blob: 5f78fc1e818af44971f5fee13c2d0ed1c6153692 [file] [log] [blame]
Chao Yua28ef1f2015-07-08 17:59:36 +08001/*
2 * f2fs extent cache support
3 *
4 * Copyright (c) 2015 Motorola Mobility
5 * Copyright (c) 2015 Samsung Electronics
6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7 * Chao Yu <chao2.yu@samsung.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/fs.h>
15#include <linux/f2fs_fs.h>
16
17#include "f2fs.h"
18#include "node.h"
19#include <trace/events/f2fs.h>
20
21static struct kmem_cache *extent_tree_slab;
22static struct kmem_cache *extent_node_slab;
23
24static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 struct extent_tree *et, struct extent_info *ei,
26 struct rb_node *parent, struct rb_node **p)
27{
28 struct extent_node *en;
29
30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 if (!en)
32 return NULL;
33
34 en->ei = *ei;
35 INIT_LIST_HEAD(&en->list);
36
37 rb_link_node(&en->rb_node, parent, p);
38 rb_insert_color(&en->rb_node, &et->root);
39 et->count++;
40 atomic_inc(&sbi->total_ext_node);
41 return en;
42}
43
44static void __detach_extent_node(struct f2fs_sb_info *sbi,
45 struct extent_tree *et, struct extent_node *en)
46{
47 rb_erase(&en->rb_node, &et->root);
48 et->count--;
49 atomic_dec(&sbi->total_ext_node);
50
51 if (et->cached_en == en)
52 et->cached_en = NULL;
53}
54
55static struct extent_tree *__grab_extent_tree(struct inode *inode)
56{
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct extent_tree *et;
59 nid_t ino = inode->i_ino;
60
61 down_write(&sbi->extent_tree_lock);
62 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
63 if (!et) {
64 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
65 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
66 memset(et, 0, sizeof(struct extent_tree));
67 et->ino = ino;
68 et->root = RB_ROOT;
69 et->cached_en = NULL;
70 rwlock_init(&et->lock);
71 atomic_set(&et->refcount, 0);
72 et->count = 0;
73 sbi->total_ext_tree++;
74 }
75 atomic_inc(&et->refcount);
76 up_write(&sbi->extent_tree_lock);
77
78 /* never died until evict_inode */
79 F2FS_I(inode)->extent_tree = et;
80
81 return et;
82}
83
84static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
85 unsigned int fofs)
86{
87 struct rb_node *node = et->root.rb_node;
88 struct extent_node *en;
89
90 if (et->cached_en) {
91 struct extent_info *cei = &et->cached_en->ei;
92
93 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
94 return et->cached_en;
95 }
96
97 while (node) {
98 en = rb_entry(node, struct extent_node, rb_node);
99
100 if (fofs < en->ei.fofs)
101 node = node->rb_left;
102 else if (fofs >= en->ei.fofs + en->ei.len)
103 node = node->rb_right;
104 else
105 return en;
106 }
107 return NULL;
108}
109
110static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
111 struct extent_tree *et, struct extent_node *en)
112{
113 struct extent_node *prev;
114 struct rb_node *node;
115
116 node = rb_prev(&en->rb_node);
117 if (!node)
118 return NULL;
119
120 prev = rb_entry(node, struct extent_node, rb_node);
121 if (__is_back_mergeable(&en->ei, &prev->ei)) {
122 en->ei.fofs = prev->ei.fofs;
123 en->ei.blk = prev->ei.blk;
124 en->ei.len += prev->ei.len;
125 __detach_extent_node(sbi, et, prev);
126 return prev;
127 }
128 return NULL;
129}
130
131static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
132 struct extent_tree *et, struct extent_node *en)
133{
134 struct extent_node *next;
135 struct rb_node *node;
136
137 node = rb_next(&en->rb_node);
138 if (!node)
139 return NULL;
140
141 next = rb_entry(node, struct extent_node, rb_node);
142 if (__is_front_mergeable(&en->ei, &next->ei)) {
143 en->ei.len += next->ei.len;
144 __detach_extent_node(sbi, et, next);
145 return next;
146 }
147 return NULL;
148}
149
150static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
151 struct extent_tree *et, struct extent_info *ei,
152 struct extent_node **den)
153{
154 struct rb_node **p = &et->root.rb_node;
155 struct rb_node *parent = NULL;
156 struct extent_node *en;
157
158 while (*p) {
159 parent = *p;
160 en = rb_entry(parent, struct extent_node, rb_node);
161
162 if (ei->fofs < en->ei.fofs) {
163 if (__is_front_mergeable(ei, &en->ei)) {
164 f2fs_bug_on(sbi, !den);
165 en->ei.fofs = ei->fofs;
166 en->ei.blk = ei->blk;
167 en->ei.len += ei->len;
168 *den = __try_back_merge(sbi, et, en);
169 goto update_out;
170 }
171 p = &(*p)->rb_left;
172 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
173 if (__is_back_mergeable(ei, &en->ei)) {
174 f2fs_bug_on(sbi, !den);
175 en->ei.len += ei->len;
176 *den = __try_front_merge(sbi, et, en);
177 goto update_out;
178 }
179 p = &(*p)->rb_right;
180 } else {
181 f2fs_bug_on(sbi, 1);
182 }
183 }
184
185 en = __attach_extent_node(sbi, et, ei, parent, p);
186 if (!en)
187 return NULL;
188update_out:
189 if (en->ei.len > et->largest.len)
190 et->largest = en->ei;
191 et->cached_en = en;
192 return en;
193}
194
195static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
196 struct extent_tree *et, bool free_all)
197{
198 struct rb_node *node, *next;
199 struct extent_node *en;
200 unsigned int count = et->count;
201
202 node = rb_first(&et->root);
203 while (node) {
204 next = rb_next(node);
205 en = rb_entry(node, struct extent_node, rb_node);
206
207 if (free_all) {
208 spin_lock(&sbi->extent_lock);
209 if (!list_empty(&en->list))
210 list_del_init(&en->list);
211 spin_unlock(&sbi->extent_lock);
212 }
213
214 if (free_all || list_empty(&en->list)) {
215 __detach_extent_node(sbi, et, en);
216 kmem_cache_free(extent_node_slab, en);
217 }
218 node = next;
219 }
220
221 return count - et->count;
222}
223
224void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
225{
226 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
227
228 if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
229 largest->len = 0;
230}
231
232void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
233{
234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
235 struct extent_tree *et;
236 struct extent_node *en;
237 struct extent_info ei;
238
239 if (!f2fs_may_extent_tree(inode))
240 return;
241
242 et = __grab_extent_tree(inode);
243
244 if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
245 return;
246
247 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
248 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
249
250 write_lock(&et->lock);
251 if (et->count)
252 goto out;
253
254 en = __insert_extent_tree(sbi, et, &ei, NULL);
255 if (en) {
256 spin_lock(&sbi->extent_lock);
257 list_add_tail(&en->list, &sbi->extent_list);
258 spin_unlock(&sbi->extent_lock);
259 }
260out:
261 write_unlock(&et->lock);
262}
263
264static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
265 struct extent_info *ei)
266{
267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
268 struct extent_tree *et = F2FS_I(inode)->extent_tree;
269 struct extent_node *en;
270 bool ret = false;
271
272 f2fs_bug_on(sbi, !et);
273
274 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
275
276 read_lock(&et->lock);
277
278 if (et->largest.fofs <= pgofs &&
279 et->largest.fofs + et->largest.len > pgofs) {
280 *ei = et->largest;
281 ret = true;
282 stat_inc_read_hit(sbi->sb);
283 goto out;
284 }
285
286 en = __lookup_extent_tree(et, pgofs);
287 if (en) {
288 *ei = en->ei;
289 spin_lock(&sbi->extent_lock);
290 if (!list_empty(&en->list))
291 list_move_tail(&en->list, &sbi->extent_list);
292 et->cached_en = en;
293 spin_unlock(&sbi->extent_lock);
294 ret = true;
295 stat_inc_read_hit(sbi->sb);
296 }
297out:
298 stat_inc_total_hit(sbi->sb);
299 read_unlock(&et->lock);
300
301 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
302 return ret;
303}
304
305/* return true, if on-disk extent should be updated */
306static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
307 block_t blkaddr)
308{
309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
310 struct extent_tree *et = F2FS_I(inode)->extent_tree;
311 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
312 struct extent_node *den = NULL;
313 struct extent_info ei, dei, prev;
314 unsigned int endofs;
315
316 if (!et)
317 return false;
318
319 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
320
321 write_lock(&et->lock);
322
323 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
324 write_unlock(&et->lock);
325 return false;
326 }
327
328 prev = et->largest;
329 dei.len = 0;
330
331 /* we do not guarantee that the largest extent is cached all the time */
332 f2fs_drop_largest_extent(inode, fofs);
333
334 /* 1. lookup and remove existing extent info in cache */
335 en = __lookup_extent_tree(et, fofs);
336 if (!en)
337 goto update_extent;
338
339 dei = en->ei;
340 __detach_extent_node(sbi, et, en);
341
342 /* 2. if extent can be split more, split and insert the left part */
343 if (dei.len > F2FS_MIN_EXTENT_LEN) {
344 /* insert left part of split extent into cache */
345 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
346 set_extent_info(&ei, dei.fofs, dei.blk,
347 fofs - dei.fofs);
348 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
349 }
350
351 /* insert right part of split extent into cache */
352 endofs = dei.fofs + dei.len - 1;
353 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
354 set_extent_info(&ei, fofs + 1,
355 fofs - dei.fofs + dei.blk + 1, endofs - fofs);
356 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
357 }
358 }
359
360update_extent:
361 /* 3. update extent in extent cache */
362 if (blkaddr) {
363 set_extent_info(&ei, fofs, blkaddr, 1);
364 en3 = __insert_extent_tree(sbi, et, &ei, &den);
365
366 /* give up extent_cache, if split and small updates happen */
367 if (dei.len >= 1 &&
368 prev.len < F2FS_MIN_EXTENT_LEN &&
369 et->largest.len < F2FS_MIN_EXTENT_LEN) {
370 et->largest.len = 0;
371 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
372 }
373 }
374
375 /* 4. update in global extent list */
376 spin_lock(&sbi->extent_lock);
377 if (en && !list_empty(&en->list))
378 list_del(&en->list);
379 /*
380 * en1 and en2 split from en, they will become more and more smaller
381 * fragments after splitting several times. So if the length is smaller
382 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
383 */
384 if (en1)
385 list_add_tail(&en1->list, &sbi->extent_list);
386 if (en2)
387 list_add_tail(&en2->list, &sbi->extent_list);
388 if (en3) {
389 if (list_empty(&en3->list))
390 list_add_tail(&en3->list, &sbi->extent_list);
391 else
392 list_move_tail(&en3->list, &sbi->extent_list);
393 }
394 if (den && !list_empty(&den->list))
395 list_del(&den->list);
396 spin_unlock(&sbi->extent_lock);
397
398 /* 5. release extent node */
399 if (en)
400 kmem_cache_free(extent_node_slab, en);
401 if (den)
402 kmem_cache_free(extent_node_slab, den);
403
404 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
405 __free_extent_tree(sbi, et, true);
406
407 write_unlock(&et->lock);
408
409 return !__is_extent_same(&prev, &et->largest);
410}
411
412unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
413{
414 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
415 struct extent_node *en, *tmp;
416 unsigned long ino = F2FS_ROOT_INO(sbi);
417 struct radix_tree_root *root = &sbi->extent_tree_root;
418 unsigned int found;
419 unsigned int node_cnt = 0, tree_cnt = 0;
420 int remained;
421
422 if (!test_opt(sbi, EXTENT_CACHE))
423 return 0;
424
425 if (!down_write_trylock(&sbi->extent_tree_lock))
426 goto out;
427
428 /* 1. remove unreferenced extent tree */
429 while ((found = radix_tree_gang_lookup(root,
430 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
431 unsigned i;
432
433 ino = treevec[found - 1]->ino + 1;
434 for (i = 0; i < found; i++) {
435 struct extent_tree *et = treevec[i];
436
437 if (!atomic_read(&et->refcount)) {
438 write_lock(&et->lock);
439 node_cnt += __free_extent_tree(sbi, et, true);
440 write_unlock(&et->lock);
441
442 radix_tree_delete(root, et->ino);
443 kmem_cache_free(extent_tree_slab, et);
444 sbi->total_ext_tree--;
445 tree_cnt++;
446
447 if (node_cnt + tree_cnt >= nr_shrink)
448 goto unlock_out;
449 }
450 }
451 }
452 up_write(&sbi->extent_tree_lock);
453
454 /* 2. remove LRU extent entries */
455 if (!down_write_trylock(&sbi->extent_tree_lock))
456 goto out;
457
458 remained = nr_shrink - (node_cnt + tree_cnt);
459
460 spin_lock(&sbi->extent_lock);
461 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
462 if (!remained--)
463 break;
464 list_del_init(&en->list);
465 }
466 spin_unlock(&sbi->extent_lock);
467
468 while ((found = radix_tree_gang_lookup(root,
469 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
470 unsigned i;
471
472 ino = treevec[found - 1]->ino + 1;
473 for (i = 0; i < found; i++) {
474 struct extent_tree *et = treevec[i];
475
476 write_lock(&et->lock);
477 node_cnt += __free_extent_tree(sbi, et, false);
478 write_unlock(&et->lock);
479
480 if (node_cnt + tree_cnt >= nr_shrink)
481 break;
482 }
483 }
484unlock_out:
485 up_write(&sbi->extent_tree_lock);
486out:
487 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
488
489 return node_cnt + tree_cnt;
490}
491
492unsigned int f2fs_destroy_extent_node(struct inode *inode)
493{
494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
495 struct extent_tree *et = F2FS_I(inode)->extent_tree;
496 unsigned int node_cnt = 0;
497
498 if (!et)
499 return 0;
500
501 write_lock(&et->lock);
502 node_cnt = __free_extent_tree(sbi, et, true);
503 write_unlock(&et->lock);
504
505 return node_cnt;
506}
507
508void f2fs_destroy_extent_tree(struct inode *inode)
509{
510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
511 struct extent_tree *et = F2FS_I(inode)->extent_tree;
512 unsigned int node_cnt = 0;
513
514 if (!et)
515 return;
516
517 if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
518 atomic_dec(&et->refcount);
519 return;
520 }
521
522 /* free all extent info belong to this extent tree */
523 node_cnt = f2fs_destroy_extent_node(inode);
524
525 /* delete extent tree entry in radix tree */
526 down_write(&sbi->extent_tree_lock);
527 atomic_dec(&et->refcount);
528 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
529 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
530 kmem_cache_free(extent_tree_slab, et);
531 sbi->total_ext_tree--;
532 up_write(&sbi->extent_tree_lock);
533
534 F2FS_I(inode)->extent_tree = NULL;
535
536 trace_f2fs_destroy_extent_tree(inode, node_cnt);
537}
538
539bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
540 struct extent_info *ei)
541{
542 if (!f2fs_may_extent_tree(inode))
543 return false;
544
545 return f2fs_lookup_extent_tree(inode, pgofs, ei);
546}
547
548void f2fs_update_extent_cache(struct dnode_of_data *dn)
549{
550 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
551 pgoff_t fofs;
552
553 if (!f2fs_may_extent_tree(dn->inode))
554 return;
555
556 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
557
558 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
559 dn->ofs_in_node;
560
561 if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr))
562 sync_inode_page(dn);
563}
564
565void init_extent_cache_info(struct f2fs_sb_info *sbi)
566{
567 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
568 init_rwsem(&sbi->extent_tree_lock);
569 INIT_LIST_HEAD(&sbi->extent_list);
570 spin_lock_init(&sbi->extent_lock);
571 sbi->total_ext_tree = 0;
572 atomic_set(&sbi->total_ext_node, 0);
573}
574
575int __init create_extent_cache(void)
576{
577 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
578 sizeof(struct extent_tree));
579 if (!extent_tree_slab)
580 return -ENOMEM;
581 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
582 sizeof(struct extent_node));
583 if (!extent_node_slab) {
584 kmem_cache_destroy(extent_tree_slab);
585 return -ENOMEM;
586 }
587 return 0;
588}
589
590void destroy_extent_cache(void)
591{
592 kmem_cache_destroy(extent_node_slab);
593 kmem_cache_destroy(extent_tree_slab);
594}