Scott Wood | a111065 | 2010-02-25 18:09:45 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Performance event support - Freescale Embedded Performance Monitor |
| 3 | * |
| 4 | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| 5 | * Copyright 2010 Freescale Semiconductor, Inc. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * as published by the Free Software Foundation; either version |
| 10 | * 2 of the License, or (at your option) any later version. |
| 11 | */ |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/perf_event.h> |
| 15 | #include <linux/percpu.h> |
| 16 | #include <linux/hardirq.h> |
| 17 | #include <asm/reg_fsl_emb.h> |
| 18 | #include <asm/pmc.h> |
| 19 | #include <asm/machdep.h> |
| 20 | #include <asm/firmware.h> |
| 21 | #include <asm/ptrace.h> |
| 22 | |
| 23 | struct cpu_hw_events { |
| 24 | int n_events; |
| 25 | int disabled; |
| 26 | u8 pmcs_enabled; |
| 27 | struct perf_event *event[MAX_HWEVENTS]; |
| 28 | }; |
| 29 | static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| 30 | |
| 31 | static struct fsl_emb_pmu *ppmu; |
| 32 | |
| 33 | /* Number of perf_events counting hardware events */ |
| 34 | static atomic_t num_events; |
| 35 | /* Used to avoid races in calling reserve/release_pmc_hardware */ |
| 36 | static DEFINE_MUTEX(pmc_reserve_mutex); |
| 37 | |
| 38 | /* |
| 39 | * If interrupts were soft-disabled when a PMU interrupt occurs, treat |
| 40 | * it as an NMI. |
| 41 | */ |
| 42 | static inline int perf_intr_is_nmi(struct pt_regs *regs) |
| 43 | { |
| 44 | #ifdef __powerpc64__ |
| 45 | return !regs->softe; |
| 46 | #else |
| 47 | return 0; |
| 48 | #endif |
| 49 | } |
| 50 | |
| 51 | static void perf_event_interrupt(struct pt_regs *regs); |
| 52 | |
| 53 | /* |
| 54 | * Read one performance monitor counter (PMC). |
| 55 | */ |
| 56 | static unsigned long read_pmc(int idx) |
| 57 | { |
| 58 | unsigned long val; |
| 59 | |
| 60 | switch (idx) { |
| 61 | case 0: |
| 62 | val = mfpmr(PMRN_PMC0); |
| 63 | break; |
| 64 | case 1: |
| 65 | val = mfpmr(PMRN_PMC1); |
| 66 | break; |
| 67 | case 2: |
| 68 | val = mfpmr(PMRN_PMC2); |
| 69 | break; |
| 70 | case 3: |
| 71 | val = mfpmr(PMRN_PMC3); |
| 72 | break; |
| 73 | default: |
| 74 | printk(KERN_ERR "oops trying to read PMC%d\n", idx); |
| 75 | val = 0; |
| 76 | } |
| 77 | return val; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Write one PMC. |
| 82 | */ |
| 83 | static void write_pmc(int idx, unsigned long val) |
| 84 | { |
| 85 | switch (idx) { |
| 86 | case 0: |
| 87 | mtpmr(PMRN_PMC0, val); |
| 88 | break; |
| 89 | case 1: |
| 90 | mtpmr(PMRN_PMC1, val); |
| 91 | break; |
| 92 | case 2: |
| 93 | mtpmr(PMRN_PMC2, val); |
| 94 | break; |
| 95 | case 3: |
| 96 | mtpmr(PMRN_PMC3, val); |
| 97 | break; |
| 98 | default: |
| 99 | printk(KERN_ERR "oops trying to write PMC%d\n", idx); |
| 100 | } |
| 101 | |
| 102 | isync(); |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Write one local control A register |
| 107 | */ |
| 108 | static void write_pmlca(int idx, unsigned long val) |
| 109 | { |
| 110 | switch (idx) { |
| 111 | case 0: |
| 112 | mtpmr(PMRN_PMLCA0, val); |
| 113 | break; |
| 114 | case 1: |
| 115 | mtpmr(PMRN_PMLCA1, val); |
| 116 | break; |
| 117 | case 2: |
| 118 | mtpmr(PMRN_PMLCA2, val); |
| 119 | break; |
| 120 | case 3: |
| 121 | mtpmr(PMRN_PMLCA3, val); |
| 122 | break; |
| 123 | default: |
| 124 | printk(KERN_ERR "oops trying to write PMLCA%d\n", idx); |
| 125 | } |
| 126 | |
| 127 | isync(); |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Write one local control B register |
| 132 | */ |
| 133 | static void write_pmlcb(int idx, unsigned long val) |
| 134 | { |
| 135 | switch (idx) { |
| 136 | case 0: |
| 137 | mtpmr(PMRN_PMLCB0, val); |
| 138 | break; |
| 139 | case 1: |
| 140 | mtpmr(PMRN_PMLCB1, val); |
| 141 | break; |
| 142 | case 2: |
| 143 | mtpmr(PMRN_PMLCB2, val); |
| 144 | break; |
| 145 | case 3: |
| 146 | mtpmr(PMRN_PMLCB3, val); |
| 147 | break; |
| 148 | default: |
| 149 | printk(KERN_ERR "oops trying to write PMLCB%d\n", idx); |
| 150 | } |
| 151 | |
| 152 | isync(); |
| 153 | } |
| 154 | |
| 155 | static void fsl_emb_pmu_read(struct perf_event *event) |
| 156 | { |
| 157 | s64 val, delta, prev; |
| 158 | |
| 159 | /* |
| 160 | * Performance monitor interrupts come even when interrupts |
| 161 | * are soft-disabled, as long as interrupts are hard-enabled. |
| 162 | * Therefore we treat them like NMIs. |
| 163 | */ |
| 164 | do { |
| 165 | prev = atomic64_read(&event->hw.prev_count); |
| 166 | barrier(); |
| 167 | val = read_pmc(event->hw.idx); |
| 168 | } while (atomic64_cmpxchg(&event->hw.prev_count, prev, val) != prev); |
| 169 | |
| 170 | /* The counters are only 32 bits wide */ |
| 171 | delta = (val - prev) & 0xfffffffful; |
| 172 | atomic64_add(delta, &event->count); |
| 173 | atomic64_sub(delta, &event->hw.period_left); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Disable all events to prevent PMU interrupts and to allow |
| 178 | * events to be added or removed. |
| 179 | */ |
| 180 | void hw_perf_disable(void) |
| 181 | { |
| 182 | struct cpu_hw_events *cpuhw; |
| 183 | unsigned long flags; |
| 184 | |
| 185 | local_irq_save(flags); |
| 186 | cpuhw = &__get_cpu_var(cpu_hw_events); |
| 187 | |
| 188 | if (!cpuhw->disabled) { |
| 189 | cpuhw->disabled = 1; |
| 190 | |
| 191 | /* |
| 192 | * Check if we ever enabled the PMU on this cpu. |
| 193 | */ |
| 194 | if (!cpuhw->pmcs_enabled) { |
| 195 | ppc_enable_pmcs(); |
| 196 | cpuhw->pmcs_enabled = 1; |
| 197 | } |
| 198 | |
| 199 | if (atomic_read(&num_events)) { |
| 200 | /* |
| 201 | * Set the 'freeze all counters' bit, and disable |
| 202 | * interrupts. The barrier is to make sure the |
| 203 | * mtpmr has been executed and the PMU has frozen |
| 204 | * the events before we return. |
| 205 | */ |
| 206 | |
| 207 | mtpmr(PMRN_PMGC0, PMGC0_FAC); |
| 208 | isync(); |
| 209 | } |
| 210 | } |
| 211 | local_irq_restore(flags); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Re-enable all events if disable == 0. |
| 216 | * If we were previously disabled and events were added, then |
| 217 | * put the new config on the PMU. |
| 218 | */ |
| 219 | void hw_perf_enable(void) |
| 220 | { |
| 221 | struct cpu_hw_events *cpuhw; |
| 222 | unsigned long flags; |
| 223 | |
| 224 | local_irq_save(flags); |
| 225 | cpuhw = &__get_cpu_var(cpu_hw_events); |
| 226 | if (!cpuhw->disabled) |
| 227 | goto out; |
| 228 | |
| 229 | cpuhw->disabled = 0; |
| 230 | ppc_set_pmu_inuse(cpuhw->n_events != 0); |
| 231 | |
| 232 | if (cpuhw->n_events > 0) { |
| 233 | mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); |
| 234 | isync(); |
| 235 | } |
| 236 | |
| 237 | out: |
| 238 | local_irq_restore(flags); |
| 239 | } |
| 240 | |
| 241 | static int collect_events(struct perf_event *group, int max_count, |
| 242 | struct perf_event *ctrs[]) |
| 243 | { |
| 244 | int n = 0; |
| 245 | struct perf_event *event; |
| 246 | |
| 247 | if (!is_software_event(group)) { |
| 248 | if (n >= max_count) |
| 249 | return -1; |
| 250 | ctrs[n] = group; |
| 251 | n++; |
| 252 | } |
| 253 | list_for_each_entry(event, &group->sibling_list, group_entry) { |
| 254 | if (!is_software_event(event) && |
| 255 | event->state != PERF_EVENT_STATE_OFF) { |
| 256 | if (n >= max_count) |
| 257 | return -1; |
| 258 | ctrs[n] = event; |
| 259 | n++; |
| 260 | } |
| 261 | } |
| 262 | return n; |
| 263 | } |
| 264 | |
| 265 | /* perf must be disabled, context locked on entry */ |
| 266 | static int fsl_emb_pmu_enable(struct perf_event *event) |
| 267 | { |
| 268 | struct cpu_hw_events *cpuhw; |
| 269 | int ret = -EAGAIN; |
| 270 | int num_counters = ppmu->n_counter; |
| 271 | u64 val; |
| 272 | int i; |
| 273 | |
| 274 | cpuhw = &get_cpu_var(cpu_hw_events); |
| 275 | |
| 276 | if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) |
| 277 | num_counters = ppmu->n_restricted; |
| 278 | |
| 279 | /* |
| 280 | * Allocate counters from top-down, so that restricted-capable |
| 281 | * counters are kept free as long as possible. |
| 282 | */ |
| 283 | for (i = num_counters - 1; i >= 0; i--) { |
| 284 | if (cpuhw->event[i]) |
| 285 | continue; |
| 286 | |
| 287 | break; |
| 288 | } |
| 289 | |
| 290 | if (i < 0) |
| 291 | goto out; |
| 292 | |
| 293 | event->hw.idx = i; |
| 294 | cpuhw->event[i] = event; |
| 295 | ++cpuhw->n_events; |
| 296 | |
| 297 | val = 0; |
| 298 | if (event->hw.sample_period) { |
| 299 | s64 left = atomic64_read(&event->hw.period_left); |
| 300 | if (left < 0x80000000L) |
| 301 | val = 0x80000000L - left; |
| 302 | } |
| 303 | atomic64_set(&event->hw.prev_count, val); |
| 304 | write_pmc(i, val); |
| 305 | perf_event_update_userpage(event); |
| 306 | |
| 307 | write_pmlcb(i, event->hw.config >> 32); |
| 308 | write_pmlca(i, event->hw.config_base); |
| 309 | |
| 310 | ret = 0; |
| 311 | out: |
| 312 | put_cpu_var(cpu_hw_events); |
| 313 | return ret; |
| 314 | } |
| 315 | |
| 316 | /* perf must be disabled, context locked on entry */ |
| 317 | static void fsl_emb_pmu_disable(struct perf_event *event) |
| 318 | { |
| 319 | struct cpu_hw_events *cpuhw; |
| 320 | int i = event->hw.idx; |
| 321 | |
| 322 | if (i < 0) |
| 323 | goto out; |
| 324 | |
| 325 | fsl_emb_pmu_read(event); |
| 326 | |
| 327 | cpuhw = &get_cpu_var(cpu_hw_events); |
| 328 | |
| 329 | WARN_ON(event != cpuhw->event[event->hw.idx]); |
| 330 | |
| 331 | write_pmlca(i, 0); |
| 332 | write_pmlcb(i, 0); |
| 333 | write_pmc(i, 0); |
| 334 | |
| 335 | cpuhw->event[i] = NULL; |
| 336 | event->hw.idx = -1; |
| 337 | |
| 338 | /* |
| 339 | * TODO: if at least one restricted event exists, and we |
| 340 | * just freed up a non-restricted-capable counter, and |
| 341 | * there is a restricted-capable counter occupied by |
| 342 | * a non-restricted event, migrate that event to the |
| 343 | * vacated counter. |
| 344 | */ |
| 345 | |
| 346 | cpuhw->n_events--; |
| 347 | |
| 348 | out: |
| 349 | put_cpu_var(cpu_hw_events); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Re-enable interrupts on a event after they were throttled |
| 354 | * because they were coming too fast. |
| 355 | * |
| 356 | * Context is locked on entry, but perf is not disabled. |
| 357 | */ |
| 358 | static void fsl_emb_pmu_unthrottle(struct perf_event *event) |
| 359 | { |
| 360 | s64 val, left; |
| 361 | unsigned long flags; |
| 362 | |
| 363 | if (event->hw.idx < 0 || !event->hw.sample_period) |
| 364 | return; |
| 365 | local_irq_save(flags); |
| 366 | perf_disable(); |
| 367 | fsl_emb_pmu_read(event); |
| 368 | left = event->hw.sample_period; |
| 369 | event->hw.last_period = left; |
| 370 | val = 0; |
| 371 | if (left < 0x80000000L) |
| 372 | val = 0x80000000L - left; |
| 373 | write_pmc(event->hw.idx, val); |
| 374 | atomic64_set(&event->hw.prev_count, val); |
| 375 | atomic64_set(&event->hw.period_left, left); |
| 376 | perf_event_update_userpage(event); |
| 377 | perf_enable(); |
| 378 | local_irq_restore(flags); |
| 379 | } |
| 380 | |
| 381 | static struct pmu fsl_emb_pmu = { |
| 382 | .enable = fsl_emb_pmu_enable, |
| 383 | .disable = fsl_emb_pmu_disable, |
| 384 | .read = fsl_emb_pmu_read, |
| 385 | .unthrottle = fsl_emb_pmu_unthrottle, |
| 386 | }; |
| 387 | |
| 388 | /* |
| 389 | * Release the PMU if this is the last perf_event. |
| 390 | */ |
| 391 | static void hw_perf_event_destroy(struct perf_event *event) |
| 392 | { |
| 393 | if (!atomic_add_unless(&num_events, -1, 1)) { |
| 394 | mutex_lock(&pmc_reserve_mutex); |
| 395 | if (atomic_dec_return(&num_events) == 0) |
| 396 | release_pmc_hardware(); |
| 397 | mutex_unlock(&pmc_reserve_mutex); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Translate a generic cache event_id config to a raw event_id code. |
| 403 | */ |
| 404 | static int hw_perf_cache_event(u64 config, u64 *eventp) |
| 405 | { |
| 406 | unsigned long type, op, result; |
| 407 | int ev; |
| 408 | |
| 409 | if (!ppmu->cache_events) |
| 410 | return -EINVAL; |
| 411 | |
| 412 | /* unpack config */ |
| 413 | type = config & 0xff; |
| 414 | op = (config >> 8) & 0xff; |
| 415 | result = (config >> 16) & 0xff; |
| 416 | |
| 417 | if (type >= PERF_COUNT_HW_CACHE_MAX || |
| 418 | op >= PERF_COUNT_HW_CACHE_OP_MAX || |
| 419 | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| 420 | return -EINVAL; |
| 421 | |
| 422 | ev = (*ppmu->cache_events)[type][op][result]; |
| 423 | if (ev == 0) |
| 424 | return -EOPNOTSUPP; |
| 425 | if (ev == -1) |
| 426 | return -EINVAL; |
| 427 | *eventp = ev; |
| 428 | return 0; |
| 429 | } |
| 430 | |
| 431 | const struct pmu *hw_perf_event_init(struct perf_event *event) |
| 432 | { |
| 433 | u64 ev; |
| 434 | struct perf_event *events[MAX_HWEVENTS]; |
| 435 | int n; |
| 436 | int err; |
| 437 | int num_restricted; |
| 438 | int i; |
| 439 | |
| 440 | switch (event->attr.type) { |
| 441 | case PERF_TYPE_HARDWARE: |
| 442 | ev = event->attr.config; |
| 443 | if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) |
| 444 | return ERR_PTR(-EOPNOTSUPP); |
| 445 | ev = ppmu->generic_events[ev]; |
| 446 | break; |
| 447 | |
| 448 | case PERF_TYPE_HW_CACHE: |
| 449 | err = hw_perf_cache_event(event->attr.config, &ev); |
| 450 | if (err) |
| 451 | return ERR_PTR(err); |
| 452 | break; |
| 453 | |
| 454 | case PERF_TYPE_RAW: |
| 455 | ev = event->attr.config; |
| 456 | break; |
| 457 | |
| 458 | default: |
| 459 | return ERR_PTR(-EINVAL); |
| 460 | } |
| 461 | |
| 462 | event->hw.config = ppmu->xlate_event(ev); |
| 463 | if (!(event->hw.config & FSL_EMB_EVENT_VALID)) |
| 464 | return ERR_PTR(-EINVAL); |
| 465 | |
| 466 | /* |
| 467 | * If this is in a group, check if it can go on with all the |
| 468 | * other hardware events in the group. We assume the event |
| 469 | * hasn't been linked into its leader's sibling list at this point. |
| 470 | */ |
| 471 | n = 0; |
| 472 | if (event->group_leader != event) { |
| 473 | n = collect_events(event->group_leader, |
| 474 | ppmu->n_counter - 1, events); |
| 475 | if (n < 0) |
| 476 | return ERR_PTR(-EINVAL); |
| 477 | } |
| 478 | |
| 479 | if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) { |
| 480 | num_restricted = 0; |
| 481 | for (i = 0; i < n; i++) { |
| 482 | if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED) |
| 483 | num_restricted++; |
| 484 | } |
| 485 | |
| 486 | if (num_restricted >= ppmu->n_restricted) |
| 487 | return ERR_PTR(-EINVAL); |
| 488 | } |
| 489 | |
| 490 | event->hw.idx = -1; |
| 491 | |
| 492 | event->hw.config_base = PMLCA_CE | PMLCA_FCM1 | |
| 493 | (u32)((ev << 16) & PMLCA_EVENT_MASK); |
| 494 | |
| 495 | if (event->attr.exclude_user) |
| 496 | event->hw.config_base |= PMLCA_FCU; |
| 497 | if (event->attr.exclude_kernel) |
| 498 | event->hw.config_base |= PMLCA_FCS; |
| 499 | if (event->attr.exclude_idle) |
| 500 | return ERR_PTR(-ENOTSUPP); |
| 501 | |
| 502 | event->hw.last_period = event->hw.sample_period; |
| 503 | atomic64_set(&event->hw.period_left, event->hw.last_period); |
| 504 | |
| 505 | /* |
| 506 | * See if we need to reserve the PMU. |
| 507 | * If no events are currently in use, then we have to take a |
| 508 | * mutex to ensure that we don't race with another task doing |
| 509 | * reserve_pmc_hardware or release_pmc_hardware. |
| 510 | */ |
| 511 | err = 0; |
| 512 | if (!atomic_inc_not_zero(&num_events)) { |
| 513 | mutex_lock(&pmc_reserve_mutex); |
| 514 | if (atomic_read(&num_events) == 0 && |
| 515 | reserve_pmc_hardware(perf_event_interrupt)) |
| 516 | err = -EBUSY; |
| 517 | else |
| 518 | atomic_inc(&num_events); |
| 519 | mutex_unlock(&pmc_reserve_mutex); |
| 520 | |
| 521 | mtpmr(PMRN_PMGC0, PMGC0_FAC); |
| 522 | isync(); |
| 523 | } |
| 524 | event->destroy = hw_perf_event_destroy; |
| 525 | |
| 526 | if (err) |
| 527 | return ERR_PTR(err); |
| 528 | return &fsl_emb_pmu; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * A counter has overflowed; update its count and record |
| 533 | * things if requested. Note that interrupts are hard-disabled |
| 534 | * here so there is no possibility of being interrupted. |
| 535 | */ |
| 536 | static void record_and_restart(struct perf_event *event, unsigned long val, |
| 537 | struct pt_regs *regs, int nmi) |
| 538 | { |
| 539 | u64 period = event->hw.sample_period; |
| 540 | s64 prev, delta, left; |
| 541 | int record = 0; |
| 542 | |
| 543 | /* we don't have to worry about interrupts here */ |
| 544 | prev = atomic64_read(&event->hw.prev_count); |
| 545 | delta = (val - prev) & 0xfffffffful; |
| 546 | atomic64_add(delta, &event->count); |
| 547 | |
| 548 | /* |
| 549 | * See if the total period for this event has expired, |
| 550 | * and update for the next period. |
| 551 | */ |
| 552 | val = 0; |
| 553 | left = atomic64_read(&event->hw.period_left) - delta; |
| 554 | if (period) { |
| 555 | if (left <= 0) { |
| 556 | left += period; |
| 557 | if (left <= 0) |
| 558 | left = period; |
| 559 | record = 1; |
| 560 | } |
| 561 | if (left < 0x80000000LL) |
| 562 | val = 0x80000000LL - left; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * Finally record data if requested. |
| 567 | */ |
| 568 | if (record) { |
| 569 | struct perf_sample_data data = { |
| 570 | .period = event->hw.last_period, |
| 571 | }; |
| 572 | |
| 573 | if (perf_event_overflow(event, nmi, &data, regs)) { |
| 574 | /* |
| 575 | * Interrupts are coming too fast - throttle them |
| 576 | * by setting the event to 0, so it will be |
| 577 | * at least 2^30 cycles until the next interrupt |
| 578 | * (assuming each event counts at most 2 counts |
| 579 | * per cycle). |
| 580 | */ |
| 581 | val = 0; |
| 582 | left = ~0ULL >> 1; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | write_pmc(event->hw.idx, val); |
| 587 | atomic64_set(&event->hw.prev_count, val); |
| 588 | atomic64_set(&event->hw.period_left, left); |
| 589 | perf_event_update_userpage(event); |
| 590 | } |
| 591 | |
| 592 | static void perf_event_interrupt(struct pt_regs *regs) |
| 593 | { |
| 594 | int i; |
| 595 | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); |
| 596 | struct perf_event *event; |
| 597 | unsigned long val; |
| 598 | int found = 0; |
| 599 | int nmi; |
| 600 | |
| 601 | nmi = perf_intr_is_nmi(regs); |
| 602 | if (nmi) |
| 603 | nmi_enter(); |
| 604 | else |
| 605 | irq_enter(); |
| 606 | |
| 607 | for (i = 0; i < ppmu->n_counter; ++i) { |
| 608 | event = cpuhw->event[i]; |
| 609 | |
| 610 | val = read_pmc(i); |
| 611 | if ((int)val < 0) { |
| 612 | if (event) { |
| 613 | /* event has overflowed */ |
| 614 | found = 1; |
| 615 | record_and_restart(event, val, regs, nmi); |
| 616 | } else { |
| 617 | /* |
| 618 | * Disabled counter is negative, |
| 619 | * reset it just in case. |
| 620 | */ |
| 621 | write_pmc(i, 0); |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | /* PMM will keep counters frozen until we return from the interrupt. */ |
| 627 | mtmsr(mfmsr() | MSR_PMM); |
| 628 | mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); |
| 629 | isync(); |
| 630 | |
| 631 | if (nmi) |
| 632 | nmi_exit(); |
| 633 | else |
| 634 | irq_exit(); |
| 635 | } |
| 636 | |
| 637 | void hw_perf_event_setup(int cpu) |
| 638 | { |
| 639 | struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); |
| 640 | |
| 641 | memset(cpuhw, 0, sizeof(*cpuhw)); |
| 642 | } |
| 643 | |
| 644 | int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu) |
| 645 | { |
| 646 | if (ppmu) |
| 647 | return -EBUSY; /* something's already registered */ |
| 648 | |
| 649 | ppmu = pmu; |
| 650 | pr_info("%s performance monitor hardware support registered\n", |
| 651 | pmu->name); |
| 652 | |
| 653 | return 0; |
| 654 | } |