Zhu Yi | bb9f869 | 2009-05-21 21:20:45 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Intel Wireless Multicomm 3200 WiFi driver |
| 3 | * |
| 4 | * Copyright (C) 2009 Intel Corporation. All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * |
| 10 | * * Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * * Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * * Neither the name of Intel Corporation nor the names of its |
| 17 | * contributors may be used to endorse or promote products derived |
| 18 | * from this software without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 24 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 25 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 26 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 27 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 28 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 29 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 30 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | * |
| 32 | * |
| 33 | * Intel Corporation <ilw@linux.intel.com> |
| 34 | * Samuel Ortiz <samuel.ortiz@intel.com> |
| 35 | * Zhu Yi <yi.zhu@intel.com> |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | #include <linux/kernel.h> |
| 40 | #include <linux/wireless.h> |
| 41 | #include <linux/etherdevice.h> |
| 42 | #include <linux/ieee80211.h> |
| 43 | |
| 44 | #include "iwm.h" |
| 45 | #include "bus.h" |
| 46 | #include "hal.h" |
| 47 | #include "umac.h" |
| 48 | #include "commands.h" |
| 49 | #include "debug.h" |
| 50 | |
| 51 | static int iwm_send_lmac_ptrough_cmd(struct iwm_priv *iwm, |
| 52 | u8 lmac_cmd_id, |
| 53 | const void *lmac_payload, |
| 54 | u16 lmac_payload_size, |
| 55 | u8 resp) |
| 56 | { |
| 57 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_LMAC_INIT; |
| 58 | struct iwm_umac_cmd umac_cmd; |
| 59 | struct iwm_lmac_cmd lmac_cmd; |
| 60 | |
| 61 | lmac_cmd.id = lmac_cmd_id; |
| 62 | |
| 63 | umac_cmd.id = UMAC_CMD_OPCODE_WIFI_PASS_THROUGH; |
| 64 | umac_cmd.resp = resp; |
| 65 | |
| 66 | return iwm_hal_send_host_cmd(iwm, &udma_cmd, &umac_cmd, &lmac_cmd, |
| 67 | lmac_payload, lmac_payload_size); |
| 68 | } |
| 69 | |
| 70 | int iwm_send_wifi_if_cmd(struct iwm_priv *iwm, void *payload, u16 payload_size, |
| 71 | bool resp) |
| 72 | { |
| 73 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 74 | struct iwm_umac_cmd umac_cmd; |
| 75 | |
| 76 | umac_cmd.id = UMAC_CMD_OPCODE_WIFI_IF_WRAPPER; |
| 77 | umac_cmd.resp = resp; |
| 78 | |
| 79 | return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, |
| 80 | payload, payload_size); |
| 81 | } |
| 82 | |
| 83 | static struct coex_event iwm_sta_xor_prio_tbl[COEX_EVENTS_NUM] = |
| 84 | { |
| 85 | {4, 3, 0, COEX_UNASSOC_IDLE_FLAGS}, |
| 86 | {4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS}, |
| 87 | {4, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS}, |
| 88 | {4, 3, 0, COEX_CALIBRATION_FLAGS}, |
| 89 | {4, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS}, |
| 90 | {4, 3, 0, COEX_CONNECTION_ESTAB_FLAGS}, |
| 91 | {4, 3, 0, COEX_ASSOCIATED_IDLE_FLAGS}, |
| 92 | {4, 3, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS}, |
| 93 | {4, 3, 0, COEX_ASSOC_AUTO_SCAN_FLAGS}, |
| 94 | {4, 3, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS}, |
| 95 | {6, 3, 0, COEX_XOR_RF_ON_FLAGS}, |
| 96 | {4, 3, 0, COEX_RF_OFF_FLAGS}, |
| 97 | {6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS}, |
| 98 | {4, 3, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS}, |
| 99 | {4, 3, 0, COEX_RSRVD1_FLAGS}, |
| 100 | {4, 3, 0, COEX_RSRVD2_FLAGS} |
| 101 | }; |
| 102 | |
| 103 | static struct coex_event iwm_sta_cm_prio_tbl[COEX_EVENTS_NUM] = |
| 104 | { |
| 105 | {1, 1, 0, COEX_UNASSOC_IDLE_FLAGS}, |
| 106 | {4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS}, |
| 107 | {3, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS}, |
| 108 | {5, 5, 0, COEX_CALIBRATION_FLAGS}, |
| 109 | {4, 4, 0, COEX_PERIODIC_CALIBRATION_FLAGS}, |
| 110 | {5, 4, 0, COEX_CONNECTION_ESTAB_FLAGS}, |
| 111 | {4, 4, 0, COEX_ASSOCIATED_IDLE_FLAGS}, |
| 112 | {4, 4, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS}, |
| 113 | {4, 4, 0, COEX_ASSOC_AUTO_SCAN_FLAGS}, |
| 114 | {4, 4, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS}, |
| 115 | {1, 1, 0, COEX_RF_ON_FLAGS}, |
| 116 | {1, 1, 0, COEX_RF_OFF_FLAGS}, |
| 117 | {6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS}, |
| 118 | {5, 4, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS}, |
| 119 | {1, 1, 0, COEX_RSRVD1_FLAGS}, |
| 120 | {1, 1, 0, COEX_RSRVD2_FLAGS} |
| 121 | }; |
| 122 | |
| 123 | int iwm_send_prio_table(struct iwm_priv *iwm) |
| 124 | { |
| 125 | struct iwm_coex_prio_table_cmd coex_table_cmd; |
| 126 | u32 coex_enabled, mode_enabled; |
| 127 | |
| 128 | memset(&coex_table_cmd, 0, sizeof(struct iwm_coex_prio_table_cmd)); |
| 129 | |
| 130 | coex_table_cmd.flags = COEX_FLAGS_STA_TABLE_VALID_MSK; |
| 131 | |
| 132 | switch (iwm->conf.coexist_mode) { |
| 133 | case COEX_MODE_XOR: |
| 134 | case COEX_MODE_CM: |
| 135 | coex_enabled = 1; |
| 136 | break; |
| 137 | default: |
| 138 | coex_enabled = 0; |
| 139 | break; |
| 140 | } |
| 141 | |
| 142 | switch (iwm->conf.mode) { |
| 143 | case UMAC_MODE_BSS: |
| 144 | case UMAC_MODE_IBSS: |
| 145 | mode_enabled = 1; |
| 146 | break; |
| 147 | default: |
| 148 | mode_enabled = 0; |
| 149 | break; |
| 150 | } |
| 151 | |
| 152 | if (coex_enabled && mode_enabled) { |
| 153 | coex_table_cmd.flags |= COEX_FLAGS_COEX_ENABLE_MSK | |
| 154 | COEX_FLAGS_ASSOC_WAKEUP_UMASK_MSK | |
| 155 | COEX_FLAGS_UNASSOC_WAKEUP_UMASK_MSK; |
| 156 | |
| 157 | switch (iwm->conf.coexist_mode) { |
| 158 | case COEX_MODE_XOR: |
| 159 | memcpy(coex_table_cmd.sta_prio, iwm_sta_xor_prio_tbl, |
| 160 | sizeof(iwm_sta_xor_prio_tbl)); |
| 161 | break; |
| 162 | case COEX_MODE_CM: |
| 163 | memcpy(coex_table_cmd.sta_prio, iwm_sta_cm_prio_tbl, |
| 164 | sizeof(iwm_sta_cm_prio_tbl)); |
| 165 | break; |
| 166 | default: |
| 167 | IWM_ERR(iwm, "Invalid coex_mode 0x%x\n", |
| 168 | iwm->conf.coexist_mode); |
| 169 | break; |
| 170 | } |
| 171 | } else |
| 172 | IWM_WARN(iwm, "coexistense disabled\n"); |
| 173 | |
| 174 | return iwm_send_lmac_ptrough_cmd(iwm, COEX_PRIORITY_TABLE_CMD, |
| 175 | &coex_table_cmd, |
| 176 | sizeof(struct iwm_coex_prio_table_cmd), 1); |
| 177 | } |
| 178 | |
| 179 | int iwm_send_init_calib_cfg(struct iwm_priv *iwm, u8 calib_requested) |
| 180 | { |
| 181 | struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd; |
| 182 | |
| 183 | memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd)); |
| 184 | |
| 185 | cal_cfg_cmd.ucode_cfg.init.enable = cpu_to_le32(calib_requested); |
| 186 | cal_cfg_cmd.ucode_cfg.init.start = cpu_to_le32(calib_requested); |
| 187 | cal_cfg_cmd.ucode_cfg.init.send_res = cpu_to_le32(calib_requested); |
| 188 | cal_cfg_cmd.ucode_cfg.flags = |
| 189 | cpu_to_le32(CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_AFTER_MSK); |
| 190 | |
| 191 | return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd, |
| 192 | sizeof(struct iwm_lmac_cal_cfg_cmd), 1); |
| 193 | } |
| 194 | |
| 195 | int iwm_send_periodic_calib_cfg(struct iwm_priv *iwm, u8 calib_requested) |
| 196 | { |
| 197 | struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd; |
| 198 | |
| 199 | memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd)); |
| 200 | |
| 201 | cal_cfg_cmd.ucode_cfg.periodic.enable = cpu_to_le32(calib_requested); |
| 202 | cal_cfg_cmd.ucode_cfg.periodic.start = cpu_to_le32(calib_requested); |
| 203 | |
| 204 | return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd, |
| 205 | sizeof(struct iwm_lmac_cal_cfg_cmd), 0); |
| 206 | } |
| 207 | |
| 208 | int iwm_store_rxiq_calib_result(struct iwm_priv *iwm) |
| 209 | { |
| 210 | struct iwm_calib_rxiq *rxiq; |
| 211 | u8 *eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ); |
| 212 | int grplen = sizeof(struct iwm_calib_rxiq_group); |
| 213 | |
| 214 | rxiq = kzalloc(sizeof(struct iwm_calib_rxiq), GFP_KERNEL); |
| 215 | if (!rxiq) { |
| 216 | IWM_ERR(iwm, "Couldn't alloc memory for RX IQ\n"); |
| 217 | return -ENOMEM; |
| 218 | } |
| 219 | |
| 220 | eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ); |
| 221 | if (IS_ERR(eeprom_rxiq)) { |
| 222 | IWM_ERR(iwm, "Couldn't access EEPROM RX IQ entry\n"); |
| 223 | return PTR_ERR(eeprom_rxiq); |
| 224 | } |
| 225 | |
| 226 | iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].buf = (u8 *)rxiq; |
| 227 | iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].size = sizeof(*rxiq); |
| 228 | |
| 229 | rxiq->hdr.opcode = SHILOH_PHY_CALIBRATE_RX_IQ_CMD; |
| 230 | rxiq->hdr.first_grp = 0; |
| 231 | rxiq->hdr.grp_num = 1; |
| 232 | rxiq->hdr.all_data_valid = 1; |
| 233 | |
| 234 | memcpy(&rxiq->group[0], eeprom_rxiq, 4 * grplen); |
| 235 | memcpy(&rxiq->group[4], eeprom_rxiq + 6 * grplen, grplen); |
| 236 | |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | int iwm_send_calib_results(struct iwm_priv *iwm) |
| 241 | { |
| 242 | int i, ret = 0; |
| 243 | |
| 244 | for (i = PHY_CALIBRATE_OPCODES_NUM; i < CALIBRATION_CMD_NUM; i++) { |
| 245 | if (test_bit(i - PHY_CALIBRATE_OPCODES_NUM, |
| 246 | &iwm->calib_done_map)) { |
| 247 | IWM_DBG_CMD(iwm, DBG, |
| 248 | "Send calibration %d result\n", i); |
| 249 | ret |= iwm_send_lmac_ptrough_cmd(iwm, |
| 250 | REPLY_PHY_CALIBRATION_CMD, |
| 251 | iwm->calib_res[i].buf, |
| 252 | iwm->calib_res[i].size, 0); |
| 253 | |
| 254 | kfree(iwm->calib_res[i].buf); |
| 255 | iwm->calib_res[i].buf = NULL; |
| 256 | iwm->calib_res[i].size = 0; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | return ret; |
| 261 | } |
| 262 | |
| 263 | int iwm_send_umac_reset(struct iwm_priv *iwm, __le32 reset_flags, bool resp) |
| 264 | { |
| 265 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 266 | struct iwm_umac_cmd umac_cmd; |
| 267 | struct iwm_umac_cmd_reset reset; |
| 268 | |
| 269 | reset.flags = reset_flags; |
| 270 | |
| 271 | umac_cmd.id = UMAC_CMD_OPCODE_RESET; |
| 272 | umac_cmd.resp = resp; |
| 273 | |
| 274 | return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &reset, |
| 275 | sizeof(struct iwm_umac_cmd_reset)); |
| 276 | } |
| 277 | |
| 278 | int iwm_umac_set_config_fix(struct iwm_priv *iwm, u16 tbl, u16 key, u32 value) |
| 279 | { |
| 280 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 281 | struct iwm_umac_cmd umac_cmd; |
| 282 | struct iwm_umac_cmd_set_param_fix param; |
| 283 | |
| 284 | if ((tbl != UMAC_PARAM_TBL_CFG_FIX) && |
| 285 | (tbl != UMAC_PARAM_TBL_FA_CFG_FIX)) |
| 286 | return -EINVAL; |
| 287 | |
| 288 | umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_FIX; |
| 289 | umac_cmd.resp = 0; |
| 290 | |
| 291 | param.tbl = cpu_to_le16(tbl); |
| 292 | param.key = cpu_to_le16(key); |
| 293 | param.value = cpu_to_le32(value); |
| 294 | |
| 295 | return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ¶m, |
| 296 | sizeof(struct iwm_umac_cmd_set_param_fix)); |
| 297 | } |
| 298 | |
| 299 | int iwm_umac_set_config_var(struct iwm_priv *iwm, u16 key, |
| 300 | void *payload, u16 payload_size) |
| 301 | { |
| 302 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 303 | struct iwm_umac_cmd umac_cmd; |
| 304 | struct iwm_umac_cmd_set_param_var *param_hdr; |
| 305 | u8 *param; |
| 306 | int ret; |
| 307 | |
| 308 | param = kzalloc(payload_size + |
| 309 | sizeof(struct iwm_umac_cmd_set_param_var), GFP_KERNEL); |
| 310 | if (!param) { |
| 311 | IWM_ERR(iwm, "Couldn't allocate param\n"); |
| 312 | return -ENOMEM; |
| 313 | } |
| 314 | |
| 315 | param_hdr = (struct iwm_umac_cmd_set_param_var *)param; |
| 316 | |
| 317 | umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_VAR; |
| 318 | umac_cmd.resp = 0; |
| 319 | |
| 320 | param_hdr->tbl = cpu_to_le16(UMAC_PARAM_TBL_CFG_VAR); |
| 321 | param_hdr->key = cpu_to_le16(key); |
| 322 | param_hdr->len = cpu_to_le16(payload_size); |
| 323 | memcpy(param + sizeof(struct iwm_umac_cmd_set_param_var), |
| 324 | payload, payload_size); |
| 325 | |
| 326 | ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, param, |
| 327 | sizeof(struct iwm_umac_cmd_set_param_var) + |
| 328 | payload_size); |
| 329 | kfree(param); |
| 330 | |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | int iwm_send_umac_config(struct iwm_priv *iwm, |
| 335 | __le32 reset_flags) |
| 336 | { |
| 337 | int ret; |
| 338 | |
| 339 | /* Use UMAC default values */ |
| 340 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 341 | CFG_POWER_INDEX, iwm->conf.power_index); |
| 342 | if (ret < 0) |
| 343 | return ret; |
| 344 | |
| 345 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX, |
| 346 | CFG_FRAG_THRESHOLD, |
| 347 | iwm->conf.frag_threshold); |
| 348 | if (ret < 0) |
| 349 | return ret; |
| 350 | |
| 351 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 352 | CFG_RTS_THRESHOLD, |
| 353 | iwm->conf.rts_threshold); |
| 354 | if (ret < 0) |
| 355 | return ret; |
| 356 | |
| 357 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 358 | CFG_CTS_TO_SELF, iwm->conf.cts_to_self); |
| 359 | if (ret < 0) |
| 360 | return ret; |
| 361 | |
| 362 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 363 | CFG_COEX_MODE, iwm->conf.coexist_mode); |
| 364 | if (ret < 0) |
| 365 | return ret; |
| 366 | |
| 367 | /* |
| 368 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 369 | CFG_ASSOCIATION_TIMEOUT, |
| 370 | iwm->conf.assoc_timeout); |
| 371 | if (ret < 0) |
| 372 | return ret; |
| 373 | |
| 374 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 375 | CFG_ROAM_TIMEOUT, |
| 376 | iwm->conf.roam_timeout); |
| 377 | if (ret < 0) |
| 378 | return ret; |
| 379 | |
| 380 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 381 | CFG_WIRELESS_MODE, |
| 382 | WIRELESS_MODE_11A | WIRELESS_MODE_11G); |
| 383 | if (ret < 0) |
| 384 | return ret; |
| 385 | */ |
| 386 | |
| 387 | ret = iwm_umac_set_config_var(iwm, CFG_NET_ADDR, |
| 388 | iwm_to_ndev(iwm)->dev_addr, ETH_ALEN); |
| 389 | if (ret < 0) |
| 390 | return ret; |
| 391 | |
| 392 | /* UMAC PM static configurations */ |
| 393 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 394 | CFG_PM_LEGACY_RX_TIMEOUT, 0x12C); |
| 395 | if (ret < 0) |
| 396 | return ret; |
| 397 | |
| 398 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 399 | CFG_PM_LEGACY_TX_TIMEOUT, 0x15E); |
| 400 | if (ret < 0) |
| 401 | return ret; |
| 402 | |
| 403 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 404 | CFG_PM_CTRL_FLAGS, 0x30001); |
| 405 | if (ret < 0) |
| 406 | return ret; |
| 407 | |
| 408 | ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, |
| 409 | CFG_PM_KEEP_ALIVE_IN_BEACONS, 0x80); |
| 410 | if (ret < 0) |
| 411 | return ret; |
| 412 | |
| 413 | /* reset UMAC */ |
| 414 | ret = iwm_send_umac_reset(iwm, reset_flags, 1); |
| 415 | if (ret < 0) |
| 416 | return ret; |
| 417 | |
| 418 | ret = iwm_notif_handle(iwm, UMAC_CMD_OPCODE_RESET, IWM_SRC_UMAC, |
| 419 | WAIT_NOTIF_TIMEOUT); |
| 420 | if (ret) { |
| 421 | IWM_ERR(iwm, "Wait for UMAC RESET timeout\n"); |
| 422 | return ret; |
| 423 | } |
| 424 | |
| 425 | return ret; |
| 426 | } |
| 427 | |
| 428 | int iwm_send_packet(struct iwm_priv *iwm, struct sk_buff *skb, int pool_id) |
| 429 | { |
| 430 | struct iwm_udma_wifi_cmd udma_cmd; |
| 431 | struct iwm_umac_cmd umac_cmd; |
| 432 | struct iwm_tx_info *tx_info = skb_to_tx_info(skb); |
| 433 | |
| 434 | udma_cmd.eop = 1; /* always set eop for non-concatenated Tx */ |
| 435 | udma_cmd.credit_group = pool_id; |
| 436 | udma_cmd.ra_tid = tx_info->sta << 4 | tx_info->tid; |
| 437 | udma_cmd.lmac_offset = 0; |
| 438 | |
| 439 | umac_cmd.id = REPLY_TX; |
| 440 | umac_cmd.color = tx_info->color; |
| 441 | umac_cmd.resp = 0; |
| 442 | |
| 443 | return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, |
| 444 | skb->data, skb->len); |
| 445 | } |
| 446 | |
| 447 | static int iwm_target_read(struct iwm_priv *iwm, __le32 address, |
| 448 | u8 *response, u32 resp_size) |
| 449 | { |
| 450 | struct iwm_udma_nonwifi_cmd target_cmd; |
| 451 | struct iwm_nonwifi_cmd *cmd; |
| 452 | u16 seq_num; |
| 453 | int ret = 0; |
| 454 | |
| 455 | target_cmd.opcode = UMAC_HDI_OUT_OPCODE_READ; |
| 456 | target_cmd.addr = address; |
| 457 | target_cmd.op1_sz = cpu_to_le32(resp_size); |
| 458 | target_cmd.op2 = 0; |
| 459 | target_cmd.handle_by_hw = 0; |
| 460 | target_cmd.resp = 1; |
| 461 | target_cmd.eop = 1; |
| 462 | |
| 463 | ret = iwm_hal_send_target_cmd(iwm, &target_cmd, NULL); |
| 464 | if (ret < 0) |
| 465 | IWM_ERR(iwm, "Couldn't send READ command\n"); |
| 466 | |
| 467 | /* When succeding, the send_target routine returns the seq number */ |
| 468 | seq_num = ret; |
| 469 | |
| 470 | ret = wait_event_interruptible_timeout(iwm->nonwifi_queue, |
| 471 | (cmd = iwm_get_pending_nonwifi_cmd(iwm, seq_num, |
| 472 | UMAC_HDI_OUT_OPCODE_READ)) != NULL, |
| 473 | 2 * HZ); |
| 474 | |
| 475 | if (!ret) { |
| 476 | IWM_ERR(iwm, "Didn't receive a target READ answer\n"); |
| 477 | return ret; |
| 478 | } |
| 479 | |
| 480 | memcpy(response, cmd->buf.hdr + sizeof(struct iwm_udma_in_hdr), |
| 481 | resp_size); |
| 482 | |
| 483 | kfree(cmd); |
| 484 | |
| 485 | return ret; |
| 486 | } |
| 487 | |
| 488 | int iwm_read_mac(struct iwm_priv *iwm, u8 *mac) |
| 489 | { |
| 490 | int ret; |
| 491 | u8 mac_align[ALIGN(ETH_ALEN, 8)]; |
| 492 | |
| 493 | ret = iwm_target_read(iwm, cpu_to_le32(WICO_MAC_ADDRESS_ADDR), |
| 494 | mac_align, sizeof(mac_align)); |
| 495 | if (ret < 0) |
| 496 | return ret; |
| 497 | |
| 498 | if (is_valid_ether_addr(mac_align)) |
| 499 | memcpy(mac, mac_align, ETH_ALEN); |
| 500 | else { |
| 501 | IWM_ERR(iwm, "Invalid EEPROM MAC\n"); |
| 502 | memcpy(mac, iwm->conf.mac_addr, ETH_ALEN); |
| 503 | get_random_bytes(&mac[3], 3); |
| 504 | } |
| 505 | |
| 506 | return 0; |
| 507 | } |
| 508 | |
| 509 | int iwm_set_tx_key(struct iwm_priv *iwm, u8 key_idx) |
| 510 | { |
| 511 | struct iwm_umac_tx_key_id tx_key_id; |
| 512 | |
| 513 | if (!iwm->default_key || !iwm->default_key->in_use) |
| 514 | return -EINVAL; |
| 515 | |
| 516 | tx_key_id.hdr.oid = UMAC_WIFI_IF_CMD_GLOBAL_TX_KEY_ID; |
| 517 | tx_key_id.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_tx_key_id) - |
| 518 | sizeof(struct iwm_umac_wifi_if)); |
| 519 | |
| 520 | tx_key_id.key_idx = key_idx; |
| 521 | |
| 522 | return iwm_send_wifi_if_cmd(iwm, &tx_key_id, sizeof(tx_key_id), 1); |
| 523 | } |
| 524 | |
| 525 | static int iwm_check_profile(struct iwm_priv *iwm) |
| 526 | { |
| 527 | if (!iwm->umac_profile_active) |
| 528 | return -EAGAIN; |
| 529 | |
| 530 | if (iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 && |
| 531 | iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104 && |
| 532 | iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_TKIP && |
| 533 | iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_CCMP) { |
| 534 | IWM_ERR(iwm, "Wrong unicast cipher: 0x%x\n", |
| 535 | iwm->umac_profile->sec.ucast_cipher); |
| 536 | return -EAGAIN; |
| 537 | } |
| 538 | |
| 539 | if (iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_40 && |
| 540 | iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_104 && |
| 541 | iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_TKIP && |
| 542 | iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_CCMP) { |
| 543 | IWM_ERR(iwm, "Wrong multicast cipher: 0x%x\n", |
| 544 | iwm->umac_profile->sec.mcast_cipher); |
| 545 | return -EAGAIN; |
| 546 | } |
| 547 | |
| 548 | if ((iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_40 || |
| 549 | iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_104) && |
| 550 | (iwm->umac_profile->sec.ucast_cipher != |
| 551 | iwm->umac_profile->sec.mcast_cipher)) { |
| 552 | IWM_ERR(iwm, "Unicast and multicast ciphers differ for WEP\n"); |
| 553 | } |
| 554 | |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | int iwm_set_key(struct iwm_priv *iwm, bool remove, bool set_tx_key, |
| 559 | struct iwm_key *key) |
| 560 | { |
| 561 | int ret; |
| 562 | u8 cmd[64], *sta_addr, *key_data, key_len; |
| 563 | s8 key_idx; |
| 564 | u16 cmd_size = 0; |
| 565 | struct iwm_umac_key_hdr *key_hdr = &key->hdr; |
| 566 | struct iwm_umac_key_wep40 *wep40 = (struct iwm_umac_key_wep40 *)cmd; |
| 567 | struct iwm_umac_key_wep104 *wep104 = (struct iwm_umac_key_wep104 *)cmd; |
| 568 | struct iwm_umac_key_tkip *tkip = (struct iwm_umac_key_tkip *)cmd; |
| 569 | struct iwm_umac_key_ccmp *ccmp = (struct iwm_umac_key_ccmp *)cmd; |
| 570 | |
| 571 | if (set_tx_key) |
| 572 | iwm->default_key = key; |
| 573 | |
| 574 | /* |
| 575 | * We check if our current profile is valid. |
| 576 | * If not, we dont push the key, we just cache them, |
| 577 | * so that with the next siwsessid call, the keys |
| 578 | * will be actually pushed. |
| 579 | */ |
| 580 | if (!remove) { |
| 581 | ret = iwm_check_profile(iwm); |
| 582 | if (ret < 0) |
| 583 | return ret; |
| 584 | } |
| 585 | |
| 586 | sta_addr = key->hdr.mac; |
| 587 | key_data = key->key; |
| 588 | key_len = key->key_len; |
| 589 | key_idx = key->hdr.key_idx; |
| 590 | |
| 591 | if (!remove) { |
| 592 | IWM_DBG_WEXT(iwm, DBG, "key_idx:%d set tx key:%d\n", |
| 593 | key_idx, set_tx_key); |
| 594 | IWM_DBG_WEXT(iwm, DBG, "key_len:%d\n", key_len); |
| 595 | IWM_DBG_WEXT(iwm, DBG, "MAC:%pM, idx:%d, multicast:%d\n", |
| 596 | key_hdr->mac, key_hdr->key_idx, key_hdr->multicast); |
| 597 | |
| 598 | IWM_DBG_WEXT(iwm, DBG, "profile: mcast:0x%x, ucast:0x%x\n", |
| 599 | iwm->umac_profile->sec.mcast_cipher, |
| 600 | iwm->umac_profile->sec.ucast_cipher); |
| 601 | IWM_DBG_WEXT(iwm, DBG, "profile: auth_type:0x%x, flags:0x%x\n", |
| 602 | iwm->umac_profile->sec.auth_type, |
| 603 | iwm->umac_profile->sec.flags); |
| 604 | |
| 605 | switch (key->alg) { |
| 606 | case UMAC_CIPHER_TYPE_WEP_40: |
| 607 | wep40->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP40_KEY; |
| 608 | wep40->hdr.buf_size = |
| 609 | cpu_to_le16(sizeof(struct iwm_umac_key_wep40) - |
| 610 | sizeof(struct iwm_umac_wifi_if)); |
| 611 | |
| 612 | memcpy(&wep40->key_hdr, key_hdr, |
| 613 | sizeof(struct iwm_umac_key_hdr)); |
| 614 | memcpy(wep40->key, key_data, key_len); |
| 615 | wep40->static_key = 1; |
| 616 | |
| 617 | cmd_size = sizeof(struct iwm_umac_key_wep40); |
| 618 | break; |
| 619 | |
| 620 | case UMAC_CIPHER_TYPE_WEP_104: |
| 621 | wep104->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP104_KEY; |
| 622 | wep104->hdr.buf_size = |
| 623 | cpu_to_le16(sizeof(struct iwm_umac_key_wep104) - |
| 624 | sizeof(struct iwm_umac_wifi_if)); |
| 625 | |
| 626 | memcpy(&wep104->key_hdr, key_hdr, |
| 627 | sizeof(struct iwm_umac_key_hdr)); |
| 628 | memcpy(wep104->key, key_data, key_len); |
| 629 | wep104->static_key = 1; |
| 630 | |
| 631 | cmd_size = sizeof(struct iwm_umac_key_wep104); |
| 632 | break; |
| 633 | |
| 634 | case UMAC_CIPHER_TYPE_CCMP: |
| 635 | key_hdr->key_idx++; |
| 636 | ccmp->hdr.oid = UMAC_WIFI_IF_CMD_ADD_CCMP_KEY; |
| 637 | ccmp->hdr.buf_size = |
| 638 | cpu_to_le16(sizeof(struct iwm_umac_key_ccmp) - |
| 639 | sizeof(struct iwm_umac_wifi_if)); |
| 640 | |
| 641 | memcpy(&ccmp->key_hdr, key_hdr, |
| 642 | sizeof(struct iwm_umac_key_hdr)); |
| 643 | |
| 644 | memcpy(ccmp->key, key_data, key_len); |
| 645 | |
| 646 | if (key->flags & IW_ENCODE_EXT_RX_SEQ_VALID) |
| 647 | memcpy(ccmp->iv_count, key->rx_seq, 6); |
| 648 | |
| 649 | cmd_size = sizeof(struct iwm_umac_key_ccmp); |
| 650 | break; |
| 651 | |
| 652 | case UMAC_CIPHER_TYPE_TKIP: |
| 653 | key_hdr->key_idx++; |
| 654 | tkip->hdr.oid = UMAC_WIFI_IF_CMD_ADD_TKIP_KEY; |
| 655 | tkip->hdr.buf_size = |
| 656 | cpu_to_le16(sizeof(struct iwm_umac_key_tkip) - |
| 657 | sizeof(struct iwm_umac_wifi_if)); |
| 658 | |
| 659 | memcpy(&tkip->key_hdr, key_hdr, |
| 660 | sizeof(struct iwm_umac_key_hdr)); |
| 661 | |
| 662 | memcpy(tkip->tkip_key, key_data, IWM_TKIP_KEY_SIZE); |
| 663 | memcpy(tkip->mic_tx_key, key_data + IWM_TKIP_KEY_SIZE, |
| 664 | IWM_TKIP_MIC_SIZE); |
| 665 | memcpy(tkip->mic_rx_key, |
| 666 | key_data + IWM_TKIP_KEY_SIZE + IWM_TKIP_MIC_SIZE, |
| 667 | IWM_TKIP_MIC_SIZE); |
| 668 | |
| 669 | if (key->flags & IW_ENCODE_EXT_RX_SEQ_VALID) |
| 670 | memcpy(ccmp->iv_count, key->rx_seq, 6); |
| 671 | |
| 672 | cmd_size = sizeof(struct iwm_umac_key_tkip); |
| 673 | break; |
| 674 | |
| 675 | default: |
| 676 | return -ENOTSUPP; |
| 677 | } |
| 678 | |
| 679 | if ((key->alg == UMAC_CIPHER_TYPE_CCMP) || |
| 680 | (key->alg == UMAC_CIPHER_TYPE_TKIP)) |
| 681 | /* |
| 682 | * UGLY_UGLY_UGLY |
| 683 | * Copied HACK from the MWG driver. |
| 684 | * Without it, the key is set before the second |
| 685 | * EAPOL frame is sent, and the latter is thus |
| 686 | * encrypted. |
| 687 | */ |
| 688 | schedule_timeout_interruptible(usecs_to_jiffies(300)); |
| 689 | |
| 690 | ret = iwm_send_wifi_if_cmd(iwm, cmd, cmd_size, 1); |
| 691 | if (ret < 0) |
| 692 | goto err; |
| 693 | |
| 694 | /* |
| 695 | * We need a default key only if it is set and |
| 696 | * if we're doing WEP. |
| 697 | */ |
| 698 | if (iwm->default_key == key && |
| 699 | ((key->alg == UMAC_CIPHER_TYPE_WEP_40) || |
| 700 | (key->alg == UMAC_CIPHER_TYPE_WEP_104))) { |
| 701 | ret = iwm_set_tx_key(iwm, key_idx); |
| 702 | if (ret < 0) |
| 703 | goto err; |
| 704 | } |
| 705 | } else { |
| 706 | struct iwm_umac_key_remove key_remove; |
| 707 | |
| 708 | key_remove.hdr.oid = UMAC_WIFI_IF_CMD_REMOVE_KEY; |
| 709 | key_remove.hdr.buf_size = |
| 710 | cpu_to_le16(sizeof(struct iwm_umac_key_remove) - |
| 711 | sizeof(struct iwm_umac_wifi_if)); |
| 712 | memcpy(&key_remove.key_hdr, key_hdr, |
| 713 | sizeof(struct iwm_umac_key_hdr)); |
| 714 | |
| 715 | ret = iwm_send_wifi_if_cmd(iwm, &key_remove, |
| 716 | sizeof(struct iwm_umac_key_remove), |
| 717 | 1); |
| 718 | if (ret < 0) |
| 719 | return ret; |
| 720 | |
| 721 | iwm->keys[key_idx].in_use = 0; |
| 722 | } |
| 723 | |
| 724 | return 0; |
| 725 | |
| 726 | err: |
| 727 | kfree(key); |
| 728 | return ret; |
| 729 | } |
| 730 | |
| 731 | |
| 732 | int iwm_send_mlme_profile(struct iwm_priv *iwm) |
| 733 | { |
| 734 | int ret, i; |
| 735 | struct iwm_umac_profile profile; |
| 736 | |
| 737 | memcpy(&profile, iwm->umac_profile, sizeof(profile)); |
| 738 | |
| 739 | profile.hdr.oid = UMAC_WIFI_IF_CMD_SET_PROFILE; |
| 740 | profile.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_profile) - |
| 741 | sizeof(struct iwm_umac_wifi_if)); |
| 742 | |
| 743 | ret = iwm_send_wifi_if_cmd(iwm, &profile, sizeof(profile), 1); |
| 744 | if (ret < 0) { |
| 745 | IWM_ERR(iwm, "Send profile command failed\n"); |
| 746 | return ret; |
| 747 | } |
| 748 | |
| 749 | /* Wait for the profile to be active */ |
| 750 | ret = wait_event_interruptible_timeout(iwm->mlme_queue, |
| 751 | iwm->umac_profile_active == 1, |
| 752 | 3 * HZ); |
| 753 | if (!ret) |
| 754 | return -EBUSY; |
| 755 | |
| 756 | |
| 757 | for (i = 0; i < IWM_NUM_KEYS; i++) |
| 758 | if (iwm->keys[i].in_use) { |
| 759 | int default_key = 0; |
| 760 | struct iwm_key *key = &iwm->keys[i]; |
| 761 | |
| 762 | if (key == iwm->default_key) |
| 763 | default_key = 1; |
| 764 | |
| 765 | /* Wait for the profile before sending the keys */ |
| 766 | wait_event_interruptible_timeout(iwm->mlme_queue, |
| 767 | (test_bit(IWM_STATUS_ASSOCIATING, &iwm->status) || |
| 768 | test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)), |
| 769 | 3 * HZ); |
| 770 | |
| 771 | ret = iwm_set_key(iwm, 0, default_key, key); |
| 772 | if (ret < 0) |
| 773 | return ret; |
| 774 | } |
| 775 | |
| 776 | return 0; |
| 777 | } |
| 778 | |
| 779 | int iwm_invalidate_mlme_profile(struct iwm_priv *iwm) |
| 780 | { |
| 781 | int ret; |
| 782 | struct iwm_umac_invalidate_profile invalid; |
| 783 | |
| 784 | invalid.hdr.oid = UMAC_WIFI_IF_CMD_INVALIDATE_PROFILE; |
| 785 | invalid.hdr.buf_size = |
| 786 | cpu_to_le16(sizeof(struct iwm_umac_invalidate_profile) - |
| 787 | sizeof(struct iwm_umac_wifi_if)); |
| 788 | |
| 789 | invalid.reason = WLAN_REASON_UNSPECIFIED; |
| 790 | |
| 791 | ret = iwm_send_wifi_if_cmd(iwm, &invalid, sizeof(invalid), 1); |
| 792 | if (ret < 0) |
| 793 | return ret; |
| 794 | |
| 795 | ret = wait_event_interruptible_timeout(iwm->mlme_queue, |
| 796 | (iwm->umac_profile_active == 0), |
| 797 | 2 * HZ); |
| 798 | if (!ret) |
| 799 | return -EBUSY; |
| 800 | |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | int iwm_send_umac_stats_req(struct iwm_priv *iwm, u32 flags) |
| 805 | { |
| 806 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 807 | struct iwm_umac_cmd umac_cmd; |
| 808 | struct iwm_umac_cmd_stats_req stats_req; |
| 809 | |
| 810 | stats_req.flags = cpu_to_le32(flags); |
| 811 | |
| 812 | umac_cmd.id = UMAC_CMD_OPCODE_STATISTIC_REQUEST; |
| 813 | umac_cmd.resp = 0; |
| 814 | |
| 815 | return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stats_req, |
| 816 | sizeof(struct iwm_umac_cmd_stats_req)); |
| 817 | } |
| 818 | |
| 819 | int iwm_send_umac_channel_list(struct iwm_priv *iwm) |
| 820 | { |
| 821 | struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; |
| 822 | struct iwm_umac_cmd umac_cmd; |
| 823 | struct iwm_umac_cmd_get_channel_list *ch_list; |
| 824 | int size = sizeof(struct iwm_umac_cmd_get_channel_list) + |
| 825 | sizeof(struct iwm_umac_channel_info) * 4; |
| 826 | int ret; |
| 827 | |
| 828 | ch_list = kzalloc(size, GFP_KERNEL); |
| 829 | if (!ch_list) { |
| 830 | IWM_ERR(iwm, "Couldn't allocate channel list cmd\n"); |
| 831 | return -ENOMEM; |
| 832 | } |
| 833 | |
| 834 | ch_list->ch[0].band = UMAC_BAND_2GHZ; |
| 835 | ch_list->ch[0].type = UMAC_CHANNEL_WIDTH_20MHZ; |
| 836 | ch_list->ch[0].flags = UMAC_CHANNEL_FLAG_VALID; |
| 837 | |
| 838 | ch_list->ch[1].band = UMAC_BAND_5GHZ; |
| 839 | ch_list->ch[1].type = UMAC_CHANNEL_WIDTH_20MHZ; |
| 840 | ch_list->ch[1].flags = UMAC_CHANNEL_FLAG_VALID; |
| 841 | |
| 842 | ch_list->ch[2].band = UMAC_BAND_2GHZ; |
| 843 | ch_list->ch[2].type = UMAC_CHANNEL_WIDTH_20MHZ; |
| 844 | ch_list->ch[2].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS; |
| 845 | |
| 846 | ch_list->ch[3].band = UMAC_BAND_5GHZ; |
| 847 | ch_list->ch[3].type = UMAC_CHANNEL_WIDTH_20MHZ; |
| 848 | ch_list->ch[3].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS; |
| 849 | |
| 850 | ch_list->count = cpu_to_le16(4); |
| 851 | |
| 852 | umac_cmd.id = UMAC_CMD_OPCODE_GET_CHAN_INFO_LIST; |
| 853 | umac_cmd.resp = 1; |
| 854 | |
| 855 | ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ch_list, size); |
| 856 | |
| 857 | kfree(ch_list); |
| 858 | |
| 859 | return ret; |
| 860 | } |
| 861 | |
| 862 | int iwm_scan_ssids(struct iwm_priv *iwm, struct cfg80211_ssid *ssids, |
| 863 | int ssid_num) |
| 864 | { |
| 865 | struct iwm_umac_cmd_scan_request req; |
| 866 | int i, ret; |
| 867 | |
| 868 | memset(&req, 0, sizeof(struct iwm_umac_cmd_scan_request)); |
| 869 | |
| 870 | req.hdr.oid = UMAC_WIFI_IF_CMD_SCAN_REQUEST; |
| 871 | req.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_cmd_scan_request) |
| 872 | - sizeof(struct iwm_umac_wifi_if)); |
| 873 | req.type = UMAC_WIFI_IF_SCAN_TYPE_USER; |
| 874 | req.timeout = 2; |
| 875 | req.seq_num = iwm->scan_id; |
| 876 | req.ssid_num = min(ssid_num, UMAC_WIFI_IF_PROBE_OPTION_MAX); |
| 877 | |
| 878 | for (i = 0; i < req.ssid_num; i++) { |
| 879 | memcpy(req.ssids[i].ssid, ssids[i].ssid, ssids[i].ssid_len); |
| 880 | req.ssids[i].ssid_len = ssids[i].ssid_len; |
| 881 | } |
| 882 | |
| 883 | ret = iwm_send_wifi_if_cmd(iwm, &req, sizeof(req), 0); |
| 884 | if (ret < 0) { |
| 885 | IWM_ERR(iwm, "Couldn't send scan request\n"); |
| 886 | return ret; |
| 887 | } |
| 888 | |
| 889 | iwm->scan_id = iwm->scan_id++ % IWM_SCAN_ID_MAX; |
| 890 | |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | int iwm_scan_one_ssid(struct iwm_priv *iwm, u8 *ssid, int ssid_len) |
| 895 | { |
| 896 | struct cfg80211_ssid one_ssid; |
| 897 | |
| 898 | if (test_and_set_bit(IWM_STATUS_SCANNING, &iwm->status)) |
| 899 | return 0; |
| 900 | |
| 901 | one_ssid.ssid_len = min(ssid_len, IEEE80211_MAX_SSID_LEN); |
| 902 | memcpy(&one_ssid.ssid, ssid, one_ssid.ssid_len); |
| 903 | |
| 904 | return iwm_scan_ssids(iwm, &one_ssid, 1); |
| 905 | } |
| 906 | |
| 907 | int iwm_target_reset(struct iwm_priv *iwm) |
| 908 | { |
| 909 | struct iwm_udma_nonwifi_cmd target_cmd; |
| 910 | |
| 911 | target_cmd.opcode = UMAC_HDI_OUT_OPCODE_REBOOT; |
| 912 | target_cmd.addr = 0; |
| 913 | target_cmd.op1_sz = 0; |
| 914 | target_cmd.op2 = 0; |
| 915 | target_cmd.handle_by_hw = 0; |
| 916 | target_cmd.resp = 0; |
| 917 | target_cmd.eop = 1; |
| 918 | |
| 919 | return iwm_hal_send_target_cmd(iwm, &target_cmd, NULL); |
| 920 | } |