | return -EINVAL; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | if (vctrl->ovp_threshold && !vctrl->min_slew_down_rate) { |
| 269 | dev_err(&pdev->dev, |
| 270 | "ovp-threshold-percent requires min-slew-down-rate\n"); |
| 271 | return -EINVAL; |
| 272 | } |
| 273 | |
| 274 | ret = of_property_read_u32(np, "regulator-min-microvolt", &pval); |
| 275 | if (ret) { |
| 276 | dev_err(&pdev->dev, |
| 277 | "failed to read regulator-min-microvolt: %d\n", ret); |
| 278 | return ret; |
| 279 | } |
| 280 | vctrl->vrange.out.min_uV = pval; |
| 281 | |
| 282 | ret = of_property_read_u32(np, "regulator-max-microvolt", &pval); |
| 283 | if (ret) { |
| 284 | dev_err(&pdev->dev, |
| 285 | "failed to read regulator-max-microvolt: %d\n", ret); |
| 286 | return ret; |
| 287 | } |
| 288 | vctrl->vrange.out.max_uV = pval; |
| 289 | |
| 290 | ret = of_property_read_u32_array(np, "ctrl-voltage-range", vrange_ctrl, |
| 291 | 2); |
| 292 | if (ret) { |
| 293 | dev_err(&pdev->dev, "failed to read ctrl-voltage-range: %d\n", |
| 294 | ret); |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | if (vrange_ctrl[0] >= vrange_ctrl[1]) { |
| 299 | dev_err(&pdev->dev, "ctrl-voltage-range is invalid: %d-%d\n", |
| 300 | vrange_ctrl[0], vrange_ctrl[1]); |
| 301 | return -EINVAL; |
| 302 | } |
| 303 | |
| 304 | vctrl->vrange.ctrl.min_uV = vrange_ctrl[0]; |
| 305 | vctrl->vrange.ctrl.max_uV = vrange_ctrl[1]; |
| 306 | |
| 307 | return 0; |
| 308 | } |
| 309 | |
| 310 | static int vctrl_cmp_ctrl_uV(const void *a, const void *b) |
| 311 | { |
| 312 | const struct vctrl_voltage_table *at = a; |
| 313 | const struct vctrl_voltage_table *bt = b; |
| 314 | |
| 315 | return at->ctrl - bt->ctrl; |
| 316 | } |
| 317 | |
| 318 | static int vctrl_init_vtable(struct platform_device *pdev) |
| 319 | { |
| 320 | struct vctrl_data *vctrl = platform_get_drvdata(pdev); |
| 321 | struct regulator_desc *rdesc = &vctrl->desc; |
| 322 | struct regulator *ctrl_reg = vctrl->ctrl_reg; |
| 323 | struct vctrl_voltage_range *vrange_ctrl = &vctrl->vrange.ctrl; |
| 324 | int n_voltages; |
| 325 | int ctrl_uV; |
| 326 | int i, idx_vt; |
| 327 | |
| 328 | n_voltages = regulator_count_voltages(ctrl_reg); |
| 329 | |
| 330 | rdesc->n_voltages = n_voltages; |
| 331 | |
| 332 | /* determine number of steps within the range of the vctrl regulator */ |
| 333 | for (i = 0; i < n_voltages; i++) { |
| 334 | ctrl_uV = regulator_list_voltage(ctrl_reg, i); |
| 335 | |
| 336 | if (ctrl_uV < vrange_ctrl->min_uV || |
| 337 | ctrl_uV > vrange_ctrl->max_uV) { |
| 338 | rdesc->n_voltages--; |
| 339 | continue; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | if (rdesc->n_voltages == 0) { |
| 344 | dev_err(&pdev->dev, "invalid configuration\n"); |
| 345 | return -EINVAL; |
| 346 | } |
| 347 | |
| 348 | vctrl->vtable = devm_kmalloc_array( |
| 349 | &pdev->dev, sizeof(struct vctrl_voltage_table), |
| 350 | rdesc->n_voltages, GFP_KERNEL | __GFP_ZERO); |
| 351 | if (!vctrl->vtable) |
| 352 | return -ENOMEM; |
| 353 | |
| 354 | /* create mapping control <=> output voltage */ |
| 355 | for (i = 0, idx_vt = 0; i < n_voltages; i++) { |
| 356 | ctrl_uV = regulator_list_voltage(ctrl_reg, i); |
| 357 | |
| 358 | if (ctrl_uV < vrange_ctrl->min_uV || |
| 359 | ctrl_uV > vrange_ctrl->max_uV) |
| 360 | continue; |
| 361 | |
| 362 | vctrl->vtable[idx_vt].ctrl = ctrl_uV; |
| 363 | vctrl->vtable[idx_vt].out = |
| 364 | vctrl_calc_output_voltage(vctrl, ctrl_uV); |
| 365 | idx_vt++; |
| 366 | } |
| 367 | |
| 368 | /* we rely on the table to be ordered by ascending voltage */ |
| 369 | sort(vctrl->vtable, rdesc->n_voltages, |
| 370 | sizeof(struct vctrl_voltage_table), vctrl_cmp_ctrl_uV, |
| 371 | NULL); |
| 372 | |
| 373 | /* pre-calculate OVP-safe downward transitions */ |
| 374 | for (i = n_voltages - 1; i > 0; i--) { |
| 375 | int j; |
| 376 | int ovp_min_uV = (vctrl->vtable[i].out * |
| 377 | (100 - vctrl->ovp_threshold)) / 100; |
| 378 | |
| 379 | for (j = 0; j < i; j++) { |
| 380 | if (vctrl->vtable[j].out >= ovp_min_uV) { |
| 381 | vctrl->vtable[i].ovp_min_sel = j; |
| 382 | break; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | if (j == i) { |
| 387 | dev_warn(&pdev->dev, "switching down from %duV may cause OVP shutdown\n", |
| 388 | vctrl->vtable[i].out); |
| 389 | /* use next lowest voltage */ |
| 390 | vctrl->vtable[i].ovp_min_sel = i - 1; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | return 0; |
| 395 | } |
| 396 | |
| 397 | static int vctrl_enable(struct regulator_dev *rdev) |
| 398 | { |
| 399 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 400 | int ret = regulator_enable(vctrl->ctrl_reg); |
| 401 | |
| 402 | if (!ret) |
| 403 | vctrl->enabled = true; |
| 404 | |
| 405 | return ret; |
| 406 | } |
| 407 | |
| 408 | static int vctrl_disable(struct regulator_dev *rdev) |
| 409 | { |
| 410 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 411 | int ret = regulator_disable(vctrl->ctrl_reg); |
| 412 | |
| 413 | if (!ret) |
| 414 | vctrl->enabled = false; |
| 415 | |
| 416 | return ret; |
| 417 | } |
| 418 | |
| 419 | static int vctrl_is_enabled(struct regulator_dev *rdev) |
| 420 | { |
| 421 | struct vctrl_data *vctrl = rdev_get_drvdata(rdev); |
| 422 | |
| 423 | return vctrl->enabled; |
| 424 | } |
| 425 | |
| 426 | static const struct regulator_ops vctrl_ops_cont = { |
| 427 | .enable = vctrl_enable, |
| 428 | .disable = vctrl_disable, |
| 429 | .is_enabled = vctrl_is_enabled, |
| 430 | .get_voltage = vctrl_get_voltage, |
| 431 | .set_voltage = vctrl_set_voltage, |
| 432 | }; |
| 433 | |
| 434 | static const struct regulator_ops vctrl_ops_non_cont = { |
| 435 | .enable = vctrl_enable, |
| 436 | .disable = vctrl_disable, |
| 437 | .is_enabled = vctrl_is_enabled, |
| 438 | .set_voltage_sel = vctrl_set_voltage_sel, |
| 439 | .get_voltage_sel = vctrl_get_voltage_sel, |
| 440 | .list_voltage = vctrl_list_voltage, |
| 441 | .map_voltage = regulator_map_voltage_iterate, |
| 442 | }; |
| 443 | |
| 444 | static int vctrl_probe(struct platform_device *pdev) |
| 445 | { |
| 446 | struct device_node *np = pdev->dev.of_node; |
| 447 | struct vctrl_data *vctrl; |
| 448 | const struct regulator_init_data *init_data; |
| 449 | struct regulator_desc *rdesc; |
| 450 | struct regulator_config cfg = { }; |
| 451 | struct vctrl_voltage_range *vrange_ctrl; |
| 452 | int ctrl_uV; |
| 453 | int ret; |
| 454 | |
| 455 | vctrl = devm_kzalloc(&pdev->dev, sizeof(struct vctrl_data), |
| 456 | GFP_KERNEL); |
| 457 | if (!vctrl) |
| 458 | return -ENOMEM; |
| 459 | |
| 460 | platform_set_drvdata(pdev, vctrl); |
| 461 | |
| 462 | ret = vctrl_parse_dt(pdev, vctrl); |
| 463 | if (ret) |
| 464 | return ret; |
| 465 | |
| 466 | vrange_ctrl = &vctrl->vrange.ctrl; |
| 467 | |
| 468 | rdesc = &vctrl->desc; |
| 469 | rdesc->name = "vctrl"; |
| 470 | rdesc->type = REGULATOR_VOLTAGE; |
| 471 | rdesc->owner = THIS_MODULE; |
| 472 | |
| 473 | if ((regulator_get_linear_step(vctrl->ctrl_reg) == 1) || |
| 474 | (regulator_count_voltages(vctrl->ctrl_reg) == -EINVAL)) { |
| 475 | rdesc->continuous_voltage_range = true; |
| 476 | rdesc->ops = &vctrl_ops_cont; |
| 477 | } else { |
| 478 | rdesc->ops = &vctrl_ops_non_cont; |
| 479 | } |
| 480 | |
| 481 | init_data = of_get_regulator_init_data(&pdev->dev, np, rdesc); |
| 482 | if (!init_data) |
| 483 | return -ENOMEM; |
| 484 | |
| 485 | cfg.of_node = np; |
| 486 | cfg.dev = &pdev->dev; |
| 487 | cfg.driver_data = vctrl; |
| 488 | cfg.init_data = init_data; |
| 489 | |
| 490 | if (!rdesc->continuous_voltage_range) { |
| 491 | ret = vctrl_init_vtable(pdev); |
| 492 | if (ret) |
| 493 | return ret; |
| 494 | |
| 495 | ctrl_uV = regulator_get_voltage(vctrl->ctrl_reg); |
| 496 | if (ctrl_uV < 0) { |
| 497 | dev_err(&pdev->dev, "failed to get control voltage\n"); |
| 498 | return ctrl_uV; |
| 499 | } |
| 500 | |
| 501 | /* determine current voltage selector from control voltage */ |
| 502 | if (ctrl_uV < vrange_ctrl->min_uV) { |
| 503 | vctrl->sel = 0; |
| 504 | } else if (ctrl_uV > vrange_ctrl->max_uV) { |
| 505 | vctrl->sel = rdesc->n_voltages - 1; |
| 506 | } else { |
| 507 | int i; |
| 508 | |
| 509 | for (i = 0; i < rdesc->n_voltages; i++) { |
| 510 | if (ctrl_uV == vctrl->vtable[i].ctrl) { |
| 511 | vctrl->sel = i; |
| 512 | break; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | vctrl->rdev = devm_regulator_register(&pdev->dev, rdesc, &cfg); |
| 519 | if (IS_ERR(vctrl->rdev)) { |
| 520 | ret = PTR_ERR(vctrl->rdev); |
| 521 | dev_err(&pdev->dev, "failed to register regulator: %d\n", ret); |
| 522 | return ret; |
| 523 | } |
| 524 | |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | static const struct of_device_id vctrl_of_match[] = { |
| 529 | { .compatible = "vctrl-regulator", }, |
| 530 | {}, |
| 531 | }; |
| 532 | MODULE_DEVICE_TABLE(of, vctrl_of_match); |
| 533 | |
| 534 | static struct platform_driver vctrl_driver = { |
| 535 | .probe = vctrl_probe, |
| 536 | .driver = { |
| 537 | .name = "vctrl-regulator", |
| 538 | .of_match_table = of_match_ptr(vctrl_of_match), |
| 539 | }, |
| 540 | }; |
| 541 | |
| 542 | module_platform_driver(vctrl_driver); |
| 543 | |
| 544 | MODULE_DESCRIPTION("Voltage Controlled Regulator Driver"); |
| 545 | MODULE_AUTHOR("Matthias Kaehlcke <mka@chromium.org>"); |
| 546 | MODULE_LICENSE("GPL v2"); |