blob: 1279bc2922531915f4ff761cfce2066e084e2f8c [file] [log] [blame]
Christoph Hellwig71102302016-07-06 21:55:52 +09001/*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/err.h>
20#include <linux/string.h>
21#include <linux/jiffies.h>
22#include <linux/atomic.h>
23#include <linux/blk-mq.h>
24#include <linux/types.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/scatterlist.h>
28#include <linux/nvme.h>
29#include <linux/t10-pi.h>
30#include <asm/unaligned.h>
31
32#include <rdma/ib_verbs.h>
33#include <rdma/rdma_cm.h>
34#include <rdma/ib_cm.h>
35#include <linux/nvme-rdma.h>
36
37#include "nvme.h"
38#include "fabrics.h"
39
40
41#define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
42
43#define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
44
45#define NVME_RDMA_MAX_SEGMENTS 256
46
47#define NVME_RDMA_MAX_INLINE_SEGMENTS 1
48
49#define NVME_RDMA_MAX_PAGES_PER_MR 512
50
51#define NVME_RDMA_DEF_RECONNECT_DELAY 20
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_RDMA_NR_AEN_COMMANDS 1
58#define NVME_RDMA_AQ_BLKMQ_DEPTH \
59 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
60
61struct nvme_rdma_device {
62 struct ib_device *dev;
63 struct ib_pd *pd;
64 struct ib_mr *mr;
65 struct kref ref;
66 struct list_head entry;
67};
68
69struct nvme_rdma_qe {
70 struct ib_cqe cqe;
71 void *data;
72 u64 dma;
73};
74
75struct nvme_rdma_queue;
76struct nvme_rdma_request {
77 struct ib_mr *mr;
78 struct nvme_rdma_qe sqe;
79 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
80 u32 num_sge;
81 int nents;
82 bool inline_data;
83 bool need_inval;
84 struct ib_reg_wr reg_wr;
85 struct ib_cqe reg_cqe;
86 struct nvme_rdma_queue *queue;
87 struct sg_table sg_table;
88 struct scatterlist first_sgl[];
89};
90
91enum nvme_rdma_queue_flags {
92 NVME_RDMA_Q_CONNECTED = (1 << 0),
93};
94
95struct nvme_rdma_queue {
96 struct nvme_rdma_qe *rsp_ring;
97 u8 sig_count;
98 int queue_size;
99 size_t cmnd_capsule_len;
100 struct nvme_rdma_ctrl *ctrl;
101 struct nvme_rdma_device *device;
102 struct ib_cq *ib_cq;
103 struct ib_qp *qp;
104
105 unsigned long flags;
106 struct rdma_cm_id *cm_id;
107 int cm_error;
108 struct completion cm_done;
109};
110
111struct nvme_rdma_ctrl {
112 /* read and written in the hot path */
113 spinlock_t lock;
114
115 /* read only in the hot path */
116 struct nvme_rdma_queue *queues;
117 u32 queue_count;
118
119 /* other member variables */
Christoph Hellwig71102302016-07-06 21:55:52 +0900120 struct blk_mq_tag_set tag_set;
121 struct work_struct delete_work;
122 struct work_struct reset_work;
123 struct work_struct err_work;
124
125 struct nvme_rdma_qe async_event_sqe;
126
127 int reconnect_delay;
128 struct delayed_work reconnect_work;
129
130 struct list_head list;
131
132 struct blk_mq_tag_set admin_tag_set;
133 struct nvme_rdma_device *device;
134
135 u64 cap;
136 u32 max_fr_pages;
137
138 union {
139 struct sockaddr addr;
140 struct sockaddr_in addr_in;
141 };
142
143 struct nvme_ctrl ctrl;
144};
145
146static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
147{
148 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
149}
150
151static LIST_HEAD(device_list);
152static DEFINE_MUTEX(device_list_mutex);
153
154static LIST_HEAD(nvme_rdma_ctrl_list);
155static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
156
157static struct workqueue_struct *nvme_rdma_wq;
158
159/*
160 * Disabling this option makes small I/O goes faster, but is fundamentally
161 * unsafe. With it turned off we will have to register a global rkey that
162 * allows read and write access to all physical memory.
163 */
164static bool register_always = true;
165module_param(register_always, bool, 0444);
166MODULE_PARM_DESC(register_always,
167 "Use memory registration even for contiguous memory regions");
168
169static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
170 struct rdma_cm_event *event);
171static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
Christoph Hellwig71102302016-07-06 21:55:52 +0900172
173/* XXX: really should move to a generic header sooner or later.. */
174static inline void put_unaligned_le24(u32 val, u8 *p)
175{
176 *p++ = val;
177 *p++ = val >> 8;
178 *p++ = val >> 16;
179}
180
181static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
182{
183 return queue - queue->ctrl->queues;
184}
185
186static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
187{
188 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
189}
190
191static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
192 size_t capsule_size, enum dma_data_direction dir)
193{
194 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
195 kfree(qe->data);
196}
197
198static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
199 size_t capsule_size, enum dma_data_direction dir)
200{
201 qe->data = kzalloc(capsule_size, GFP_KERNEL);
202 if (!qe->data)
203 return -ENOMEM;
204
205 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
206 if (ib_dma_mapping_error(ibdev, qe->dma)) {
207 kfree(qe->data);
208 return -ENOMEM;
209 }
210
211 return 0;
212}
213
214static void nvme_rdma_free_ring(struct ib_device *ibdev,
215 struct nvme_rdma_qe *ring, size_t ib_queue_size,
216 size_t capsule_size, enum dma_data_direction dir)
217{
218 int i;
219
220 for (i = 0; i < ib_queue_size; i++)
221 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
222 kfree(ring);
223}
224
225static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
226 size_t ib_queue_size, size_t capsule_size,
227 enum dma_data_direction dir)
228{
229 struct nvme_rdma_qe *ring;
230 int i;
231
232 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
233 if (!ring)
234 return NULL;
235
236 for (i = 0; i < ib_queue_size; i++) {
237 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
238 goto out_free_ring;
239 }
240
241 return ring;
242
243out_free_ring:
244 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
245 return NULL;
246}
247
248static void nvme_rdma_qp_event(struct ib_event *event, void *context)
249{
250 pr_debug("QP event %d\n", event->event);
251}
252
253static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
254{
255 wait_for_completion_interruptible_timeout(&queue->cm_done,
256 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
257 return queue->cm_error;
258}
259
260static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261{
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
264 int ret;
265
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
268 /* +1 for drain */
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 /* +1 for drain */
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278
279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281 queue->qp = queue->cm_id->qp;
282 return ret;
283}
284
285static int nvme_rdma_reinit_request(void *data, struct request *rq)
286{
287 struct nvme_rdma_ctrl *ctrl = data;
288 struct nvme_rdma_device *dev = ctrl->device;
289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 int ret = 0;
291
292 if (!req->need_inval)
293 goto out;
294
295 ib_dereg_mr(req->mr);
296
297 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
298 ctrl->max_fr_pages);
299 if (IS_ERR(req->mr)) {
Christoph Hellwig71102302016-07-06 21:55:52 +0900300 ret = PTR_ERR(req->mr);
Wei Yongjun458a9632016-07-12 11:06:17 +0000301 req->mr = NULL;
Christoph Hellwig71102302016-07-06 21:55:52 +0900302 }
303
304 req->need_inval = false;
305
306out:
307 return ret;
308}
309
310static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
311 struct request *rq, unsigned int queue_idx)
312{
313 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
314 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
315 struct nvme_rdma_device *dev = queue->device;
316
317 if (req->mr)
318 ib_dereg_mr(req->mr);
319
320 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
321 DMA_TO_DEVICE);
322}
323
324static void nvme_rdma_exit_request(void *data, struct request *rq,
325 unsigned int hctx_idx, unsigned int rq_idx)
326{
327 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
328}
329
330static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
331 unsigned int hctx_idx, unsigned int rq_idx)
332{
333 return __nvme_rdma_exit_request(data, rq, 0);
334}
335
336static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
337 struct request *rq, unsigned int queue_idx)
338{
339 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
340 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
341 struct nvme_rdma_device *dev = queue->device;
342 struct ib_device *ibdev = dev->dev;
343 int ret;
344
345 BUG_ON(queue_idx >= ctrl->queue_count);
346
347 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
348 DMA_TO_DEVICE);
349 if (ret)
350 return ret;
351
352 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
353 ctrl->max_fr_pages);
354 if (IS_ERR(req->mr)) {
355 ret = PTR_ERR(req->mr);
356 goto out_free_qe;
357 }
358
359 req->queue = queue;
360
361 return 0;
362
363out_free_qe:
364 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
365 DMA_TO_DEVICE);
366 return -ENOMEM;
367}
368
369static int nvme_rdma_init_request(void *data, struct request *rq,
370 unsigned int hctx_idx, unsigned int rq_idx,
371 unsigned int numa_node)
372{
373 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
374}
375
376static int nvme_rdma_init_admin_request(void *data, struct request *rq,
377 unsigned int hctx_idx, unsigned int rq_idx,
378 unsigned int numa_node)
379{
380 return __nvme_rdma_init_request(data, rq, 0);
381}
382
383static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385{
386 struct nvme_rdma_ctrl *ctrl = data;
387 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
388
389 BUG_ON(hctx_idx >= ctrl->queue_count);
390
391 hctx->driver_data = queue;
392 return 0;
393}
394
395static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397{
398 struct nvme_rdma_ctrl *ctrl = data;
399 struct nvme_rdma_queue *queue = &ctrl->queues[0];
400
401 BUG_ON(hctx_idx != 0);
402
403 hctx->driver_data = queue;
404 return 0;
405}
406
407static void nvme_rdma_free_dev(struct kref *ref)
408{
409 struct nvme_rdma_device *ndev =
410 container_of(ref, struct nvme_rdma_device, ref);
411
412 mutex_lock(&device_list_mutex);
413 list_del(&ndev->entry);
414 mutex_unlock(&device_list_mutex);
415
416 if (!register_always)
417 ib_dereg_mr(ndev->mr);
418 ib_dealloc_pd(ndev->pd);
419
420 kfree(ndev);
421}
422
423static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
424{
425 kref_put(&dev->ref, nvme_rdma_free_dev);
426}
427
428static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
429{
430 return kref_get_unless_zero(&dev->ref);
431}
432
433static struct nvme_rdma_device *
434nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
435{
436 struct nvme_rdma_device *ndev;
437
438 mutex_lock(&device_list_mutex);
439 list_for_each_entry(ndev, &device_list, entry) {
440 if (ndev->dev->node_guid == cm_id->device->node_guid &&
441 nvme_rdma_dev_get(ndev))
442 goto out_unlock;
443 }
444
445 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
446 if (!ndev)
447 goto out_err;
448
449 ndev->dev = cm_id->device;
450 kref_init(&ndev->ref);
451
452 ndev->pd = ib_alloc_pd(ndev->dev);
453 if (IS_ERR(ndev->pd))
454 goto out_free_dev;
455
456 if (!register_always) {
457 ndev->mr = ib_get_dma_mr(ndev->pd,
458 IB_ACCESS_LOCAL_WRITE |
459 IB_ACCESS_REMOTE_READ |
460 IB_ACCESS_REMOTE_WRITE);
461 if (IS_ERR(ndev->mr))
462 goto out_free_pd;
463 }
464
465 if (!(ndev->dev->attrs.device_cap_flags &
466 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
467 dev_err(&ndev->dev->dev,
468 "Memory registrations not supported.\n");
469 goto out_free_mr;
470 }
471
472 list_add(&ndev->entry, &device_list);
473out_unlock:
474 mutex_unlock(&device_list_mutex);
475 return ndev;
476
477out_free_mr:
478 if (!register_always)
479 ib_dereg_mr(ndev->mr);
480out_free_pd:
481 ib_dealloc_pd(ndev->pd);
482out_free_dev:
483 kfree(ndev);
484out_err:
485 mutex_unlock(&device_list_mutex);
486 return NULL;
487}
488
489static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
490{
491 struct nvme_rdma_device *dev = queue->device;
492 struct ib_device *ibdev = dev->dev;
493
494 rdma_destroy_qp(queue->cm_id);
495 ib_free_cq(queue->ib_cq);
496
497 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
498 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
499
500 nvme_rdma_dev_put(dev);
501}
502
503static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
504 struct nvme_rdma_device *dev)
505{
506 struct ib_device *ibdev = dev->dev;
507 const int send_wr_factor = 3; /* MR, SEND, INV */
508 const int cq_factor = send_wr_factor + 1; /* + RECV */
509 int comp_vector, idx = nvme_rdma_queue_idx(queue);
510
511 int ret;
512
513 queue->device = dev;
514
515 /*
516 * The admin queue is barely used once the controller is live, so don't
517 * bother to spread it out.
518 */
519 if (idx == 0)
520 comp_vector = 0;
521 else
522 comp_vector = idx % ibdev->num_comp_vectors;
523
524
525 /* +1 for ib_stop_cq */
526 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
527 cq_factor * queue->queue_size + 1, comp_vector,
528 IB_POLL_SOFTIRQ);
529 if (IS_ERR(queue->ib_cq)) {
530 ret = PTR_ERR(queue->ib_cq);
531 goto out;
532 }
533
534 ret = nvme_rdma_create_qp(queue, send_wr_factor);
535 if (ret)
536 goto out_destroy_ib_cq;
537
538 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
539 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
540 if (!queue->rsp_ring) {
541 ret = -ENOMEM;
542 goto out_destroy_qp;
543 }
544
545 return 0;
546
547out_destroy_qp:
548 ib_destroy_qp(queue->qp);
549out_destroy_ib_cq:
550 ib_free_cq(queue->ib_cq);
551out:
552 return ret;
553}
554
555static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
556 int idx, size_t queue_size)
557{
558 struct nvme_rdma_queue *queue;
559 int ret;
560
561 queue = &ctrl->queues[idx];
562 queue->ctrl = ctrl;
563 init_completion(&queue->cm_done);
564
565 if (idx > 0)
566 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
567 else
568 queue->cmnd_capsule_len = sizeof(struct nvme_command);
569
570 queue->queue_size = queue_size;
571
572 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
573 RDMA_PS_TCP, IB_QPT_RC);
574 if (IS_ERR(queue->cm_id)) {
575 dev_info(ctrl->ctrl.device,
576 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
577 return PTR_ERR(queue->cm_id);
578 }
579
580 queue->cm_error = -ETIMEDOUT;
581 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
582 NVME_RDMA_CONNECT_TIMEOUT_MS);
583 if (ret) {
584 dev_info(ctrl->ctrl.device,
585 "rdma_resolve_addr failed (%d).\n", ret);
586 goto out_destroy_cm_id;
587 }
588
589 ret = nvme_rdma_wait_for_cm(queue);
590 if (ret) {
591 dev_info(ctrl->ctrl.device,
592 "rdma_resolve_addr wait failed (%d).\n", ret);
593 goto out_destroy_cm_id;
594 }
595
596 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
597
598 return 0;
599
600out_destroy_cm_id:
601 rdma_destroy_id(queue->cm_id);
602 return ret;
603}
604
605static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
606{
607 rdma_disconnect(queue->cm_id);
608 ib_drain_qp(queue->qp);
609}
610
611static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
612{
613 nvme_rdma_destroy_queue_ib(queue);
614 rdma_destroy_id(queue->cm_id);
615}
616
617static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
618{
619 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
620 return;
621 nvme_rdma_stop_queue(queue);
622 nvme_rdma_free_queue(queue);
623}
624
625static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
626{
627 int i;
628
629 for (i = 1; i < ctrl->queue_count; i++)
630 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
631}
632
633static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
634{
635 int i, ret = 0;
636
637 for (i = 1; i < ctrl->queue_count; i++) {
638 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
639 if (ret)
640 break;
641 }
642
643 return ret;
644}
645
646static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
647{
648 int i, ret;
649
650 for (i = 1; i < ctrl->queue_count; i++) {
651 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
652 if (ret) {
653 dev_info(ctrl->ctrl.device,
654 "failed to initialize i/o queue: %d\n", ret);
655 goto out_free_queues;
656 }
657 }
658
659 return 0;
660
661out_free_queues:
662 for (; i >= 1; i--)
663 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
664
665 return ret;
666}
667
668static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
669{
670 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
671 sizeof(struct nvme_command), DMA_TO_DEVICE);
672 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
673 blk_cleanup_queue(ctrl->ctrl.admin_q);
674 blk_mq_free_tag_set(&ctrl->admin_tag_set);
675 nvme_rdma_dev_put(ctrl->device);
676}
677
678static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
679{
680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681
682 if (list_empty(&ctrl->list))
683 goto free_ctrl;
684
685 mutex_lock(&nvme_rdma_ctrl_mutex);
686 list_del(&ctrl->list);
687 mutex_unlock(&nvme_rdma_ctrl_mutex);
688
689 if (ctrl->ctrl.tagset) {
690 blk_cleanup_queue(ctrl->ctrl.connect_q);
691 blk_mq_free_tag_set(&ctrl->tag_set);
692 nvme_rdma_dev_put(ctrl->device);
693 }
694 kfree(ctrl->queues);
695 nvmf_free_options(nctrl->opts);
696free_ctrl:
697 kfree(ctrl);
698}
699
700static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
701{
702 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
703 struct nvme_rdma_ctrl, reconnect_work);
704 bool changed;
705 int ret;
706
707 if (ctrl->queue_count > 1) {
708 nvme_rdma_free_io_queues(ctrl);
709
710 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
711 if (ret)
712 goto requeue;
713 }
714
715 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
716
717 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
718 if (ret)
719 goto requeue;
720
721 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
722 if (ret)
723 goto requeue;
724
725 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
726
727 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
728 if (ret)
729 goto stop_admin_q;
730
731 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
732 if (ret)
733 goto stop_admin_q;
734
735 nvme_start_keep_alive(&ctrl->ctrl);
736
737 if (ctrl->queue_count > 1) {
738 ret = nvme_rdma_init_io_queues(ctrl);
739 if (ret)
740 goto stop_admin_q;
741
742 ret = nvme_rdma_connect_io_queues(ctrl);
743 if (ret)
744 goto stop_admin_q;
745 }
746
747 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
748 WARN_ON_ONCE(!changed);
749
Sagi Grimberg5f372eb2016-07-31 18:43:15 +0300750 if (ctrl->queue_count > 1) {
Christoph Hellwig71102302016-07-06 21:55:52 +0900751 nvme_start_queues(&ctrl->ctrl);
Sagi Grimberg5f372eb2016-07-31 18:43:15 +0300752 nvme_queue_scan(&ctrl->ctrl);
753 }
Christoph Hellwig71102302016-07-06 21:55:52 +0900754
755 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
756
757 return;
758
759stop_admin_q:
760 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
761requeue:
762 /* Make sure we are not resetting/deleting */
763 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
764 dev_info(ctrl->ctrl.device,
765 "Failed reconnect attempt, requeueing...\n");
766 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
767 ctrl->reconnect_delay * HZ);
768 }
769}
770
771static void nvme_rdma_error_recovery_work(struct work_struct *work)
772{
773 struct nvme_rdma_ctrl *ctrl = container_of(work,
774 struct nvme_rdma_ctrl, err_work);
775
776 nvme_stop_keep_alive(&ctrl->ctrl);
777 if (ctrl->queue_count > 1)
778 nvme_stop_queues(&ctrl->ctrl);
779 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
780
781 /* We must take care of fastfail/requeue all our inflight requests */
782 if (ctrl->queue_count > 1)
783 blk_mq_tagset_busy_iter(&ctrl->tag_set,
784 nvme_cancel_request, &ctrl->ctrl);
785 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
786 nvme_cancel_request, &ctrl->ctrl);
787
788 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
789 ctrl->reconnect_delay);
790
791 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
792 ctrl->reconnect_delay * HZ);
793}
794
795static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
796{
797 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
798 return;
799
800 queue_work(nvme_rdma_wq, &ctrl->err_work);
801}
802
803static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
804 const char *op)
805{
806 struct nvme_rdma_queue *queue = cq->cq_context;
807 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
808
809 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
810 dev_info(ctrl->ctrl.device,
811 "%s for CQE 0x%p failed with status %s (%d)\n",
812 op, wc->wr_cqe,
813 ib_wc_status_msg(wc->status), wc->status);
814 nvme_rdma_error_recovery(ctrl);
815}
816
817static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
818{
819 if (unlikely(wc->status != IB_WC_SUCCESS))
820 nvme_rdma_wr_error(cq, wc, "MEMREG");
821}
822
823static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
824{
825 if (unlikely(wc->status != IB_WC_SUCCESS))
826 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
827}
828
829static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
830 struct nvme_rdma_request *req)
831{
832 struct ib_send_wr *bad_wr;
833 struct ib_send_wr wr = {
834 .opcode = IB_WR_LOCAL_INV,
835 .next = NULL,
836 .num_sge = 0,
837 .send_flags = 0,
838 .ex.invalidate_rkey = req->mr->rkey,
839 };
840
841 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
842 wr.wr_cqe = &req->reg_cqe;
843
844 return ib_post_send(queue->qp, &wr, &bad_wr);
845}
846
847static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
848 struct request *rq)
849{
850 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
851 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
852 struct nvme_rdma_device *dev = queue->device;
853 struct ib_device *ibdev = dev->dev;
854 int res;
855
856 if (!blk_rq_bytes(rq))
857 return;
858
859 if (req->need_inval) {
860 res = nvme_rdma_inv_rkey(queue, req);
861 if (res < 0) {
862 dev_err(ctrl->ctrl.device,
863 "Queueing INV WR for rkey %#x failed (%d)\n",
864 req->mr->rkey, res);
865 nvme_rdma_error_recovery(queue->ctrl);
866 }
867 }
868
869 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
870 req->nents, rq_data_dir(rq) ==
871 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
872
873 nvme_cleanup_cmd(rq);
874 sg_free_table_chained(&req->sg_table, true);
875}
876
877static int nvme_rdma_set_sg_null(struct nvme_command *c)
878{
879 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
880
881 sg->addr = 0;
882 put_unaligned_le24(0, sg->length);
883 put_unaligned_le32(0, sg->key);
884 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
885 return 0;
886}
887
888static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
889 struct nvme_rdma_request *req, struct nvme_command *c)
890{
891 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
892
893 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
894 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
895 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
896
897 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
898 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
899 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
900
901 req->inline_data = true;
902 req->num_sge++;
903 return 0;
904}
905
906static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
907 struct nvme_rdma_request *req, struct nvme_command *c)
908{
909 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
910
911 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
912 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
913 put_unaligned_le32(queue->device->mr->rkey, sg->key);
914 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
915 return 0;
916}
917
918static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
919 struct nvme_rdma_request *req, struct nvme_command *c,
920 int count)
921{
922 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
923 int nr;
924
925 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
926 if (nr < count) {
927 if (nr < 0)
928 return nr;
929 return -EINVAL;
930 }
931
932 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
933
934 req->reg_cqe.done = nvme_rdma_memreg_done;
935 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
936 req->reg_wr.wr.opcode = IB_WR_REG_MR;
937 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
938 req->reg_wr.wr.num_sge = 0;
939 req->reg_wr.mr = req->mr;
940 req->reg_wr.key = req->mr->rkey;
941 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
942 IB_ACCESS_REMOTE_READ |
943 IB_ACCESS_REMOTE_WRITE;
944
945 req->need_inval = true;
946
947 sg->addr = cpu_to_le64(req->mr->iova);
948 put_unaligned_le24(req->mr->length, sg->length);
949 put_unaligned_le32(req->mr->rkey, sg->key);
950 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
951 NVME_SGL_FMT_INVALIDATE;
952
953 return 0;
954}
955
956static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
957 struct request *rq, unsigned int map_len,
958 struct nvme_command *c)
959{
960 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
961 struct nvme_rdma_device *dev = queue->device;
962 struct ib_device *ibdev = dev->dev;
963 int nents, count;
964 int ret;
965
966 req->num_sge = 1;
967 req->inline_data = false;
968 req->need_inval = false;
969
970 c->common.flags |= NVME_CMD_SGL_METABUF;
971
972 if (!blk_rq_bytes(rq))
973 return nvme_rdma_set_sg_null(c);
974
975 req->sg_table.sgl = req->first_sgl;
976 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
977 req->sg_table.sgl);
978 if (ret)
979 return -ENOMEM;
980
981 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
982 BUG_ON(nents > rq->nr_phys_segments);
983 req->nents = nents;
984
985 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
986 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
987 if (unlikely(count <= 0)) {
988 sg_free_table_chained(&req->sg_table, true);
989 return -EIO;
990 }
991
992 if (count == 1) {
993 if (rq_data_dir(rq) == WRITE &&
994 map_len <= nvme_rdma_inline_data_size(queue) &&
995 nvme_rdma_queue_idx(queue))
996 return nvme_rdma_map_sg_inline(queue, req, c);
997
998 if (!register_always)
999 return nvme_rdma_map_sg_single(queue, req, c);
1000 }
1001
1002 return nvme_rdma_map_sg_fr(queue, req, c, count);
1003}
1004
1005static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1006{
1007 if (unlikely(wc->status != IB_WC_SUCCESS))
1008 nvme_rdma_wr_error(cq, wc, "SEND");
1009}
1010
1011static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1012 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1013 struct ib_send_wr *first, bool flush)
1014{
1015 struct ib_send_wr wr, *bad_wr;
1016 int ret;
1017
1018 sge->addr = qe->dma;
1019 sge->length = sizeof(struct nvme_command),
1020 sge->lkey = queue->device->pd->local_dma_lkey;
1021
1022 qe->cqe.done = nvme_rdma_send_done;
1023
1024 wr.next = NULL;
1025 wr.wr_cqe = &qe->cqe;
1026 wr.sg_list = sge;
1027 wr.num_sge = num_sge;
1028 wr.opcode = IB_WR_SEND;
1029 wr.send_flags = 0;
1030
1031 /*
1032 * Unsignalled send completions are another giant desaster in the
1033 * IB Verbs spec: If we don't regularly post signalled sends
1034 * the send queue will fill up and only a QP reset will rescue us.
1035 * Would have been way to obvious to handle this in hardware or
1036 * at least the RDMA stack..
1037 *
1038 * This messy and racy code sniplet is copy and pasted from the iSER
1039 * initiator, and the magic '32' comes from there as well.
1040 *
1041 * Always signal the flushes. The magic request used for the flush
1042 * sequencer is not allocated in our driver's tagset and it's
1043 * triggered to be freed by blk_cleanup_queue(). So we need to
1044 * always mark it as signaled to ensure that the "wr_cqe", which is
1045 * embeded in request's payload, is not freed when __ib_process_cq()
1046 * calls wr_cqe->done().
1047 */
1048 if ((++queue->sig_count % 32) == 0 || flush)
1049 wr.send_flags |= IB_SEND_SIGNALED;
1050
1051 if (first)
1052 first->next = &wr;
1053 else
1054 first = &wr;
1055
1056 ret = ib_post_send(queue->qp, first, &bad_wr);
1057 if (ret) {
1058 dev_err(queue->ctrl->ctrl.device,
1059 "%s failed with error code %d\n", __func__, ret);
1060 }
1061 return ret;
1062}
1063
1064static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1065 struct nvme_rdma_qe *qe)
1066{
1067 struct ib_recv_wr wr, *bad_wr;
1068 struct ib_sge list;
1069 int ret;
1070
1071 list.addr = qe->dma;
1072 list.length = sizeof(struct nvme_completion);
1073 list.lkey = queue->device->pd->local_dma_lkey;
1074
1075 qe->cqe.done = nvme_rdma_recv_done;
1076
1077 wr.next = NULL;
1078 wr.wr_cqe = &qe->cqe;
1079 wr.sg_list = &list;
1080 wr.num_sge = 1;
1081
1082 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1083 if (ret) {
1084 dev_err(queue->ctrl->ctrl.device,
1085 "%s failed with error code %d\n", __func__, ret);
1086 }
1087 return ret;
1088}
1089
1090static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1091{
1092 u32 queue_idx = nvme_rdma_queue_idx(queue);
1093
1094 if (queue_idx == 0)
1095 return queue->ctrl->admin_tag_set.tags[queue_idx];
1096 return queue->ctrl->tag_set.tags[queue_idx - 1];
1097}
1098
1099static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1100{
1101 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1102 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1103 struct ib_device *dev = queue->device->dev;
1104 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1105 struct nvme_command *cmd = sqe->data;
1106 struct ib_sge sge;
1107 int ret;
1108
1109 if (WARN_ON_ONCE(aer_idx != 0))
1110 return;
1111
1112 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1113
1114 memset(cmd, 0, sizeof(*cmd));
1115 cmd->common.opcode = nvme_admin_async_event;
1116 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1117 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1118 nvme_rdma_set_sg_null(cmd);
1119
1120 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1121 DMA_TO_DEVICE);
1122
1123 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1124 WARN_ON_ONCE(ret);
1125}
1126
1127static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1128 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1129{
1130 u16 status = le16_to_cpu(cqe->status);
1131 struct request *rq;
1132 struct nvme_rdma_request *req;
1133 int ret = 0;
1134
1135 status >>= 1;
1136
1137 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1138 if (!rq) {
1139 dev_err(queue->ctrl->ctrl.device,
1140 "tag 0x%x on QP %#x not found\n",
1141 cqe->command_id, queue->qp->qp_num);
1142 nvme_rdma_error_recovery(queue->ctrl);
1143 return ret;
1144 }
1145 req = blk_mq_rq_to_pdu(rq);
1146
1147 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1148 memcpy(rq->special, cqe, sizeof(*cqe));
1149
1150 if (rq->tag == tag)
1151 ret = 1;
1152
1153 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1154 wc->ex.invalidate_rkey == req->mr->rkey)
1155 req->need_inval = false;
1156
1157 blk_mq_complete_request(rq, status);
1158
1159 return ret;
1160}
1161
1162static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1163{
1164 struct nvme_rdma_qe *qe =
1165 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1166 struct nvme_rdma_queue *queue = cq->cq_context;
1167 struct ib_device *ibdev = queue->device->dev;
1168 struct nvme_completion *cqe = qe->data;
1169 const size_t len = sizeof(struct nvme_completion);
1170 int ret = 0;
1171
1172 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1173 nvme_rdma_wr_error(cq, wc, "RECV");
1174 return 0;
1175 }
1176
1177 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1178 /*
1179 * AEN requests are special as they don't time out and can
1180 * survive any kind of queue freeze and often don't respond to
1181 * aborts. We don't even bother to allocate a struct request
1182 * for them but rather special case them here.
1183 */
1184 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1185 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1186 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1187 else
1188 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1189 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1190
1191 nvme_rdma_post_recv(queue, qe);
1192 return ret;
1193}
1194
1195static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1196{
1197 __nvme_rdma_recv_done(cq, wc, -1);
1198}
1199
1200static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1201{
1202 int ret, i;
1203
1204 for (i = 0; i < queue->queue_size; i++) {
1205 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1206 if (ret)
1207 goto out_destroy_queue_ib;
1208 }
1209
1210 return 0;
1211
1212out_destroy_queue_ib:
1213 nvme_rdma_destroy_queue_ib(queue);
1214 return ret;
1215}
1216
1217static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1218 struct rdma_cm_event *ev)
1219{
1220 if (ev->param.conn.private_data_len) {
1221 struct nvme_rdma_cm_rej *rej =
1222 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1223
1224 dev_err(queue->ctrl->ctrl.device,
1225 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1226 /* XXX: Think of something clever to do here... */
1227 } else {
1228 dev_err(queue->ctrl->ctrl.device,
1229 "Connect rejected, no private data.\n");
1230 }
1231
1232 return -ECONNRESET;
1233}
1234
1235static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1236{
1237 struct nvme_rdma_device *dev;
1238 int ret;
1239
1240 dev = nvme_rdma_find_get_device(queue->cm_id);
1241 if (!dev) {
1242 dev_err(queue->cm_id->device->dma_device,
1243 "no client data found!\n");
1244 return -ECONNREFUSED;
1245 }
1246
1247 ret = nvme_rdma_create_queue_ib(queue, dev);
1248 if (ret) {
1249 nvme_rdma_dev_put(dev);
1250 goto out;
1251 }
1252
1253 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1254 if (ret) {
1255 dev_err(queue->ctrl->ctrl.device,
1256 "rdma_resolve_route failed (%d).\n",
1257 queue->cm_error);
1258 goto out_destroy_queue;
1259 }
1260
1261 return 0;
1262
1263out_destroy_queue:
1264 nvme_rdma_destroy_queue_ib(queue);
1265out:
1266 return ret;
1267}
1268
1269static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1270{
1271 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1272 struct rdma_conn_param param = { };
Roland Dreier0b857b42016-07-31 00:27:39 -07001273 struct nvme_rdma_cm_req priv = { };
Christoph Hellwig71102302016-07-06 21:55:52 +09001274 int ret;
1275
1276 param.qp_num = queue->qp->qp_num;
1277 param.flow_control = 1;
1278
1279 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
Sagi Grimberg2ac17c22016-06-22 15:06:00 +03001280 /* maximum retry count */
1281 param.retry_count = 7;
Christoph Hellwig71102302016-07-06 21:55:52 +09001282 param.rnr_retry_count = 7;
1283 param.private_data = &priv;
1284 param.private_data_len = sizeof(priv);
1285
1286 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1287 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1288 priv.hrqsize = cpu_to_le16(queue->queue_size);
1289 priv.hsqsize = cpu_to_le16(queue->queue_size);
1290
1291 ret = rdma_connect(queue->cm_id, &param);
1292 if (ret) {
1293 dev_err(ctrl->ctrl.device,
1294 "rdma_connect failed (%d).\n", ret);
1295 goto out_destroy_queue_ib;
1296 }
1297
1298 return 0;
1299
1300out_destroy_queue_ib:
1301 nvme_rdma_destroy_queue_ib(queue);
1302 return ret;
1303}
1304
1305/**
1306 * nvme_rdma_device_unplug() - Handle RDMA device unplug
1307 * @queue: Queue that owns the cm_id that caught the event
1308 *
1309 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1310 * to unplug so we should take care of destroying our RDMA resources.
1311 * This event will be generated for each allocated cm_id.
1312 *
1313 * In our case, the RDMA resources are managed per controller and not
1314 * only per queue. So the way we handle this is we trigger an implicit
1315 * controller deletion upon the first DEVICE_REMOVAL event we see, and
1316 * hold the event inflight until the controller deletion is completed.
1317 *
1318 * One exception that we need to handle is the destruction of the cm_id
1319 * that caught the event. Since we hold the callout until the controller
1320 * deletion is completed, we'll deadlock if the controller deletion will
1321 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001322 * of destroying this queue before-hand, destroy the queue resources,
1323 * then queue the controller deletion which won't destroy this queue and
1324 * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
Christoph Hellwig71102302016-07-06 21:55:52 +09001325 */
1326static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1327{
1328 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001329 int ret;
Christoph Hellwig71102302016-07-06 21:55:52 +09001330
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001331 /* Own the controller deletion */
1332 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1333 return 0;
Christoph Hellwig71102302016-07-06 21:55:52 +09001334
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001335 dev_warn(ctrl->ctrl.device,
1336 "Got rdma device removal event, deleting ctrl\n");
1337
1338 /* Get rid of reconnect work if its running */
1339 cancel_delayed_work_sync(&ctrl->reconnect_work);
1340
1341 /* Disable the queue so ctrl delete won't free it */
1342 if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1343 /* Free this queue ourselves */
1344 nvme_rdma_stop_queue(queue);
1345 nvme_rdma_destroy_queue_ib(queue);
Christoph Hellwig71102302016-07-06 21:55:52 +09001346
1347 /* Return non-zero so the cm_id will destroy implicitly */
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001348 ret = 1;
Christoph Hellwig71102302016-07-06 21:55:52 +09001349 }
1350
Sagi Grimberg57de5a02016-07-14 17:39:47 +03001351 /* Queue controller deletion */
1352 queue_work(nvme_rdma_wq, &ctrl->delete_work);
1353 flush_work(&ctrl->delete_work);
1354 return ret;
Christoph Hellwig71102302016-07-06 21:55:52 +09001355}
1356
1357static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1358 struct rdma_cm_event *ev)
1359{
1360 struct nvme_rdma_queue *queue = cm_id->context;
1361 int cm_error = 0;
1362
1363 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1364 rdma_event_msg(ev->event), ev->event,
1365 ev->status, cm_id);
1366
1367 switch (ev->event) {
1368 case RDMA_CM_EVENT_ADDR_RESOLVED:
1369 cm_error = nvme_rdma_addr_resolved(queue);
1370 break;
1371 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1372 cm_error = nvme_rdma_route_resolved(queue);
1373 break;
1374 case RDMA_CM_EVENT_ESTABLISHED:
1375 queue->cm_error = nvme_rdma_conn_established(queue);
1376 /* complete cm_done regardless of success/failure */
1377 complete(&queue->cm_done);
1378 return 0;
1379 case RDMA_CM_EVENT_REJECTED:
1380 cm_error = nvme_rdma_conn_rejected(queue, ev);
1381 break;
1382 case RDMA_CM_EVENT_ADDR_ERROR:
1383 case RDMA_CM_EVENT_ROUTE_ERROR:
1384 case RDMA_CM_EVENT_CONNECT_ERROR:
1385 case RDMA_CM_EVENT_UNREACHABLE:
1386 dev_dbg(queue->ctrl->ctrl.device,
1387 "CM error event %d\n", ev->event);
1388 cm_error = -ECONNRESET;
1389 break;
1390 case RDMA_CM_EVENT_DISCONNECTED:
1391 case RDMA_CM_EVENT_ADDR_CHANGE:
1392 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1393 dev_dbg(queue->ctrl->ctrl.device,
1394 "disconnect received - connection closed\n");
1395 nvme_rdma_error_recovery(queue->ctrl);
1396 break;
1397 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1398 /* return 1 means impliciy CM ID destroy */
1399 return nvme_rdma_device_unplug(queue);
1400 default:
1401 dev_err(queue->ctrl->ctrl.device,
1402 "Unexpected RDMA CM event (%d)\n", ev->event);
1403 nvme_rdma_error_recovery(queue->ctrl);
1404 break;
1405 }
1406
1407 if (cm_error) {
1408 queue->cm_error = cm_error;
1409 complete(&queue->cm_done);
1410 }
1411
1412 return 0;
1413}
1414
1415static enum blk_eh_timer_return
1416nvme_rdma_timeout(struct request *rq, bool reserved)
1417{
1418 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1419
1420 /* queue error recovery */
1421 nvme_rdma_error_recovery(req->queue->ctrl);
1422
1423 /* fail with DNR on cmd timeout */
1424 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1425
1426 return BLK_EH_HANDLED;
1427}
1428
1429static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1430 const struct blk_mq_queue_data *bd)
1431{
1432 struct nvme_ns *ns = hctx->queue->queuedata;
1433 struct nvme_rdma_queue *queue = hctx->driver_data;
1434 struct request *rq = bd->rq;
1435 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1436 struct nvme_rdma_qe *sqe = &req->sqe;
1437 struct nvme_command *c = sqe->data;
1438 bool flush = false;
1439 struct ib_device *dev;
1440 unsigned int map_len;
1441 int ret;
1442
1443 WARN_ON_ONCE(rq->tag < 0);
1444
1445 dev = queue->device->dev;
1446 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1447 sizeof(struct nvme_command), DMA_TO_DEVICE);
1448
1449 ret = nvme_setup_cmd(ns, rq, c);
1450 if (ret)
1451 return ret;
1452
1453 c->common.command_id = rq->tag;
1454 blk_mq_start_request(rq);
1455
1456 map_len = nvme_map_len(rq);
1457 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1458 if (ret < 0) {
1459 dev_err(queue->ctrl->ctrl.device,
1460 "Failed to map data (%d)\n", ret);
1461 nvme_cleanup_cmd(rq);
1462 goto err;
1463 }
1464
1465 ib_dma_sync_single_for_device(dev, sqe->dma,
1466 sizeof(struct nvme_command), DMA_TO_DEVICE);
1467
1468 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1469 flush = true;
1470 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1471 req->need_inval ? &req->reg_wr.wr : NULL, flush);
1472 if (ret) {
1473 nvme_rdma_unmap_data(queue, rq);
1474 goto err;
1475 }
1476
1477 return BLK_MQ_RQ_QUEUE_OK;
1478err:
1479 return (ret == -ENOMEM || ret == -EAGAIN) ?
1480 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1481}
1482
1483static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1484{
1485 struct nvme_rdma_queue *queue = hctx->driver_data;
1486 struct ib_cq *cq = queue->ib_cq;
1487 struct ib_wc wc;
1488 int found = 0;
1489
1490 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1491 while (ib_poll_cq(cq, 1, &wc) > 0) {
1492 struct ib_cqe *cqe = wc.wr_cqe;
1493
1494 if (cqe) {
1495 if (cqe->done == nvme_rdma_recv_done)
1496 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1497 else
1498 cqe->done(cq, &wc);
1499 }
1500 }
1501
1502 return found;
1503}
1504
1505static void nvme_rdma_complete_rq(struct request *rq)
1506{
1507 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1508 struct nvme_rdma_queue *queue = req->queue;
1509 int error = 0;
1510
1511 nvme_rdma_unmap_data(queue, rq);
1512
1513 if (unlikely(rq->errors)) {
1514 if (nvme_req_needs_retry(rq, rq->errors)) {
1515 nvme_requeue_req(rq);
1516 return;
1517 }
1518
1519 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1520 error = rq->errors;
1521 else
1522 error = nvme_error_status(rq->errors);
1523 }
1524
1525 blk_mq_end_request(rq, error);
1526}
1527
1528static struct blk_mq_ops nvme_rdma_mq_ops = {
1529 .queue_rq = nvme_rdma_queue_rq,
1530 .complete = nvme_rdma_complete_rq,
1531 .map_queue = blk_mq_map_queue,
1532 .init_request = nvme_rdma_init_request,
1533 .exit_request = nvme_rdma_exit_request,
1534 .reinit_request = nvme_rdma_reinit_request,
1535 .init_hctx = nvme_rdma_init_hctx,
1536 .poll = nvme_rdma_poll,
1537 .timeout = nvme_rdma_timeout,
1538};
1539
1540static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1541 .queue_rq = nvme_rdma_queue_rq,
1542 .complete = nvme_rdma_complete_rq,
1543 .map_queue = blk_mq_map_queue,
1544 .init_request = nvme_rdma_init_admin_request,
1545 .exit_request = nvme_rdma_exit_admin_request,
1546 .reinit_request = nvme_rdma_reinit_request,
1547 .init_hctx = nvme_rdma_init_admin_hctx,
1548 .timeout = nvme_rdma_timeout,
1549};
1550
1551static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1552{
1553 int error;
1554
1555 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1556 if (error)
1557 return error;
1558
1559 ctrl->device = ctrl->queues[0].device;
1560
1561 /*
1562 * We need a reference on the device as long as the tag_set is alive,
1563 * as the MRs in the request structures need a valid ib_device.
1564 */
1565 error = -EINVAL;
1566 if (!nvme_rdma_dev_get(ctrl->device))
1567 goto out_free_queue;
1568
1569 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1570 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1571
1572 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1573 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1574 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1575 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1576 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1577 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1578 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1579 ctrl->admin_tag_set.driver_data = ctrl;
1580 ctrl->admin_tag_set.nr_hw_queues = 1;
1581 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1582
1583 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1584 if (error)
1585 goto out_put_dev;
1586
1587 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1588 if (IS_ERR(ctrl->ctrl.admin_q)) {
1589 error = PTR_ERR(ctrl->ctrl.admin_q);
1590 goto out_free_tagset;
1591 }
1592
1593 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1594 if (error)
1595 goto out_cleanup_queue;
1596
1597 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1598 if (error) {
1599 dev_err(ctrl->ctrl.device,
1600 "prop_get NVME_REG_CAP failed\n");
1601 goto out_cleanup_queue;
1602 }
1603
1604 ctrl->ctrl.sqsize =
1605 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1606
1607 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1608 if (error)
1609 goto out_cleanup_queue;
1610
1611 ctrl->ctrl.max_hw_sectors =
1612 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1613
1614 error = nvme_init_identify(&ctrl->ctrl);
1615 if (error)
1616 goto out_cleanup_queue;
1617
1618 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1619 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1620 DMA_TO_DEVICE);
1621 if (error)
1622 goto out_cleanup_queue;
1623
1624 nvme_start_keep_alive(&ctrl->ctrl);
1625
1626 return 0;
1627
1628out_cleanup_queue:
1629 blk_cleanup_queue(ctrl->ctrl.admin_q);
1630out_free_tagset:
1631 /* disconnect and drain the queue before freeing the tagset */
1632 nvme_rdma_stop_queue(&ctrl->queues[0]);
1633 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1634out_put_dev:
1635 nvme_rdma_dev_put(ctrl->device);
1636out_free_queue:
1637 nvme_rdma_free_queue(&ctrl->queues[0]);
1638 return error;
1639}
1640
1641static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1642{
1643 nvme_stop_keep_alive(&ctrl->ctrl);
1644 cancel_work_sync(&ctrl->err_work);
1645 cancel_delayed_work_sync(&ctrl->reconnect_work);
1646
1647 if (ctrl->queue_count > 1) {
1648 nvme_stop_queues(&ctrl->ctrl);
1649 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1650 nvme_cancel_request, &ctrl->ctrl);
1651 nvme_rdma_free_io_queues(ctrl);
1652 }
1653
1654 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1655 nvme_shutdown_ctrl(&ctrl->ctrl);
1656
1657 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1658 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1659 nvme_cancel_request, &ctrl->ctrl);
1660 nvme_rdma_destroy_admin_queue(ctrl);
1661}
1662
Sagi Grimberg2461a8d2016-07-24 09:29:51 +03001663static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1664{
1665 nvme_uninit_ctrl(&ctrl->ctrl);
1666 if (shutdown)
1667 nvme_rdma_shutdown_ctrl(ctrl);
1668 nvme_put_ctrl(&ctrl->ctrl);
1669}
1670
Christoph Hellwig71102302016-07-06 21:55:52 +09001671static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1672{
1673 struct nvme_rdma_ctrl *ctrl = container_of(work,
1674 struct nvme_rdma_ctrl, delete_work);
1675
Sagi Grimberg2461a8d2016-07-24 09:29:51 +03001676 __nvme_rdma_remove_ctrl(ctrl, true);
Christoph Hellwig71102302016-07-06 21:55:52 +09001677}
1678
1679static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1680{
1681 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1682 return -EBUSY;
1683
1684 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1685 return -EBUSY;
1686
1687 return 0;
1688}
1689
1690static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1691{
1692 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1693 int ret;
1694
1695 ret = __nvme_rdma_del_ctrl(ctrl);
1696 if (ret)
1697 return ret;
1698
1699 flush_work(&ctrl->delete_work);
1700
1701 return 0;
1702}
1703
1704static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1705{
1706 struct nvme_rdma_ctrl *ctrl = container_of(work,
1707 struct nvme_rdma_ctrl, delete_work);
1708
Sagi Grimberg2461a8d2016-07-24 09:29:51 +03001709 __nvme_rdma_remove_ctrl(ctrl, false);
Christoph Hellwig71102302016-07-06 21:55:52 +09001710}
1711
1712static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1713{
1714 struct nvme_rdma_ctrl *ctrl = container_of(work,
1715 struct nvme_rdma_ctrl, reset_work);
1716 int ret;
1717 bool changed;
1718
1719 nvme_rdma_shutdown_ctrl(ctrl);
1720
1721 ret = nvme_rdma_configure_admin_queue(ctrl);
1722 if (ret) {
1723 /* ctrl is already shutdown, just remove the ctrl */
1724 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1725 goto del_dead_ctrl;
1726 }
1727
1728 if (ctrl->queue_count > 1) {
1729 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1730 if (ret)
1731 goto del_dead_ctrl;
1732
1733 ret = nvme_rdma_init_io_queues(ctrl);
1734 if (ret)
1735 goto del_dead_ctrl;
1736
1737 ret = nvme_rdma_connect_io_queues(ctrl);
1738 if (ret)
1739 goto del_dead_ctrl;
1740 }
1741
1742 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1743 WARN_ON_ONCE(!changed);
1744
1745 if (ctrl->queue_count > 1) {
1746 nvme_start_queues(&ctrl->ctrl);
1747 nvme_queue_scan(&ctrl->ctrl);
1748 }
1749
1750 return;
1751
1752del_dead_ctrl:
1753 /* Deleting this dead controller... */
1754 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1755 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1756}
1757
1758static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1759{
1760 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1761
1762 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1763 return -EBUSY;
1764
1765 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1766 return -EBUSY;
1767
1768 flush_work(&ctrl->reset_work);
1769
1770 return 0;
1771}
1772
1773static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1774 .name = "rdma",
1775 .module = THIS_MODULE,
1776 .is_fabrics = true,
1777 .reg_read32 = nvmf_reg_read32,
1778 .reg_read64 = nvmf_reg_read64,
1779 .reg_write32 = nvmf_reg_write32,
1780 .reset_ctrl = nvme_rdma_reset_ctrl,
1781 .free_ctrl = nvme_rdma_free_ctrl,
1782 .submit_async_event = nvme_rdma_submit_async_event,
1783 .delete_ctrl = nvme_rdma_del_ctrl,
1784 .get_subsysnqn = nvmf_get_subsysnqn,
1785 .get_address = nvmf_get_address,
1786};
1787
1788static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1789{
1790 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1791 int ret;
1792
1793 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1794 if (ret)
1795 return ret;
1796
1797 ctrl->queue_count = opts->nr_io_queues + 1;
1798 if (ctrl->queue_count < 2)
1799 return 0;
1800
1801 dev_info(ctrl->ctrl.device,
1802 "creating %d I/O queues.\n", opts->nr_io_queues);
1803
1804 ret = nvme_rdma_init_io_queues(ctrl);
1805 if (ret)
1806 return ret;
1807
1808 /*
1809 * We need a reference on the device as long as the tag_set is alive,
1810 * as the MRs in the request structures need a valid ib_device.
1811 */
1812 ret = -EINVAL;
1813 if (!nvme_rdma_dev_get(ctrl->device))
1814 goto out_free_io_queues;
1815
1816 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1817 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1818 ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1819 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1820 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1821 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1822 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1823 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1824 ctrl->tag_set.driver_data = ctrl;
1825 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1826 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1827
1828 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1829 if (ret)
1830 goto out_put_dev;
1831 ctrl->ctrl.tagset = &ctrl->tag_set;
1832
1833 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1834 if (IS_ERR(ctrl->ctrl.connect_q)) {
1835 ret = PTR_ERR(ctrl->ctrl.connect_q);
1836 goto out_free_tag_set;
1837 }
1838
1839 ret = nvme_rdma_connect_io_queues(ctrl);
1840 if (ret)
1841 goto out_cleanup_connect_q;
1842
1843 return 0;
1844
1845out_cleanup_connect_q:
1846 blk_cleanup_queue(ctrl->ctrl.connect_q);
1847out_free_tag_set:
1848 blk_mq_free_tag_set(&ctrl->tag_set);
1849out_put_dev:
1850 nvme_rdma_dev_put(ctrl->device);
1851out_free_io_queues:
1852 nvme_rdma_free_io_queues(ctrl);
1853 return ret;
1854}
1855
1856static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1857{
1858 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1859 size_t buflen = strlen(p);
1860
1861 /* XXX: handle IPv6 addresses */
1862
1863 if (buflen > INET_ADDRSTRLEN)
1864 return -EINVAL;
1865 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1866 return -EINVAL;
1867 in_addr->sin_family = AF_INET;
1868 return 0;
1869}
1870
1871static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1872 struct nvmf_ctrl_options *opts)
1873{
1874 struct nvme_rdma_ctrl *ctrl;
1875 int ret;
1876 bool changed;
1877
1878 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1879 if (!ctrl)
1880 return ERR_PTR(-ENOMEM);
1881 ctrl->ctrl.opts = opts;
1882 INIT_LIST_HEAD(&ctrl->list);
1883
1884 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1885 if (ret) {
1886 pr_err("malformed IP address passed: %s\n", opts->traddr);
1887 goto out_free_ctrl;
1888 }
1889
1890 if (opts->mask & NVMF_OPT_TRSVCID) {
1891 u16 port;
1892
1893 ret = kstrtou16(opts->trsvcid, 0, &port);
1894 if (ret)
1895 goto out_free_ctrl;
1896
1897 ctrl->addr_in.sin_port = cpu_to_be16(port);
1898 } else {
1899 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1900 }
1901
1902 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1903 0 /* no quirks, we're perfect! */);
1904 if (ret)
1905 goto out_free_ctrl;
1906
1907 ctrl->reconnect_delay = opts->reconnect_delay;
1908 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1909 nvme_rdma_reconnect_ctrl_work);
1910 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1911 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1912 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1913 spin_lock_init(&ctrl->lock);
1914
1915 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1916 ctrl->ctrl.sqsize = opts->queue_size;
Christoph Hellwig71102302016-07-06 21:55:52 +09001917 ctrl->ctrl.kato = opts->kato;
1918
1919 ret = -ENOMEM;
1920 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1921 GFP_KERNEL);
1922 if (!ctrl->queues)
1923 goto out_uninit_ctrl;
1924
1925 ret = nvme_rdma_configure_admin_queue(ctrl);
1926 if (ret)
1927 goto out_kfree_queues;
1928
1929 /* sanity check icdoff */
1930 if (ctrl->ctrl.icdoff) {
1931 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1932 goto out_remove_admin_queue;
1933 }
1934
1935 /* sanity check keyed sgls */
1936 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1937 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1938 goto out_remove_admin_queue;
1939 }
1940
1941 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1942 /* warn if maxcmd is lower than queue_size */
1943 dev_warn(ctrl->ctrl.device,
1944 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1945 opts->queue_size, ctrl->ctrl.maxcmd);
1946 opts->queue_size = ctrl->ctrl.maxcmd;
1947 }
1948
1949 if (opts->nr_io_queues) {
1950 ret = nvme_rdma_create_io_queues(ctrl);
1951 if (ret)
1952 goto out_remove_admin_queue;
1953 }
1954
1955 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1956 WARN_ON_ONCE(!changed);
1957
1958 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1959 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1960
1961 kref_get(&ctrl->ctrl.kref);
1962
1963 mutex_lock(&nvme_rdma_ctrl_mutex);
1964 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1965 mutex_unlock(&nvme_rdma_ctrl_mutex);
1966
1967 if (opts->nr_io_queues) {
1968 nvme_queue_scan(&ctrl->ctrl);
1969 nvme_queue_async_events(&ctrl->ctrl);
1970 }
1971
1972 return &ctrl->ctrl;
1973
1974out_remove_admin_queue:
1975 nvme_stop_keep_alive(&ctrl->ctrl);
1976 nvme_rdma_destroy_admin_queue(ctrl);
1977out_kfree_queues:
1978 kfree(ctrl->queues);
1979out_uninit_ctrl:
1980 nvme_uninit_ctrl(&ctrl->ctrl);
1981 nvme_put_ctrl(&ctrl->ctrl);
1982 if (ret > 0)
1983 ret = -EIO;
1984 return ERR_PTR(ret);
1985out_free_ctrl:
1986 kfree(ctrl);
1987 return ERR_PTR(ret);
1988}
1989
1990static struct nvmf_transport_ops nvme_rdma_transport = {
1991 .name = "rdma",
1992 .required_opts = NVMF_OPT_TRADDR,
Sagi Grimberg2ac17c22016-06-22 15:06:00 +03001993 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
Christoph Hellwig71102302016-07-06 21:55:52 +09001994 .create_ctrl = nvme_rdma_create_ctrl,
1995};
1996
1997static int __init nvme_rdma_init_module(void)
1998{
1999 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2000 if (!nvme_rdma_wq)
2001 return -ENOMEM;
2002
2003 nvmf_register_transport(&nvme_rdma_transport);
2004 return 0;
2005}
2006
2007static void __exit nvme_rdma_cleanup_module(void)
2008{
2009 struct nvme_rdma_ctrl *ctrl;
2010
2011 nvmf_unregister_transport(&nvme_rdma_transport);
2012
2013 mutex_lock(&nvme_rdma_ctrl_mutex);
2014 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2015 __nvme_rdma_del_ctrl(ctrl);
2016 mutex_unlock(&nvme_rdma_ctrl_mutex);
2017
2018 destroy_workqueue(nvme_rdma_wq);
2019}
2020
2021module_init(nvme_rdma_init_module);
2022module_exit(nvme_rdma_cleanup_module);
2023
2024MODULE_LICENSE("GPL v2");