blob: 2b49b96a6fdb79c25c0167ae7187b47045e03d99 [file] [log] [blame]
Divy Le Ray4d22de32007-01-18 22:04:14 -05001/*
Divy Le Ray1d68e932007-01-30 19:44:35 -08002 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
Divy Le Ray4d22de32007-01-18 22:04:14 -05003 *
Divy Le Ray1d68e932007-01-30 19:44:35 -08004 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
Divy Le Ray4d22de32007-01-18 22:04:14 -05009 *
Divy Le Ray1d68e932007-01-30 19:44:35 -080010 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
Divy Le Ray4d22de32007-01-18 22:04:14 -050031 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050032#include "common.h"
33#include "regs.h"
34#include "sge_defs.h"
35#include "firmware_exports.h"
36
Divy Le Rayf2c68792007-01-30 19:44:13 -080037/**
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
46 *
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
51 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050052
53int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
55{
56 while (1) {
57 u32 val = t3_read_reg(adapter, reg);
58
59 if (!!(val & mask) == polarity) {
60 if (valp)
61 *valp = val;
62 return 0;
63 }
64 if (--attempts == 0)
65 return -EAGAIN;
66 if (delay)
67 udelay(delay);
68 }
69}
70
71/**
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
77 *
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
81 */
82void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
84{
85 while (n--) {
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
87 p++;
88 }
89}
90
91/**
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
97 *
98 * Sets a register field specified by the supplied mask to the
99 * given value.
100 */
101void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
102 u32 val)
103{
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
105
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
108}
109
110/**
111 * t3_read_indirect - read indirectly addressed registers
112 * @adap: the adapter
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
118 *
119 * Reads registers that are accessed indirectly through an address/data
120 * register pair.
121 */
122void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals, unsigned int nregs,
124 unsigned int start_idx)
125{
126 while (nregs--) {
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
129 start_idx++;
130 }
131}
132
133/**
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
139 *
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
141 * accesses.
142 */
143int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
144 u64 *buf)
145{
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
148
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
151
152 if (start >= size64 || start + n > size64)
153 return -EINVAL;
154
155 start *= (8 << mc7->width);
156 while (n--) {
157 int i;
158 u64 val64 = 0;
159
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
161 int attempts = 10;
162 u32 val;
163
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
170 if (val & F_BUSY)
171 return -EIO;
172
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
176 mc7->offset +
177 A_MC7_BD_DATA0);
178 val64 |= (u64) val << 32;
179 } else {
180 if (mc7->width > 1)
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
183 }
184 start += 8;
185 }
186 *buf++ = val64;
187 }
188 return 0;
189}
190
191/*
192 * Initialize MI1.
193 */
194static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
195{
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
198 V_CLKDIV(clkdiv);
199
200 if (!(ai->caps & SUPPORTED_10000baseT_Full))
201 val |= V_ST(1);
202 t3_write_reg(adap, A_MI1_CFG, val);
203}
204
205#define MDIO_ATTEMPTS 10
206
207/*
208 * MI1 read/write operations for direct-addressed PHYs.
209 */
210static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
211 int reg_addr, unsigned int *valp)
212{
213 int ret;
214 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
215
216 if (mmd_addr)
217 return -EINVAL;
218
219 mutex_lock(&adapter->mdio_lock);
220 t3_write_reg(adapter, A_MI1_ADDR, addr);
221 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
222 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
223 if (!ret)
224 *valp = t3_read_reg(adapter, A_MI1_DATA);
225 mutex_unlock(&adapter->mdio_lock);
226 return ret;
227}
228
229static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
230 int reg_addr, unsigned int val)
231{
232 int ret;
233 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
234
235 if (mmd_addr)
236 return -EINVAL;
237
238 mutex_lock(&adapter->mdio_lock);
239 t3_write_reg(adapter, A_MI1_ADDR, addr);
240 t3_write_reg(adapter, A_MI1_DATA, val);
241 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
242 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
243 mutex_unlock(&adapter->mdio_lock);
244 return ret;
245}
246
247static const struct mdio_ops mi1_mdio_ops = {
248 mi1_read,
249 mi1_write
250};
251
252/*
253 * MI1 read/write operations for indirect-addressed PHYs.
254 */
255static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
256 int reg_addr, unsigned int *valp)
257{
258 int ret;
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260
261 mutex_lock(&adapter->mdio_lock);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
266 if (!ret) {
267 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
268 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
269 MDIO_ATTEMPTS, 20);
270 if (!ret)
271 *valp = t3_read_reg(adapter, A_MI1_DATA);
272 }
273 mutex_unlock(&adapter->mdio_lock);
274 return ret;
275}
276
277static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
278 int reg_addr, unsigned int val)
279{
280 int ret;
281 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
282
283 mutex_lock(&adapter->mdio_lock);
284 t3_write_reg(adapter, A_MI1_ADDR, addr);
285 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
286 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
287 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
288 if (!ret) {
289 t3_write_reg(adapter, A_MI1_DATA, val);
290 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
291 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
292 MDIO_ATTEMPTS, 20);
293 }
294 mutex_unlock(&adapter->mdio_lock);
295 return ret;
296}
297
298static const struct mdio_ops mi1_mdio_ext_ops = {
299 mi1_ext_read,
300 mi1_ext_write
301};
302
303/**
304 * t3_mdio_change_bits - modify the value of a PHY register
305 * @phy: the PHY to operate on
306 * @mmd: the device address
307 * @reg: the register address
308 * @clear: what part of the register value to mask off
309 * @set: what part of the register value to set
310 *
311 * Changes the value of a PHY register by applying a mask to its current
312 * value and ORing the result with a new value.
313 */
314int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
315 unsigned int set)
316{
317 int ret;
318 unsigned int val;
319
320 ret = mdio_read(phy, mmd, reg, &val);
321 if (!ret) {
322 val &= ~clear;
323 ret = mdio_write(phy, mmd, reg, val | set);
324 }
325 return ret;
326}
327
328/**
329 * t3_phy_reset - reset a PHY block
330 * @phy: the PHY to operate on
331 * @mmd: the device address of the PHY block to reset
332 * @wait: how long to wait for the reset to complete in 1ms increments
333 *
334 * Resets a PHY block and optionally waits for the reset to complete.
335 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
336 * for 10G PHYs.
337 */
338int t3_phy_reset(struct cphy *phy, int mmd, int wait)
339{
340 int err;
341 unsigned int ctl;
342
343 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
344 if (err || !wait)
345 return err;
346
347 do {
348 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
349 if (err)
350 return err;
351 ctl &= BMCR_RESET;
352 if (ctl)
353 msleep(1);
354 } while (ctl && --wait);
355
356 return ctl ? -1 : 0;
357}
358
359/**
360 * t3_phy_advertise - set the PHY advertisement registers for autoneg
361 * @phy: the PHY to operate on
362 * @advert: bitmap of capabilities the PHY should advertise
363 *
364 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
365 * requested capabilities.
366 */
367int t3_phy_advertise(struct cphy *phy, unsigned int advert)
368{
369 int err;
370 unsigned int val = 0;
371
372 err = mdio_read(phy, 0, MII_CTRL1000, &val);
373 if (err)
374 return err;
375
376 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
377 if (advert & ADVERTISED_1000baseT_Half)
378 val |= ADVERTISE_1000HALF;
379 if (advert & ADVERTISED_1000baseT_Full)
380 val |= ADVERTISE_1000FULL;
381
382 err = mdio_write(phy, 0, MII_CTRL1000, val);
383 if (err)
384 return err;
385
386 val = 1;
387 if (advert & ADVERTISED_10baseT_Half)
388 val |= ADVERTISE_10HALF;
389 if (advert & ADVERTISED_10baseT_Full)
390 val |= ADVERTISE_10FULL;
391 if (advert & ADVERTISED_100baseT_Half)
392 val |= ADVERTISE_100HALF;
393 if (advert & ADVERTISED_100baseT_Full)
394 val |= ADVERTISE_100FULL;
395 if (advert & ADVERTISED_Pause)
396 val |= ADVERTISE_PAUSE_CAP;
397 if (advert & ADVERTISED_Asym_Pause)
398 val |= ADVERTISE_PAUSE_ASYM;
399 return mdio_write(phy, 0, MII_ADVERTISE, val);
400}
401
402/**
403 * t3_set_phy_speed_duplex - force PHY speed and duplex
404 * @phy: the PHY to operate on
405 * @speed: requested PHY speed
406 * @duplex: requested PHY duplex
407 *
408 * Force a 10/100/1000 PHY's speed and duplex. This also disables
409 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
410 */
411int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
412{
413 int err;
414 unsigned int ctl;
415
416 err = mdio_read(phy, 0, MII_BMCR, &ctl);
417 if (err)
418 return err;
419
420 if (speed >= 0) {
421 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
422 if (speed == SPEED_100)
423 ctl |= BMCR_SPEED100;
424 else if (speed == SPEED_1000)
425 ctl |= BMCR_SPEED1000;
426 }
427 if (duplex >= 0) {
428 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
429 if (duplex == DUPLEX_FULL)
430 ctl |= BMCR_FULLDPLX;
431 }
432 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
433 ctl |= BMCR_ANENABLE;
434 return mdio_write(phy, 0, MII_BMCR, ctl);
435}
436
437static const struct adapter_info t3_adap_info[] = {
438 {2, 0, 0, 0,
439 F_GPIO2_OEN | F_GPIO4_OEN |
440 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700441 0,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500442 &mi1_mdio_ops, "Chelsio PE9000"},
443 {2, 0, 0, 0,
444 F_GPIO2_OEN | F_GPIO4_OEN |
445 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700446 0,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500447 &mi1_mdio_ops, "Chelsio T302"},
448 {1, 0, 0, 0,
449 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
450 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700451 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500452 &mi1_mdio_ext_ops, "Chelsio T310"},
453 {2, 0, 0, 0,
454 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
455 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
456 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700457 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500458 &mi1_mdio_ext_ops, "Chelsio T320"},
459};
460
461/*
462 * Return the adapter_info structure with a given index. Out-of-range indices
463 * return NULL.
464 */
465const struct adapter_info *t3_get_adapter_info(unsigned int id)
466{
467 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
468}
469
470#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
471 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
472#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
473
474static const struct port_type_info port_types[] = {
475 {NULL},
476 {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
477 "10GBASE-XR"},
478 {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
479 "10/100/1000BASE-T"},
480 {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
481 "10/100/1000BASE-T"},
482 {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
483 {NULL, CAPS_10G, "10GBASE-KX4"},
484 {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
485 {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
486 "10GBASE-SR"},
487 {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
488};
489
490#undef CAPS_1G
491#undef CAPS_10G
492
493#define VPD_ENTRY(name, len) \
494 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
495
496/*
497 * Partial EEPROM Vital Product Data structure. Includes only the ID and
498 * VPD-R sections.
499 */
500struct t3_vpd {
501 u8 id_tag;
502 u8 id_len[2];
503 u8 id_data[16];
504 u8 vpdr_tag;
505 u8 vpdr_len[2];
506 VPD_ENTRY(pn, 16); /* part number */
507 VPD_ENTRY(ec, 16); /* EC level */
Divy Le Ray167cdf52007-08-21 20:49:36 -0700508 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500509 VPD_ENTRY(na, 12); /* MAC address base */
510 VPD_ENTRY(cclk, 6); /* core clock */
511 VPD_ENTRY(mclk, 6); /* mem clock */
512 VPD_ENTRY(uclk, 6); /* uP clk */
513 VPD_ENTRY(mdc, 6); /* MDIO clk */
514 VPD_ENTRY(mt, 2); /* mem timing */
515 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
516 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
517 VPD_ENTRY(port0, 2); /* PHY0 complex */
518 VPD_ENTRY(port1, 2); /* PHY1 complex */
519 VPD_ENTRY(port2, 2); /* PHY2 complex */
520 VPD_ENTRY(port3, 2); /* PHY3 complex */
521 VPD_ENTRY(rv, 1); /* csum */
522 u32 pad; /* for multiple-of-4 sizing and alignment */
523};
524
525#define EEPROM_MAX_POLL 4
526#define EEPROM_STAT_ADDR 0x4000
527#define VPD_BASE 0xc00
528
529/**
530 * t3_seeprom_read - read a VPD EEPROM location
531 * @adapter: adapter to read
532 * @addr: EEPROM address
533 * @data: where to store the read data
534 *
535 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
536 * VPD ROM capability. A zero is written to the flag bit when the
537 * addres is written to the control register. The hardware device will
538 * set the flag to 1 when 4 bytes have been read into the data register.
539 */
540int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
541{
542 u16 val;
543 int attempts = EEPROM_MAX_POLL;
544 unsigned int base = adapter->params.pci.vpd_cap_addr;
545
546 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
547 return -EINVAL;
548
549 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
550 do {
551 udelay(10);
552 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
553 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
554
555 if (!(val & PCI_VPD_ADDR_F)) {
556 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
557 return -EIO;
558 }
559 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
560 *data = le32_to_cpu(*data);
561 return 0;
562}
563
564/**
565 * t3_seeprom_write - write a VPD EEPROM location
566 * @adapter: adapter to write
567 * @addr: EEPROM address
568 * @data: value to write
569 *
570 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
571 * VPD ROM capability.
572 */
573int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
574{
575 u16 val;
576 int attempts = EEPROM_MAX_POLL;
577 unsigned int base = adapter->params.pci.vpd_cap_addr;
578
579 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
580 return -EINVAL;
581
582 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
583 cpu_to_le32(data));
584 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
585 addr | PCI_VPD_ADDR_F);
586 do {
587 msleep(1);
588 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
589 } while ((val & PCI_VPD_ADDR_F) && --attempts);
590
591 if (val & PCI_VPD_ADDR_F) {
592 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
593 return -EIO;
594 }
595 return 0;
596}
597
598/**
599 * t3_seeprom_wp - enable/disable EEPROM write protection
600 * @adapter: the adapter
601 * @enable: 1 to enable write protection, 0 to disable it
602 *
603 * Enables or disables write protection on the serial EEPROM.
604 */
605int t3_seeprom_wp(struct adapter *adapter, int enable)
606{
607 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
608}
609
610/*
611 * Convert a character holding a hex digit to a number.
612 */
613static unsigned int hex2int(unsigned char c)
614{
615 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
616}
617
618/**
619 * get_vpd_params - read VPD parameters from VPD EEPROM
620 * @adapter: adapter to read
621 * @p: where to store the parameters
622 *
623 * Reads card parameters stored in VPD EEPROM.
624 */
625static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
626{
627 int i, addr, ret;
628 struct t3_vpd vpd;
629
630 /*
631 * Card information is normally at VPD_BASE but some early cards had
632 * it at 0.
633 */
634 ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
635 if (ret)
636 return ret;
637 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
638
639 for (i = 0; i < sizeof(vpd); i += 4) {
640 ret = t3_seeprom_read(adapter, addr + i,
641 (u32 *)((u8 *)&vpd + i));
642 if (ret)
643 return ret;
644 }
645
646 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
647 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
648 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
649 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
650 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
Divy Le Ray167cdf52007-08-21 20:49:36 -0700651 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500652
653 /* Old eeproms didn't have port information */
654 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
655 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
656 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
657 } else {
658 p->port_type[0] = hex2int(vpd.port0_data[0]);
659 p->port_type[1] = hex2int(vpd.port1_data[0]);
660 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
661 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
662 }
663
664 for (i = 0; i < 6; i++)
665 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
666 hex2int(vpd.na_data[2 * i + 1]);
667 return 0;
668}
669
670/* serial flash and firmware constants */
671enum {
672 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
673 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
674 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
675
676 /* flash command opcodes */
677 SF_PROG_PAGE = 2, /* program page */
678 SF_WR_DISABLE = 4, /* disable writes */
679 SF_RD_STATUS = 5, /* read status register */
680 SF_WR_ENABLE = 6, /* enable writes */
681 SF_RD_DATA_FAST = 0xb, /* read flash */
682 SF_ERASE_SECTOR = 0xd8, /* erase sector */
683
684 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
Divy Le Ray2e283962007-03-18 13:10:06 -0700685 FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
686 FW_MIN_SIZE = 8 /* at least version and csum */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500687};
688
689/**
690 * sf1_read - read data from the serial flash
691 * @adapter: the adapter
692 * @byte_cnt: number of bytes to read
693 * @cont: whether another operation will be chained
694 * @valp: where to store the read data
695 *
696 * Reads up to 4 bytes of data from the serial flash. The location of
697 * the read needs to be specified prior to calling this by issuing the
698 * appropriate commands to the serial flash.
699 */
700static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
701 u32 *valp)
702{
703 int ret;
704
705 if (!byte_cnt || byte_cnt > 4)
706 return -EINVAL;
707 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
708 return -EBUSY;
709 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
710 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
711 if (!ret)
712 *valp = t3_read_reg(adapter, A_SF_DATA);
713 return ret;
714}
715
716/**
717 * sf1_write - write data to the serial flash
718 * @adapter: the adapter
719 * @byte_cnt: number of bytes to write
720 * @cont: whether another operation will be chained
721 * @val: value to write
722 *
723 * Writes up to 4 bytes of data to the serial flash. The location of
724 * the write needs to be specified prior to calling this by issuing the
725 * appropriate commands to the serial flash.
726 */
727static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
728 u32 val)
729{
730 if (!byte_cnt || byte_cnt > 4)
731 return -EINVAL;
732 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
733 return -EBUSY;
734 t3_write_reg(adapter, A_SF_DATA, val);
735 t3_write_reg(adapter, A_SF_OP,
736 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
737 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
738}
739
740/**
741 * flash_wait_op - wait for a flash operation to complete
742 * @adapter: the adapter
743 * @attempts: max number of polls of the status register
744 * @delay: delay between polls in ms
745 *
746 * Wait for a flash operation to complete by polling the status register.
747 */
748static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
749{
750 int ret;
751 u32 status;
752
753 while (1) {
754 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
755 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
756 return ret;
757 if (!(status & 1))
758 return 0;
759 if (--attempts == 0)
760 return -EAGAIN;
761 if (delay)
762 msleep(delay);
763 }
764}
765
766/**
767 * t3_read_flash - read words from serial flash
768 * @adapter: the adapter
769 * @addr: the start address for the read
770 * @nwords: how many 32-bit words to read
771 * @data: where to store the read data
772 * @byte_oriented: whether to store data as bytes or as words
773 *
774 * Read the specified number of 32-bit words from the serial flash.
775 * If @byte_oriented is set the read data is stored as a byte array
776 * (i.e., big-endian), otherwise as 32-bit words in the platform's
777 * natural endianess.
778 */
779int t3_read_flash(struct adapter *adapter, unsigned int addr,
780 unsigned int nwords, u32 *data, int byte_oriented)
781{
782 int ret;
783
784 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
785 return -EINVAL;
786
787 addr = swab32(addr) | SF_RD_DATA_FAST;
788
789 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
790 (ret = sf1_read(adapter, 1, 1, data)) != 0)
791 return ret;
792
793 for (; nwords; nwords--, data++) {
794 ret = sf1_read(adapter, 4, nwords > 1, data);
795 if (ret)
796 return ret;
797 if (byte_oriented)
798 *data = htonl(*data);
799 }
800 return 0;
801}
802
803/**
804 * t3_write_flash - write up to a page of data to the serial flash
805 * @adapter: the adapter
806 * @addr: the start address to write
807 * @n: length of data to write
808 * @data: the data to write
809 *
810 * Writes up to a page of data (256 bytes) to the serial flash starting
811 * at the given address.
812 */
813static int t3_write_flash(struct adapter *adapter, unsigned int addr,
814 unsigned int n, const u8 *data)
815{
816 int ret;
817 u32 buf[64];
818 unsigned int i, c, left, val, offset = addr & 0xff;
819
820 if (addr + n > SF_SIZE || offset + n > 256)
821 return -EINVAL;
822
823 val = swab32(addr) | SF_PROG_PAGE;
824
825 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
826 (ret = sf1_write(adapter, 4, 1, val)) != 0)
827 return ret;
828
829 for (left = n; left; left -= c) {
830 c = min(left, 4U);
831 for (val = 0, i = 0; i < c; ++i)
832 val = (val << 8) + *data++;
833
834 ret = sf1_write(adapter, c, c != left, val);
835 if (ret)
836 return ret;
837 }
838 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
839 return ret;
840
841 /* Read the page to verify the write succeeded */
842 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
843 if (ret)
844 return ret;
845
846 if (memcmp(data - n, (u8 *) buf + offset, n))
847 return -EIO;
848 return 0;
849}
850
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700851/**
Divy Le Ray47330072007-08-29 19:15:52 -0700852 * t3_get_tp_version - read the tp sram version
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700853 * @adapter: the adapter
Divy Le Ray47330072007-08-29 19:15:52 -0700854 * @vers: where to place the version
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700855 *
Divy Le Ray47330072007-08-29 19:15:52 -0700856 * Reads the protocol sram version from sram.
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700857 */
Divy Le Ray47330072007-08-29 19:15:52 -0700858int t3_get_tp_version(struct adapter *adapter, u32 *vers)
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700859{
860 int ret;
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700861
862 /* Get version loaded in SRAM */
863 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
864 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
865 1, 1, 5, 1);
866 if (ret)
867 return ret;
868
Divy Le Ray47330072007-08-29 19:15:52 -0700869 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
870
871 return 0;
872}
873
874/**
875 * t3_check_tpsram_version - read the tp sram version
876 * @adapter: the adapter
877 * @must_load: set to 1 if loading a new microcode image is required
878 *
879 * Reads the protocol sram version from flash.
880 */
881int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
882{
883 int ret;
884 u32 vers;
885 unsigned int major, minor;
886
887 if (adapter->params.rev == T3_REV_A)
888 return 0;
889
890 *must_load = 1;
891
892 ret = t3_get_tp_version(adapter, &vers);
893 if (ret)
894 return ret;
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700895
896 major = G_TP_VERSION_MAJOR(vers);
897 minor = G_TP_VERSION_MINOR(vers);
898
899 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
900 return 0;
901
Divy Le Ray47330072007-08-29 19:15:52 -0700902 if (major != TP_VERSION_MAJOR)
903 CH_ERR(adapter, "found wrong TP version (%u.%u), "
904 "driver needs version %d.%d\n", major, minor,
905 TP_VERSION_MAJOR, TP_VERSION_MINOR);
906 else {
907 *must_load = 0;
908 CH_ERR(adapter, "found wrong TP version (%u.%u), "
909 "driver compiled for version %d.%d\n", major, minor,
910 TP_VERSION_MAJOR, TP_VERSION_MINOR);
911 }
Divy Le Ray480fe1a2007-05-30 21:10:58 -0700912 return -EINVAL;
913}
914
915/**
916 * t3_check_tpsram - check if provided protocol SRAM
917 * is compatible with this driver
918 * @adapter: the adapter
919 * @tp_sram: the firmware image to write
920 * @size: image size
921 *
922 * Checks if an adapter's tp sram is compatible with the driver.
923 * Returns 0 if the versions are compatible, a negative error otherwise.
924 */
925int t3_check_tpsram(struct adapter *adapter, u8 *tp_sram, unsigned int size)
926{
927 u32 csum;
928 unsigned int i;
929 const u32 *p = (const u32 *)tp_sram;
930
931 /* Verify checksum */
932 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
933 csum += ntohl(p[i]);
934 if (csum != 0xffffffff) {
935 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
936 csum);
937 return -EINVAL;
938 }
939
940 return 0;
941}
942
Divy Le Ray4aac3892007-01-30 19:43:45 -0800943enum fw_version_type {
944 FW_VERSION_N3,
945 FW_VERSION_T3
946};
947
Divy Le Ray4d22de32007-01-18 22:04:14 -0500948/**
949 * t3_get_fw_version - read the firmware version
950 * @adapter: the adapter
951 * @vers: where to place the version
952 *
953 * Reads the FW version from flash.
954 */
955int t3_get_fw_version(struct adapter *adapter, u32 *vers)
956{
957 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
958}
959
960/**
961 * t3_check_fw_version - check if the FW is compatible with this driver
962 * @adapter: the adapter
Divy Le Raya5a3b462007-09-05 15:58:09 -0700963 * @must_load: set to 1 if loading a new FW image is required
964
Divy Le Ray4d22de32007-01-18 22:04:14 -0500965 * Checks if an adapter's FW is compatible with the driver. Returns 0
966 * if the versions are compatible, a negative error otherwise.
967 */
Divy Le Raya5a3b462007-09-05 15:58:09 -0700968int t3_check_fw_version(struct adapter *adapter, int *must_load)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500969{
970 int ret;
971 u32 vers;
Divy Le Ray4aac3892007-01-30 19:43:45 -0800972 unsigned int type, major, minor;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500973
Divy Le Raya5a3b462007-09-05 15:58:09 -0700974 *must_load = 1;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500975 ret = t3_get_fw_version(adapter, &vers);
976 if (ret)
977 return ret;
978
Divy Le Ray4aac3892007-01-30 19:43:45 -0800979 type = G_FW_VERSION_TYPE(vers);
980 major = G_FW_VERSION_MAJOR(vers);
981 minor = G_FW_VERSION_MINOR(vers);
982
Divy Le Ray75d86262007-02-25 16:32:37 -0800983 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
984 minor == FW_VERSION_MINOR)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500985 return 0;
986
Divy Le Raya5a3b462007-09-05 15:58:09 -0700987 if (major != FW_VERSION_MAJOR)
988 CH_ERR(adapter, "found wrong FW version(%u.%u), "
989 "driver needs version %u.%u\n", major, minor,
990 FW_VERSION_MAJOR, FW_VERSION_MINOR);
991 else {
992 *must_load = 0;
993 CH_WARN(adapter, "found wrong FW minor version(%u.%u), "
994 "driver compiled for version %u.%u\n", major, minor,
995 FW_VERSION_MAJOR, FW_VERSION_MINOR);
996 }
997
Divy Le Ray4d22de32007-01-18 22:04:14 -0500998 return -EINVAL;
999}
1000
1001/**
1002 * t3_flash_erase_sectors - erase a range of flash sectors
1003 * @adapter: the adapter
1004 * @start: the first sector to erase
1005 * @end: the last sector to erase
1006 *
1007 * Erases the sectors in the given range.
1008 */
1009static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1010{
1011 while (start <= end) {
1012 int ret;
1013
1014 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1015 (ret = sf1_write(adapter, 4, 0,
1016 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1017 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1018 return ret;
1019 start++;
1020 }
1021 return 0;
1022}
1023
1024/*
1025 * t3_load_fw - download firmware
1026 * @adapter: the adapter
Divy Le Ray8a9fab22007-05-30 21:10:52 -07001027 * @fw_data: the firmware image to write
Divy Le Ray4d22de32007-01-18 22:04:14 -05001028 * @size: image size
1029 *
1030 * Write the supplied firmware image to the card's serial flash.
1031 * The FW image has the following sections: @size - 8 bytes of code and
1032 * data, followed by 4 bytes of FW version, followed by the 32-bit
1033 * 1's complement checksum of the whole image.
1034 */
1035int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1036{
1037 u32 csum;
1038 unsigned int i;
1039 const u32 *p = (const u32 *)fw_data;
1040 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1041
Divy Le Ray2e283962007-03-18 13:10:06 -07001042 if ((size & 3) || size < FW_MIN_SIZE)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001043 return -EINVAL;
1044 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1045 return -EFBIG;
1046
1047 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1048 csum += ntohl(p[i]);
1049 if (csum != 0xffffffff) {
1050 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1051 csum);
1052 return -EINVAL;
1053 }
1054
1055 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1056 if (ret)
1057 goto out;
1058
1059 size -= 8; /* trim off version and checksum */
1060 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1061 unsigned int chunk_size = min(size, 256U);
1062
1063 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1064 if (ret)
1065 goto out;
1066
1067 addr += chunk_size;
1068 fw_data += chunk_size;
1069 size -= chunk_size;
1070 }
1071
1072 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1073out:
1074 if (ret)
1075 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1076 return ret;
1077}
1078
1079#define CIM_CTL_BASE 0x2000
1080
1081/**
1082 * t3_cim_ctl_blk_read - read a block from CIM control region
1083 *
1084 * @adap: the adapter
1085 * @addr: the start address within the CIM control region
1086 * @n: number of words to read
1087 * @valp: where to store the result
1088 *
1089 * Reads a block of 4-byte words from the CIM control region.
1090 */
1091int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1092 unsigned int n, unsigned int *valp)
1093{
1094 int ret = 0;
1095
1096 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1097 return -EBUSY;
1098
1099 for ( ; !ret && n--; addr += 4) {
1100 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1101 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1102 0, 5, 2);
1103 if (!ret)
1104 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1105 }
1106 return ret;
1107}
1108
1109
1110/**
1111 * t3_link_changed - handle interface link changes
1112 * @adapter: the adapter
1113 * @port_id: the port index that changed link state
1114 *
1115 * Called when a port's link settings change to propagate the new values
1116 * to the associated PHY and MAC. After performing the common tasks it
1117 * invokes an OS-specific handler.
1118 */
1119void t3_link_changed(struct adapter *adapter, int port_id)
1120{
1121 int link_ok, speed, duplex, fc;
1122 struct port_info *pi = adap2pinfo(adapter, port_id);
1123 struct cphy *phy = &pi->phy;
1124 struct cmac *mac = &pi->mac;
1125 struct link_config *lc = &pi->link_config;
1126
1127 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1128
1129 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1130 uses_xaui(adapter)) {
1131 if (link_ok)
1132 t3b_pcs_reset(mac);
1133 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1134 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1135 }
1136 lc->link_ok = link_ok;
1137 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1138 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1139 if (lc->requested_fc & PAUSE_AUTONEG)
1140 fc &= lc->requested_fc;
1141 else
1142 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1143
1144 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1145 /* Set MAC speed, duplex, and flow control to match PHY. */
1146 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1147 lc->fc = fc;
1148 }
1149
1150 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1151}
1152
1153/**
1154 * t3_link_start - apply link configuration to MAC/PHY
1155 * @phy: the PHY to setup
1156 * @mac: the MAC to setup
1157 * @lc: the requested link configuration
1158 *
1159 * Set up a port's MAC and PHY according to a desired link configuration.
1160 * - If the PHY can auto-negotiate first decide what to advertise, then
1161 * enable/disable auto-negotiation as desired, and reset.
1162 * - If the PHY does not auto-negotiate just reset it.
1163 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1164 * otherwise do it later based on the outcome of auto-negotiation.
1165 */
1166int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1167{
1168 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1169
1170 lc->link_ok = 0;
1171 if (lc->supported & SUPPORTED_Autoneg) {
1172 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1173 if (fc) {
1174 lc->advertising |= ADVERTISED_Asym_Pause;
1175 if (fc & PAUSE_RX)
1176 lc->advertising |= ADVERTISED_Pause;
1177 }
1178 phy->ops->advertise(phy, lc->advertising);
1179
1180 if (lc->autoneg == AUTONEG_DISABLE) {
1181 lc->speed = lc->requested_speed;
1182 lc->duplex = lc->requested_duplex;
1183 lc->fc = (unsigned char)fc;
1184 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1185 fc);
1186 /* Also disables autoneg */
1187 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1188 phy->ops->reset(phy, 0);
1189 } else
1190 phy->ops->autoneg_enable(phy);
1191 } else {
1192 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1193 lc->fc = (unsigned char)fc;
1194 phy->ops->reset(phy, 0);
1195 }
1196 return 0;
1197}
1198
1199/**
1200 * t3_set_vlan_accel - control HW VLAN extraction
1201 * @adapter: the adapter
1202 * @ports: bitmap of adapter ports to operate on
1203 * @on: enable (1) or disable (0) HW VLAN extraction
1204 *
1205 * Enables or disables HW extraction of VLAN tags for the given port.
1206 */
1207void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1208{
1209 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1210 ports << S_VLANEXTRACTIONENABLE,
1211 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1212}
1213
1214struct intr_info {
1215 unsigned int mask; /* bits to check in interrupt status */
1216 const char *msg; /* message to print or NULL */
1217 short stat_idx; /* stat counter to increment or -1 */
1218 unsigned short fatal:1; /* whether the condition reported is fatal */
1219};
1220
1221/**
1222 * t3_handle_intr_status - table driven interrupt handler
1223 * @adapter: the adapter that generated the interrupt
1224 * @reg: the interrupt status register to process
1225 * @mask: a mask to apply to the interrupt status
1226 * @acts: table of interrupt actions
1227 * @stats: statistics counters tracking interrupt occurences
1228 *
1229 * A table driven interrupt handler that applies a set of masks to an
1230 * interrupt status word and performs the corresponding actions if the
1231 * interrupts described by the mask have occured. The actions include
1232 * optionally printing a warning or alert message, and optionally
1233 * incrementing a stat counter. The table is terminated by an entry
1234 * specifying mask 0. Returns the number of fatal interrupt conditions.
1235 */
1236static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1237 unsigned int mask,
1238 const struct intr_info *acts,
1239 unsigned long *stats)
1240{
1241 int fatal = 0;
1242 unsigned int status = t3_read_reg(adapter, reg) & mask;
1243
1244 for (; acts->mask; ++acts) {
1245 if (!(status & acts->mask))
1246 continue;
1247 if (acts->fatal) {
1248 fatal++;
1249 CH_ALERT(adapter, "%s (0x%x)\n",
1250 acts->msg, status & acts->mask);
1251 } else if (acts->msg)
1252 CH_WARN(adapter, "%s (0x%x)\n",
1253 acts->msg, status & acts->mask);
1254 if (acts->stat_idx >= 0)
1255 stats[acts->stat_idx]++;
1256 }
1257 if (status) /* clear processed interrupts */
1258 t3_write_reg(adapter, reg, status);
1259 return fatal;
1260}
1261
1262#define SGE_INTR_MASK (F_RSPQDISABLED)
1263#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1264 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1265 F_NFASRCHFAIL)
1266#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1267#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1268 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1269 F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
1270#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1271 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1272 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1273 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1274 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1275 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1276#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1277 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1278 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1279 V_BISTERR(M_BISTERR) | F_PEXERR)
1280#define ULPRX_INTR_MASK F_PARERR
1281#define ULPTX_INTR_MASK 0
1282#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
1283 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1284 F_ZERO_SWITCH_ERROR)
1285#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1286 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1287 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1288 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
1289#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1290 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1291 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1292#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1293 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1294 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1295#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1296 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1297 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1298 V_MCAPARERRENB(M_MCAPARERRENB))
1299#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1300 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1301 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1302 F_MPS0 | F_CPL_SWITCH)
1303
1304/*
1305 * Interrupt handler for the PCIX1 module.
1306 */
1307static void pci_intr_handler(struct adapter *adapter)
1308{
1309 static const struct intr_info pcix1_intr_info[] = {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001310 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1311 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1312 {F_RCVTARABT, "PCI received target abort", -1, 1},
1313 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1314 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1315 {F_DETPARERR, "PCI detected parity error", -1, 1},
1316 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1317 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1318 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1319 1},
1320 {F_DETCORECCERR, "PCI correctable ECC error",
1321 STAT_PCI_CORR_ECC, 0},
1322 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1323 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1324 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1325 1},
1326 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1327 1},
1328 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1329 1},
1330 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1331 "error", -1, 1},
1332 {0}
1333 };
1334
1335 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1336 pcix1_intr_info, adapter->irq_stats))
1337 t3_fatal_err(adapter);
1338}
1339
1340/*
1341 * Interrupt handler for the PCIE module.
1342 */
1343static void pcie_intr_handler(struct adapter *adapter)
1344{
1345 static const struct intr_info pcie_intr_info[] = {
Divy Le Rayb5a44bc2007-01-30 19:44:01 -08001346 {F_PEXERR, "PCI PEX error", -1, 1},
Divy Le Ray4d22de32007-01-18 22:04:14 -05001347 {F_UNXSPLCPLERRR,
1348 "PCI unexpected split completion DMA read error", -1, 1},
1349 {F_UNXSPLCPLERRC,
1350 "PCI unexpected split completion DMA command error", -1, 1},
1351 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1352 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1353 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1354 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1355 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1356 "PCI MSI-X table/PBA parity error", -1, 1},
1357 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1358 {0}
1359 };
1360
1361 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1362 pcie_intr_info, adapter->irq_stats))
1363 t3_fatal_err(adapter);
1364}
1365
1366/*
1367 * TP interrupt handler.
1368 */
1369static void tp_intr_handler(struct adapter *adapter)
1370{
1371 static const struct intr_info tp_intr_info[] = {
1372 {0xffffff, "TP parity error", -1, 1},
1373 {0x1000000, "TP out of Rx pages", -1, 1},
1374 {0x2000000, "TP out of Tx pages", -1, 1},
1375 {0}
1376 };
1377
1378 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1379 tp_intr_info, NULL))
1380 t3_fatal_err(adapter);
1381}
1382
1383/*
1384 * CIM interrupt handler.
1385 */
1386static void cim_intr_handler(struct adapter *adapter)
1387{
1388 static const struct intr_info cim_intr_info[] = {
1389 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1390 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1391 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1392 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1393 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1394 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1395 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1396 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1397 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1398 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1399 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1400 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1401 {0}
1402 };
1403
1404 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1405 cim_intr_info, NULL))
1406 t3_fatal_err(adapter);
1407}
1408
1409/*
1410 * ULP RX interrupt handler.
1411 */
1412static void ulprx_intr_handler(struct adapter *adapter)
1413{
1414 static const struct intr_info ulprx_intr_info[] = {
1415 {F_PARERR, "ULP RX parity error", -1, 1},
1416 {0}
1417 };
1418
1419 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1420 ulprx_intr_info, NULL))
1421 t3_fatal_err(adapter);
1422}
1423
1424/*
1425 * ULP TX interrupt handler.
1426 */
1427static void ulptx_intr_handler(struct adapter *adapter)
1428{
1429 static const struct intr_info ulptx_intr_info[] = {
1430 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1431 STAT_ULP_CH0_PBL_OOB, 0},
1432 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1433 STAT_ULP_CH1_PBL_OOB, 0},
1434 {0}
1435 };
1436
1437 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1438 ulptx_intr_info, adapter->irq_stats))
1439 t3_fatal_err(adapter);
1440}
1441
1442#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1443 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1444 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1445 F_ICSPI1_TX_FRAMING_ERROR)
1446#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1447 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1448 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1449 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1450
1451/*
1452 * PM TX interrupt handler.
1453 */
1454static void pmtx_intr_handler(struct adapter *adapter)
1455{
1456 static const struct intr_info pmtx_intr_info[] = {
1457 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1458 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1459 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1460 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1461 "PMTX ispi parity error", -1, 1},
1462 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1463 "PMTX ospi parity error", -1, 1},
1464 {0}
1465 };
1466
1467 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1468 pmtx_intr_info, NULL))
1469 t3_fatal_err(adapter);
1470}
1471
1472#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1473 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1474 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1475 F_IESPI1_TX_FRAMING_ERROR)
1476#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1477 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1478 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1479 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1480
1481/*
1482 * PM RX interrupt handler.
1483 */
1484static void pmrx_intr_handler(struct adapter *adapter)
1485{
1486 static const struct intr_info pmrx_intr_info[] = {
1487 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1488 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1489 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1490 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1491 "PMRX ispi parity error", -1, 1},
1492 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1493 "PMRX ospi parity error", -1, 1},
1494 {0}
1495 };
1496
1497 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1498 pmrx_intr_info, NULL))
1499 t3_fatal_err(adapter);
1500}
1501
1502/*
1503 * CPL switch interrupt handler.
1504 */
1505static void cplsw_intr_handler(struct adapter *adapter)
1506{
1507 static const struct intr_info cplsw_intr_info[] = {
1508/* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
1509 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1510 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1511 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1512 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1513 {0}
1514 };
1515
1516 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1517 cplsw_intr_info, NULL))
1518 t3_fatal_err(adapter);
1519}
1520
1521/*
1522 * MPS interrupt handler.
1523 */
1524static void mps_intr_handler(struct adapter *adapter)
1525{
1526 static const struct intr_info mps_intr_info[] = {
1527 {0x1ff, "MPS parity error", -1, 1},
1528 {0}
1529 };
1530
1531 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1532 mps_intr_info, NULL))
1533 t3_fatal_err(adapter);
1534}
1535
1536#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1537
1538/*
1539 * MC7 interrupt handler.
1540 */
1541static void mc7_intr_handler(struct mc7 *mc7)
1542{
1543 struct adapter *adapter = mc7->adapter;
1544 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1545
1546 if (cause & F_CE) {
1547 mc7->stats.corr_err++;
1548 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1549 "data 0x%x 0x%x 0x%x\n", mc7->name,
1550 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1551 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1552 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1553 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1554 }
1555
1556 if (cause & F_UE) {
1557 mc7->stats.uncorr_err++;
1558 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1559 "data 0x%x 0x%x 0x%x\n", mc7->name,
1560 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1561 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1562 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1563 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1564 }
1565
1566 if (G_PE(cause)) {
1567 mc7->stats.parity_err++;
1568 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1569 mc7->name, G_PE(cause));
1570 }
1571
1572 if (cause & F_AE) {
1573 u32 addr = 0;
1574
1575 if (adapter->params.rev > 0)
1576 addr = t3_read_reg(adapter,
1577 mc7->offset + A_MC7_ERR_ADDR);
1578 mc7->stats.addr_err++;
1579 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1580 mc7->name, addr);
1581 }
1582
1583 if (cause & MC7_INTR_FATAL)
1584 t3_fatal_err(adapter);
1585
1586 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1587}
1588
1589#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1590 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1591/*
1592 * XGMAC interrupt handler.
1593 */
1594static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1595{
1596 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1597 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
1598
1599 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1600 mac->stats.tx_fifo_parity_err++;
1601 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1602 }
1603 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1604 mac->stats.rx_fifo_parity_err++;
1605 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1606 }
1607 if (cause & F_TXFIFO_UNDERRUN)
1608 mac->stats.tx_fifo_urun++;
1609 if (cause & F_RXFIFO_OVERFLOW)
1610 mac->stats.rx_fifo_ovfl++;
1611 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1612 mac->stats.serdes_signal_loss++;
1613 if (cause & F_XAUIPCSCTCERR)
1614 mac->stats.xaui_pcs_ctc_err++;
1615 if (cause & F_XAUIPCSALIGNCHANGE)
1616 mac->stats.xaui_pcs_align_change++;
1617
1618 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1619 if (cause & XGM_INTR_FATAL)
1620 t3_fatal_err(adap);
1621 return cause != 0;
1622}
1623
1624/*
1625 * Interrupt handler for PHY events.
1626 */
1627int t3_phy_intr_handler(struct adapter *adapter)
1628{
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001629 u32 mask, gpi = adapter_info(adapter)->gpio_intr;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001630 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1631
1632 for_each_port(adapter, i) {
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001633 struct port_info *p = adap2pinfo(adapter, i);
1634
1635 mask = gpi - (gpi & (gpi - 1));
1636 gpi -= mask;
1637
1638 if (!(p->port_type->caps & SUPPORTED_IRQ))
1639 continue;
1640
1641 if (cause & mask) {
1642 int phy_cause = p->phy.ops->intr_handler(&p->phy);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001643
1644 if (phy_cause & cphy_cause_link_change)
1645 t3_link_changed(adapter, i);
1646 if (phy_cause & cphy_cause_fifo_error)
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001647 p->phy.fifo_errors++;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001648 }
1649 }
1650
1651 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1652 return 0;
1653}
1654
1655/*
1656 * T3 slow path (non-data) interrupt handler.
1657 */
1658int t3_slow_intr_handler(struct adapter *adapter)
1659{
1660 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1661
1662 cause &= adapter->slow_intr_mask;
1663 if (!cause)
1664 return 0;
1665 if (cause & F_PCIM0) {
1666 if (is_pcie(adapter))
1667 pcie_intr_handler(adapter);
1668 else
1669 pci_intr_handler(adapter);
1670 }
1671 if (cause & F_SGE3)
1672 t3_sge_err_intr_handler(adapter);
1673 if (cause & F_MC7_PMRX)
1674 mc7_intr_handler(&adapter->pmrx);
1675 if (cause & F_MC7_PMTX)
1676 mc7_intr_handler(&adapter->pmtx);
1677 if (cause & F_MC7_CM)
1678 mc7_intr_handler(&adapter->cm);
1679 if (cause & F_CIM)
1680 cim_intr_handler(adapter);
1681 if (cause & F_TP1)
1682 tp_intr_handler(adapter);
1683 if (cause & F_ULP2_RX)
1684 ulprx_intr_handler(adapter);
1685 if (cause & F_ULP2_TX)
1686 ulptx_intr_handler(adapter);
1687 if (cause & F_PM1_RX)
1688 pmrx_intr_handler(adapter);
1689 if (cause & F_PM1_TX)
1690 pmtx_intr_handler(adapter);
1691 if (cause & F_CPL_SWITCH)
1692 cplsw_intr_handler(adapter);
1693 if (cause & F_MPS0)
1694 mps_intr_handler(adapter);
1695 if (cause & F_MC5A)
1696 t3_mc5_intr_handler(&adapter->mc5);
1697 if (cause & F_XGMAC0_0)
1698 mac_intr_handler(adapter, 0);
1699 if (cause & F_XGMAC0_1)
1700 mac_intr_handler(adapter, 1);
1701 if (cause & F_T3DBG)
1702 t3_os_ext_intr_handler(adapter);
1703
1704 /* Clear the interrupts just processed. */
1705 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1706 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1707 return 1;
1708}
1709
1710/**
1711 * t3_intr_enable - enable interrupts
1712 * @adapter: the adapter whose interrupts should be enabled
1713 *
1714 * Enable interrupts by setting the interrupt enable registers of the
1715 * various HW modules and then enabling the top-level interrupt
1716 * concentrator.
1717 */
1718void t3_intr_enable(struct adapter *adapter)
1719{
1720 static const struct addr_val_pair intr_en_avp[] = {
1721 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1722 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1723 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1724 MC7_INTR_MASK},
1725 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1726 MC7_INTR_MASK},
1727 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1728 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1729 {A_TP_INT_ENABLE, 0x3bfffff},
1730 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1731 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1732 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1733 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1734 };
1735
1736 adapter->slow_intr_mask = PL_INTR_MASK;
1737
1738 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1739
1740 if (adapter->params.rev > 0) {
1741 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1742 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1743 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1744 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1745 F_PBL_BOUND_ERR_CH1);
1746 } else {
1747 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1748 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1749 }
1750
1751 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
1752 adapter_info(adapter)->gpio_intr);
1753 t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
1754 adapter_info(adapter)->gpio_intr);
1755 if (is_pcie(adapter))
1756 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1757 else
1758 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1759 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1760 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1761}
1762
1763/**
1764 * t3_intr_disable - disable a card's interrupts
1765 * @adapter: the adapter whose interrupts should be disabled
1766 *
1767 * Disable interrupts. We only disable the top-level interrupt
1768 * concentrator and the SGE data interrupts.
1769 */
1770void t3_intr_disable(struct adapter *adapter)
1771{
1772 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
1773 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1774 adapter->slow_intr_mask = 0;
1775}
1776
1777/**
1778 * t3_intr_clear - clear all interrupts
1779 * @adapter: the adapter whose interrupts should be cleared
1780 *
1781 * Clears all interrupts.
1782 */
1783void t3_intr_clear(struct adapter *adapter)
1784{
1785 static const unsigned int cause_reg_addr[] = {
1786 A_SG_INT_CAUSE,
1787 A_SG_RSPQ_FL_STATUS,
1788 A_PCIX_INT_CAUSE,
1789 A_MC7_INT_CAUSE,
1790 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1791 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1792 A_CIM_HOST_INT_CAUSE,
1793 A_TP_INT_CAUSE,
1794 A_MC5_DB_INT_CAUSE,
1795 A_ULPRX_INT_CAUSE,
1796 A_ULPTX_INT_CAUSE,
1797 A_CPL_INTR_CAUSE,
1798 A_PM1_TX_INT_CAUSE,
1799 A_PM1_RX_INT_CAUSE,
1800 A_MPS_INT_CAUSE,
1801 A_T3DBG_INT_CAUSE,
1802 };
1803 unsigned int i;
1804
1805 /* Clear PHY and MAC interrupts for each port. */
1806 for_each_port(adapter, i)
1807 t3_port_intr_clear(adapter, i);
1808
1809 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
1810 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
1811
1812 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
1813 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1814}
1815
1816/**
1817 * t3_port_intr_enable - enable port-specific interrupts
1818 * @adapter: associated adapter
1819 * @idx: index of port whose interrupts should be enabled
1820 *
1821 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
1822 * adapter port.
1823 */
1824void t3_port_intr_enable(struct adapter *adapter, int idx)
1825{
1826 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1827
1828 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
1829 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1830 phy->ops->intr_enable(phy);
1831}
1832
1833/**
1834 * t3_port_intr_disable - disable port-specific interrupts
1835 * @adapter: associated adapter
1836 * @idx: index of port whose interrupts should be disabled
1837 *
1838 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
1839 * adapter port.
1840 */
1841void t3_port_intr_disable(struct adapter *adapter, int idx)
1842{
1843 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1844
1845 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
1846 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1847 phy->ops->intr_disable(phy);
1848}
1849
1850/**
1851 * t3_port_intr_clear - clear port-specific interrupts
1852 * @adapter: associated adapter
1853 * @idx: index of port whose interrupts to clear
1854 *
1855 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
1856 * adapter port.
1857 */
1858void t3_port_intr_clear(struct adapter *adapter, int idx)
1859{
1860 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1861
1862 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
1863 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
1864 phy->ops->intr_clear(phy);
1865}
1866
1867/**
1868 * t3_sge_write_context - write an SGE context
1869 * @adapter: the adapter
1870 * @id: the context id
1871 * @type: the context type
1872 *
1873 * Program an SGE context with the values already loaded in the
1874 * CONTEXT_DATA? registers.
1875 */
1876static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
1877 unsigned int type)
1878{
1879 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
1880 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
1881 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
1882 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
1883 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1884 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
1885 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1886 0, 5, 1);
1887}
1888
1889/**
1890 * t3_sge_init_ecntxt - initialize an SGE egress context
1891 * @adapter: the adapter to configure
1892 * @id: the context id
1893 * @gts_enable: whether to enable GTS for the context
1894 * @type: the egress context type
1895 * @respq: associated response queue
1896 * @base_addr: base address of queue
1897 * @size: number of queue entries
1898 * @token: uP token
1899 * @gen: initial generation value for the context
1900 * @cidx: consumer pointer
1901 *
1902 * Initialize an SGE egress context and make it ready for use. If the
1903 * platform allows concurrent context operations, the caller is
1904 * responsible for appropriate locking.
1905 */
1906int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
1907 enum sge_context_type type, int respq, u64 base_addr,
1908 unsigned int size, unsigned int token, int gen,
1909 unsigned int cidx)
1910{
1911 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
1912
1913 if (base_addr & 0xfff) /* must be 4K aligned */
1914 return -EINVAL;
1915 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1916 return -EBUSY;
1917
1918 base_addr >>= 12;
1919 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
1920 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
1921 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
1922 V_EC_BASE_LO(base_addr & 0xffff));
1923 base_addr >>= 16;
1924 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
1925 base_addr >>= 32;
1926 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1927 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
1928 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
1929 F_EC_VALID);
1930 return t3_sge_write_context(adapter, id, F_EGRESS);
1931}
1932
1933/**
1934 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
1935 * @adapter: the adapter to configure
1936 * @id: the context id
1937 * @gts_enable: whether to enable GTS for the context
1938 * @base_addr: base address of queue
1939 * @size: number of queue entries
1940 * @bsize: size of each buffer for this queue
1941 * @cong_thres: threshold to signal congestion to upstream producers
1942 * @gen: initial generation value for the context
1943 * @cidx: consumer pointer
1944 *
1945 * Initialize an SGE free list context and make it ready for use. The
1946 * caller is responsible for ensuring only one context operation occurs
1947 * at a time.
1948 */
1949int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
1950 int gts_enable, u64 base_addr, unsigned int size,
1951 unsigned int bsize, unsigned int cong_thres, int gen,
1952 unsigned int cidx)
1953{
1954 if (base_addr & 0xfff) /* must be 4K aligned */
1955 return -EINVAL;
1956 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1957 return -EBUSY;
1958
1959 base_addr >>= 12;
1960 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
1961 base_addr >>= 32;
1962 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
1963 V_FL_BASE_HI((u32) base_addr) |
1964 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
1965 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
1966 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
1967 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
1968 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1969 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
1970 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
1971 return t3_sge_write_context(adapter, id, F_FREELIST);
1972}
1973
1974/**
1975 * t3_sge_init_rspcntxt - initialize an SGE response queue context
1976 * @adapter: the adapter to configure
1977 * @id: the context id
1978 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
1979 * @base_addr: base address of queue
1980 * @size: number of queue entries
1981 * @fl_thres: threshold for selecting the normal or jumbo free list
1982 * @gen: initial generation value for the context
1983 * @cidx: consumer pointer
1984 *
1985 * Initialize an SGE response queue context and make it ready for use.
1986 * The caller is responsible for ensuring only one context operation
1987 * occurs at a time.
1988 */
1989int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
1990 int irq_vec_idx, u64 base_addr, unsigned int size,
1991 unsigned int fl_thres, int gen, unsigned int cidx)
1992{
1993 unsigned int intr = 0;
1994
1995 if (base_addr & 0xfff) /* must be 4K aligned */
1996 return -EINVAL;
1997 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1998 return -EBUSY;
1999
2000 base_addr >>= 12;
2001 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2002 V_CQ_INDEX(cidx));
2003 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2004 base_addr >>= 32;
2005 if (irq_vec_idx >= 0)
2006 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2007 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2008 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2009 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2010 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2011}
2012
2013/**
2014 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2015 * @adapter: the adapter to configure
2016 * @id: the context id
2017 * @base_addr: base address of queue
2018 * @size: number of queue entries
2019 * @rspq: response queue for async notifications
2020 * @ovfl_mode: CQ overflow mode
2021 * @credits: completion queue credits
2022 * @credit_thres: the credit threshold
2023 *
2024 * Initialize an SGE completion queue context and make it ready for use.
2025 * The caller is responsible for ensuring only one context operation
2026 * occurs at a time.
2027 */
2028int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2029 unsigned int size, int rspq, int ovfl_mode,
2030 unsigned int credits, unsigned int credit_thres)
2031{
2032 if (base_addr & 0xfff) /* must be 4K aligned */
2033 return -EINVAL;
2034 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2035 return -EBUSY;
2036
2037 base_addr >>= 12;
2038 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2039 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2040 base_addr >>= 32;
2041 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2042 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2043 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
2044 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2045 V_CQ_CREDIT_THRES(credit_thres));
2046 return t3_sge_write_context(adapter, id, F_CQ);
2047}
2048
2049/**
2050 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2051 * @adapter: the adapter
2052 * @id: the egress context id
2053 * @enable: enable (1) or disable (0) the context
2054 *
2055 * Enable or disable an SGE egress context. The caller is responsible for
2056 * ensuring only one context operation occurs at a time.
2057 */
2058int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2059{
2060 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2061 return -EBUSY;
2062
2063 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2064 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2065 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2066 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2067 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2068 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2069 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2070 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2071 0, 5, 1);
2072}
2073
2074/**
2075 * t3_sge_disable_fl - disable an SGE free-buffer list
2076 * @adapter: the adapter
2077 * @id: the free list context id
2078 *
2079 * Disable an SGE free-buffer list. The caller is responsible for
2080 * ensuring only one context operation occurs at a time.
2081 */
2082int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2083{
2084 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2085 return -EBUSY;
2086
2087 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2088 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2089 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2090 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2091 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2092 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2093 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2094 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2095 0, 5, 1);
2096}
2097
2098/**
2099 * t3_sge_disable_rspcntxt - disable an SGE response queue
2100 * @adapter: the adapter
2101 * @id: the response queue context id
2102 *
2103 * Disable an SGE response queue. The caller is responsible for
2104 * ensuring only one context operation occurs at a time.
2105 */
2106int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2107{
2108 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2109 return -EBUSY;
2110
2111 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2112 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2113 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2114 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2115 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2116 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2117 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2118 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2119 0, 5, 1);
2120}
2121
2122/**
2123 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2124 * @adapter: the adapter
2125 * @id: the completion queue context id
2126 *
2127 * Disable an SGE completion queue. The caller is responsible for
2128 * ensuring only one context operation occurs at a time.
2129 */
2130int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2131{
2132 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2133 return -EBUSY;
2134
2135 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2136 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2137 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2138 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2139 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2140 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2141 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2142 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2143 0, 5, 1);
2144}
2145
2146/**
2147 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2148 * @adapter: the adapter
2149 * @id: the context id
2150 * @op: the operation to perform
2151 *
2152 * Perform the selected operation on an SGE completion queue context.
2153 * The caller is responsible for ensuring only one context operation
2154 * occurs at a time.
2155 */
2156int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2157 unsigned int credits)
2158{
2159 u32 val;
2160
2161 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2162 return -EBUSY;
2163
2164 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2165 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2166 V_CONTEXT(id) | F_CQ);
2167 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2168 0, 5, 1, &val))
2169 return -EIO;
2170
2171 if (op >= 2 && op < 7) {
2172 if (adapter->params.rev > 0)
2173 return G_CQ_INDEX(val);
2174
2175 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2176 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2177 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2178 F_CONTEXT_CMD_BUSY, 0, 5, 1))
2179 return -EIO;
2180 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2181 }
2182 return 0;
2183}
2184
2185/**
2186 * t3_sge_read_context - read an SGE context
2187 * @type: the context type
2188 * @adapter: the adapter
2189 * @id: the context id
2190 * @data: holds the retrieved context
2191 *
2192 * Read an SGE egress context. The caller is responsible for ensuring
2193 * only one context operation occurs at a time.
2194 */
2195static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2196 unsigned int id, u32 data[4])
2197{
2198 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2199 return -EBUSY;
2200
2201 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2202 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2203 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2204 5, 1))
2205 return -EIO;
2206 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2207 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2208 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2209 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2210 return 0;
2211}
2212
2213/**
2214 * t3_sge_read_ecntxt - read an SGE egress context
2215 * @adapter: the adapter
2216 * @id: the context id
2217 * @data: holds the retrieved context
2218 *
2219 * Read an SGE egress context. The caller is responsible for ensuring
2220 * only one context operation occurs at a time.
2221 */
2222int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2223{
2224 if (id >= 65536)
2225 return -EINVAL;
2226 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2227}
2228
2229/**
2230 * t3_sge_read_cq - read an SGE CQ context
2231 * @adapter: the adapter
2232 * @id: the context id
2233 * @data: holds the retrieved context
2234 *
2235 * Read an SGE CQ context. The caller is responsible for ensuring
2236 * only one context operation occurs at a time.
2237 */
2238int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2239{
2240 if (id >= 65536)
2241 return -EINVAL;
2242 return t3_sge_read_context(F_CQ, adapter, id, data);
2243}
2244
2245/**
2246 * t3_sge_read_fl - read an SGE free-list context
2247 * @adapter: the adapter
2248 * @id: the context id
2249 * @data: holds the retrieved context
2250 *
2251 * Read an SGE free-list context. The caller is responsible for ensuring
2252 * only one context operation occurs at a time.
2253 */
2254int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2255{
2256 if (id >= SGE_QSETS * 2)
2257 return -EINVAL;
2258 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2259}
2260
2261/**
2262 * t3_sge_read_rspq - read an SGE response queue context
2263 * @adapter: the adapter
2264 * @id: the context id
2265 * @data: holds the retrieved context
2266 *
2267 * Read an SGE response queue context. The caller is responsible for
2268 * ensuring only one context operation occurs at a time.
2269 */
2270int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2271{
2272 if (id >= SGE_QSETS)
2273 return -EINVAL;
2274 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2275}
2276
2277/**
2278 * t3_config_rss - configure Rx packet steering
2279 * @adapter: the adapter
2280 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2281 * @cpus: values for the CPU lookup table (0xff terminated)
2282 * @rspq: values for the response queue lookup table (0xffff terminated)
2283 *
2284 * Programs the receive packet steering logic. @cpus and @rspq provide
2285 * the values for the CPU and response queue lookup tables. If they
2286 * provide fewer values than the size of the tables the supplied values
2287 * are used repeatedly until the tables are fully populated.
2288 */
2289void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2290 const u8 * cpus, const u16 *rspq)
2291{
2292 int i, j, cpu_idx = 0, q_idx = 0;
2293
2294 if (cpus)
2295 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2296 u32 val = i << 16;
2297
2298 for (j = 0; j < 2; ++j) {
2299 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2300 if (cpus[cpu_idx] == 0xff)
2301 cpu_idx = 0;
2302 }
2303 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2304 }
2305
2306 if (rspq)
2307 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2308 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2309 (i << 16) | rspq[q_idx++]);
2310 if (rspq[q_idx] == 0xffff)
2311 q_idx = 0;
2312 }
2313
2314 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2315}
2316
2317/**
2318 * t3_read_rss - read the contents of the RSS tables
2319 * @adapter: the adapter
2320 * @lkup: holds the contents of the RSS lookup table
2321 * @map: holds the contents of the RSS map table
2322 *
2323 * Reads the contents of the receive packet steering tables.
2324 */
2325int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2326{
2327 int i;
2328 u32 val;
2329
2330 if (lkup)
2331 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2332 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2333 0xffff0000 | i);
2334 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2335 if (!(val & 0x80000000))
2336 return -EAGAIN;
2337 *lkup++ = val;
2338 *lkup++ = (val >> 8);
2339 }
2340
2341 if (map)
2342 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2343 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2344 0xffff0000 | i);
2345 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2346 if (!(val & 0x80000000))
2347 return -EAGAIN;
2348 *map++ = val;
2349 }
2350 return 0;
2351}
2352
2353/**
2354 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2355 * @adap: the adapter
2356 * @enable: 1 to select offload mode, 0 for regular NIC
2357 *
2358 * Switches TP to NIC/offload mode.
2359 */
2360void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2361{
2362 if (is_offload(adap) || !enable)
2363 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2364 V_NICMODE(!enable));
2365}
2366
2367/**
2368 * pm_num_pages - calculate the number of pages of the payload memory
2369 * @mem_size: the size of the payload memory
2370 * @pg_size: the size of each payload memory page
2371 *
2372 * Calculate the number of pages, each of the given size, that fit in a
2373 * memory of the specified size, respecting the HW requirement that the
2374 * number of pages must be a multiple of 24.
2375 */
2376static inline unsigned int pm_num_pages(unsigned int mem_size,
2377 unsigned int pg_size)
2378{
2379 unsigned int n = mem_size / pg_size;
2380
2381 return n - n % 24;
2382}
2383
2384#define mem_region(adap, start, size, reg) \
2385 t3_write_reg((adap), A_ ## reg, (start)); \
2386 start += size
2387
2388/*
2389 * partition_mem - partition memory and configure TP memory settings
2390 * @adap: the adapter
2391 * @p: the TP parameters
2392 *
2393 * Partitions context and payload memory and configures TP's memory
2394 * registers.
2395 */
2396static void partition_mem(struct adapter *adap, const struct tp_params *p)
2397{
2398 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2399 unsigned int timers = 0, timers_shift = 22;
2400
2401 if (adap->params.rev > 0) {
2402 if (tids <= 16 * 1024) {
2403 timers = 1;
2404 timers_shift = 16;
2405 } else if (tids <= 64 * 1024) {
2406 timers = 2;
2407 timers_shift = 18;
2408 } else if (tids <= 256 * 1024) {
2409 timers = 3;
2410 timers_shift = 20;
2411 }
2412 }
2413
2414 t3_write_reg(adap, A_TP_PMM_SIZE,
2415 p->chan_rx_size | (p->chan_tx_size >> 16));
2416
2417 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2418 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2419 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2420 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2421 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2422
2423 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2424 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2425 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2426
2427 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2428 /* Add a bit of headroom and make multiple of 24 */
2429 pstructs += 48;
2430 pstructs -= pstructs % 24;
2431 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2432
2433 m = tids * TCB_SIZE;
2434 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2435 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2436 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2437 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2438 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2439 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2440 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2441 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2442
2443 m = (m + 4095) & ~0xfff;
2444 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2445 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2446
2447 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2448 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2449 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2450 if (tids < m)
2451 adap->params.mc5.nservers += m - tids;
2452}
2453
2454static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2455 u32 val)
2456{
2457 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2458 t3_write_reg(adap, A_TP_PIO_DATA, val);
2459}
2460
2461static void tp_config(struct adapter *adap, const struct tp_params *p)
2462{
Divy Le Ray4d22de32007-01-18 22:04:14 -05002463 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2464 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2465 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2466 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2467 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002468 V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
Divy Le Ray4d22de32007-01-18 22:04:14 -05002469 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2470 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2471 V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
2472 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2473 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
2474 F_IPV6ENABLE | F_NICMODE);
2475 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2476 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002477 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2478 adap->params.rev > 0 ? F_ENABLEESND :
2479 F_T3A_ENABLEESND);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002480
Divy Le Ray3b1d3072007-01-30 19:44:07 -08002481 t3_set_reg_field(adap, A_TP_PC_CONFIG,
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002482 F_ENABLEEPCMDAFULL,
2483 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2484 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
Divy Le Ray3b1d3072007-01-30 19:44:07 -08002485 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002486 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2487 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2488
Divy Le Ray4d22de32007-01-18 22:04:14 -05002489 if (adap->params.rev > 0) {
2490 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2491 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2492 F_TXPACEAUTO);
2493 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2494 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2495 } else
2496 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2497
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002498 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2499 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2500 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2501 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002502}
2503
2504/* Desired TP timer resolution in usec */
2505#define TP_TMR_RES 50
2506
2507/* TCP timer values in ms */
2508#define TP_DACK_TIMER 50
2509#define TP_RTO_MIN 250
2510
2511/**
2512 * tp_set_timers - set TP timing parameters
2513 * @adap: the adapter to set
2514 * @core_clk: the core clock frequency in Hz
2515 *
2516 * Set TP's timing parameters, such as the various timer resolutions and
2517 * the TCP timer values.
2518 */
2519static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2520{
2521 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2522 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2523 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2524 unsigned int tps = core_clk >> tre;
2525
2526 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2527 V_DELAYEDACKRESOLUTION(dack_re) |
2528 V_TIMESTAMPRESOLUTION(tstamp_re));
2529 t3_write_reg(adap, A_TP_DACK_TIMER,
2530 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2531 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2532 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2533 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2534 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2535 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2536 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2537 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2538 V_KEEPALIVEMAX(9));
2539
2540#define SECONDS * tps
2541
2542 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2543 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2544 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2545 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2546 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2547 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2548 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2549 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2550 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2551
2552#undef SECONDS
2553}
2554
2555/**
2556 * t3_tp_set_coalescing_size - set receive coalescing size
2557 * @adap: the adapter
2558 * @size: the receive coalescing size
2559 * @psh: whether a set PSH bit should deliver coalesced data
2560 *
2561 * Set the receive coalescing size and PSH bit handling.
2562 */
2563int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2564{
2565 u32 val;
2566
2567 if (size > MAX_RX_COALESCING_LEN)
2568 return -EINVAL;
2569
2570 val = t3_read_reg(adap, A_TP_PARA_REG3);
2571 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2572
2573 if (size) {
2574 val |= F_RXCOALESCEENABLE;
2575 if (psh)
2576 val |= F_RXCOALESCEPSHEN;
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002577 size = min(MAX_RX_COALESCING_LEN, size);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002578 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2579 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2580 }
2581 t3_write_reg(adap, A_TP_PARA_REG3, val);
2582 return 0;
2583}
2584
2585/**
2586 * t3_tp_set_max_rxsize - set the max receive size
2587 * @adap: the adapter
2588 * @size: the max receive size
2589 *
2590 * Set TP's max receive size. This is the limit that applies when
2591 * receive coalescing is disabled.
2592 */
2593void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2594{
2595 t3_write_reg(adap, A_TP_PARA_REG7,
2596 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2597}
2598
2599static void __devinit init_mtus(unsigned short mtus[])
2600{
2601 /*
2602 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2603 * it can accomodate max size TCP/IP headers when SACK and timestamps
2604 * are enabled and still have at least 8 bytes of payload.
2605 */
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002606 mtus[1] = 88;
2607 mtus[1] = 88;
2608 mtus[2] = 256;
2609 mtus[3] = 512;
2610 mtus[4] = 576;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002611 mtus[5] = 1024;
2612 mtus[6] = 1280;
2613 mtus[7] = 1492;
2614 mtus[8] = 1500;
2615 mtus[9] = 2002;
2616 mtus[10] = 2048;
2617 mtus[11] = 4096;
2618 mtus[12] = 4352;
2619 mtus[13] = 8192;
2620 mtus[14] = 9000;
2621 mtus[15] = 9600;
2622}
2623
2624/*
2625 * Initial congestion control parameters.
2626 */
2627static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
2628{
2629 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2630 a[9] = 2;
2631 a[10] = 3;
2632 a[11] = 4;
2633 a[12] = 5;
2634 a[13] = 6;
2635 a[14] = 7;
2636 a[15] = 8;
2637 a[16] = 9;
2638 a[17] = 10;
2639 a[18] = 14;
2640 a[19] = 17;
2641 a[20] = 21;
2642 a[21] = 25;
2643 a[22] = 30;
2644 a[23] = 35;
2645 a[24] = 45;
2646 a[25] = 60;
2647 a[26] = 80;
2648 a[27] = 100;
2649 a[28] = 200;
2650 a[29] = 300;
2651 a[30] = 400;
2652 a[31] = 500;
2653
2654 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2655 b[9] = b[10] = 1;
2656 b[11] = b[12] = 2;
2657 b[13] = b[14] = b[15] = b[16] = 3;
2658 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2659 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2660 b[28] = b[29] = 6;
2661 b[30] = b[31] = 7;
2662}
2663
2664/* The minimum additive increment value for the congestion control table */
2665#define CC_MIN_INCR 2U
2666
2667/**
2668 * t3_load_mtus - write the MTU and congestion control HW tables
2669 * @adap: the adapter
2670 * @mtus: the unrestricted values for the MTU table
2671 * @alphs: the values for the congestion control alpha parameter
2672 * @beta: the values for the congestion control beta parameter
2673 * @mtu_cap: the maximum permitted effective MTU
2674 *
2675 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2676 * Update the high-speed congestion control table with the supplied alpha,
2677 * beta, and MTUs.
2678 */
2679void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2680 unsigned short alpha[NCCTRL_WIN],
2681 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2682{
2683 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2684 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2685 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2686 28672, 40960, 57344, 81920, 114688, 163840, 229376
2687 };
2688
2689 unsigned int i, w;
2690
2691 for (i = 0; i < NMTUS; ++i) {
2692 unsigned int mtu = min(mtus[i], mtu_cap);
2693 unsigned int log2 = fls(mtu);
2694
2695 if (!(mtu & ((1 << log2) >> 2))) /* round */
2696 log2--;
2697 t3_write_reg(adap, A_TP_MTU_TABLE,
2698 (i << 24) | (log2 << 16) | mtu);
2699
2700 for (w = 0; w < NCCTRL_WIN; ++w) {
2701 unsigned int inc;
2702
2703 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2704 CC_MIN_INCR);
2705
2706 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2707 (w << 16) | (beta[w] << 13) | inc);
2708 }
2709 }
2710}
2711
2712/**
2713 * t3_read_hw_mtus - returns the values in the HW MTU table
2714 * @adap: the adapter
2715 * @mtus: where to store the HW MTU values
2716 *
2717 * Reads the HW MTU table.
2718 */
2719void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
2720{
2721 int i;
2722
2723 for (i = 0; i < NMTUS; ++i) {
2724 unsigned int val;
2725
2726 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
2727 val = t3_read_reg(adap, A_TP_MTU_TABLE);
2728 mtus[i] = val & 0x3fff;
2729 }
2730}
2731
2732/**
2733 * t3_get_cong_cntl_tab - reads the congestion control table
2734 * @adap: the adapter
2735 * @incr: where to store the alpha values
2736 *
2737 * Reads the additive increments programmed into the HW congestion
2738 * control table.
2739 */
2740void t3_get_cong_cntl_tab(struct adapter *adap,
2741 unsigned short incr[NMTUS][NCCTRL_WIN])
2742{
2743 unsigned int mtu, w;
2744
2745 for (mtu = 0; mtu < NMTUS; ++mtu)
2746 for (w = 0; w < NCCTRL_WIN; ++w) {
2747 t3_write_reg(adap, A_TP_CCTRL_TABLE,
2748 0xffff0000 | (mtu << 5) | w);
2749 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
2750 0x1fff;
2751 }
2752}
2753
2754/**
2755 * t3_tp_get_mib_stats - read TP's MIB counters
2756 * @adap: the adapter
2757 * @tps: holds the returned counter values
2758 *
2759 * Returns the values of TP's MIB counters.
2760 */
2761void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2762{
2763 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2764 sizeof(*tps) / sizeof(u32), 0);
2765}
2766
2767#define ulp_region(adap, name, start, len) \
2768 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2769 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2770 (start) + (len) - 1); \
2771 start += len
2772
2773#define ulptx_region(adap, name, start, len) \
2774 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2775 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2776 (start) + (len) - 1)
2777
2778static void ulp_config(struct adapter *adap, const struct tp_params *p)
2779{
2780 unsigned int m = p->chan_rx_size;
2781
2782 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2783 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2784 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2785 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2786 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2787 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2788 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2789 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2790}
2791
Divy Le Ray480fe1a2007-05-30 21:10:58 -07002792/**
2793 * t3_set_proto_sram - set the contents of the protocol sram
2794 * @adapter: the adapter
2795 * @data: the protocol image
2796 *
2797 * Write the contents of the protocol SRAM.
2798 */
2799int t3_set_proto_sram(struct adapter *adap, u8 *data)
2800{
2801 int i;
2802 u32 *buf = (u32 *)data;
2803
2804 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2805 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++));
2806 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++));
2807 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++));
2808 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++));
2809 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++));
2810
2811 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2812 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2813 return -EIO;
2814 }
2815 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2816
2817 return 0;
2818}
2819
Divy Le Ray4d22de32007-01-18 22:04:14 -05002820void t3_config_trace_filter(struct adapter *adapter,
2821 const struct trace_params *tp, int filter_index,
2822 int invert, int enable)
2823{
2824 u32 addr, key[4], mask[4];
2825
2826 key[0] = tp->sport | (tp->sip << 16);
2827 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2828 key[2] = tp->dip;
2829 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2830
2831 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2832 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2833 mask[2] = tp->dip_mask;
2834 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2835
2836 if (invert)
2837 key[3] |= (1 << 29);
2838 if (enable)
2839 key[3] |= (1 << 28);
2840
2841 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2842 tp_wr_indirect(adapter, addr++, key[0]);
2843 tp_wr_indirect(adapter, addr++, mask[0]);
2844 tp_wr_indirect(adapter, addr++, key[1]);
2845 tp_wr_indirect(adapter, addr++, mask[1]);
2846 tp_wr_indirect(adapter, addr++, key[2]);
2847 tp_wr_indirect(adapter, addr++, mask[2]);
2848 tp_wr_indirect(adapter, addr++, key[3]);
2849 tp_wr_indirect(adapter, addr, mask[3]);
2850 t3_read_reg(adapter, A_TP_PIO_DATA);
2851}
2852
2853/**
2854 * t3_config_sched - configure a HW traffic scheduler
2855 * @adap: the adapter
2856 * @kbps: target rate in Kbps
2857 * @sched: the scheduler index
2858 *
2859 * Configure a HW scheduler for the target rate
2860 */
2861int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
2862{
2863 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
2864 unsigned int clk = adap->params.vpd.cclk * 1000;
2865 unsigned int selected_cpt = 0, selected_bpt = 0;
2866
2867 if (kbps > 0) {
2868 kbps *= 125; /* -> bytes */
2869 for (cpt = 1; cpt <= 255; cpt++) {
2870 tps = clk / cpt;
2871 bpt = (kbps + tps / 2) / tps;
2872 if (bpt > 0 && bpt <= 255) {
2873 v = bpt * tps;
2874 delta = v >= kbps ? v - kbps : kbps - v;
2875 if (delta <= mindelta) {
2876 mindelta = delta;
2877 selected_cpt = cpt;
2878 selected_bpt = bpt;
2879 }
2880 } else if (selected_cpt)
2881 break;
2882 }
2883 if (!selected_cpt)
2884 return -EINVAL;
2885 }
2886 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
2887 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
2888 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
2889 if (sched & 1)
2890 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
2891 else
2892 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
2893 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
2894 return 0;
2895}
2896
2897static int tp_init(struct adapter *adap, const struct tp_params *p)
2898{
2899 int busy = 0;
2900
2901 tp_config(adap, p);
2902 t3_set_vlan_accel(adap, 3, 0);
2903
2904 if (is_offload(adap)) {
2905 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
2906 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
2907 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
2908 0, 1000, 5);
2909 if (busy)
2910 CH_ERR(adap, "TP initialization timed out\n");
2911 }
2912
2913 if (!busy)
2914 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
2915 return busy;
2916}
2917
2918int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
2919{
2920 if (port_mask & ~((1 << adap->params.nports) - 1))
2921 return -EINVAL;
2922 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
2923 port_mask << S_PORT0ACTIVE);
2924 return 0;
2925}
2926
2927/*
2928 * Perform the bits of HW initialization that are dependent on the number
2929 * of available ports.
2930 */
2931static void init_hw_for_avail_ports(struct adapter *adap, int nports)
2932{
2933 int i;
2934
2935 if (nports == 1) {
2936 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
2937 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
2938 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
2939 F_PORT0ACTIVE | F_ENFORCEPKT);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002940 t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002941 } else {
2942 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
2943 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
2944 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
2945 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
2946 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
2947 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
2948 F_ENFORCEPKT);
2949 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
2950 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
2951 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
2952 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
2953 for (i = 0; i < 16; i++)
2954 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
2955 (i << 16) | 0x1010);
2956 }
2957}
2958
2959static int calibrate_xgm(struct adapter *adapter)
2960{
2961 if (uses_xaui(adapter)) {
2962 unsigned int v, i;
2963
2964 for (i = 0; i < 5; ++i) {
2965 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
2966 t3_read_reg(adapter, A_XGM_XAUI_IMP);
2967 msleep(1);
2968 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
2969 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
2970 t3_write_reg(adapter, A_XGM_XAUI_IMP,
2971 V_XAUIIMP(G_CALIMP(v) >> 2));
2972 return 0;
2973 }
2974 }
2975 CH_ERR(adapter, "MAC calibration failed\n");
2976 return -1;
2977 } else {
2978 t3_write_reg(adapter, A_XGM_RGMII_IMP,
2979 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2980 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
2981 F_XGM_IMPSETUPDATE);
2982 }
2983 return 0;
2984}
2985
2986static void calibrate_xgm_t3b(struct adapter *adapter)
2987{
2988 if (!uses_xaui(adapter)) {
2989 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
2990 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2991 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
2992 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
2993 F_XGM_IMPSETUPDATE);
2994 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
2995 0);
2996 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
2997 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
2998 }
2999}
3000
3001struct mc7_timing_params {
3002 unsigned char ActToPreDly;
3003 unsigned char ActToRdWrDly;
3004 unsigned char PreCyc;
3005 unsigned char RefCyc[5];
3006 unsigned char BkCyc;
3007 unsigned char WrToRdDly;
3008 unsigned char RdToWrDly;
3009};
3010
3011/*
3012 * Write a value to a register and check that the write completed. These
3013 * writes normally complete in a cycle or two, so one read should suffice.
3014 * The very first read exists to flush the posted write to the device.
3015 */
3016static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3017{
3018 t3_write_reg(adapter, addr, val);
3019 t3_read_reg(adapter, addr); /* flush */
3020 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3021 return 0;
3022 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3023 return -EIO;
3024}
3025
3026static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3027{
3028 static const unsigned int mc7_mode[] = {
3029 0x632, 0x642, 0x652, 0x432, 0x442
3030 };
3031 static const struct mc7_timing_params mc7_timings[] = {
3032 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3033 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3034 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3035 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3036 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3037 };
3038
3039 u32 val;
3040 unsigned int width, density, slow, attempts;
3041 struct adapter *adapter = mc7->adapter;
3042 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3043
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003044 if (!mc7->size)
3045 return 0;
3046
Divy Le Ray4d22de32007-01-18 22:04:14 -05003047 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3048 slow = val & F_SLOW;
3049 width = G_WIDTH(val);
3050 density = G_DEN(val);
3051
3052 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3053 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3054 msleep(1);
3055
3056 if (!slow) {
3057 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3058 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3059 msleep(1);
3060 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3061 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3062 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3063 mc7->name);
3064 goto out_fail;
3065 }
3066 }
3067
3068 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3069 V_ACTTOPREDLY(p->ActToPreDly) |
3070 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3071 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3072 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3073
3074 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3075 val | F_CLKEN | F_TERM150);
3076 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3077
3078 if (!slow)
3079 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3080 F_DLLENB);
3081 udelay(1);
3082
3083 val = slow ? 3 : 6;
3084 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3085 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3086 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3087 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3088 goto out_fail;
3089
3090 if (!slow) {
3091 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3092 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3093 udelay(5);
3094 }
3095
3096 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3097 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3098 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3099 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3100 mc7_mode[mem_type]) ||
3101 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3102 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3103 goto out_fail;
3104
3105 /* clock value is in KHz */
3106 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3107 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3108
3109 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3110 F_PERREFEN | V_PREREFDIV(mc7_clock));
3111 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3112
3113 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3114 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3115 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3116 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3117 (mc7->size << width) - 1);
3118 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3119 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3120
3121 attempts = 50;
3122 do {
3123 msleep(250);
3124 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3125 } while ((val & F_BUSY) && --attempts);
3126 if (val & F_BUSY) {
3127 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3128 goto out_fail;
3129 }
3130
3131 /* Enable normal memory accesses. */
3132 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3133 return 0;
3134
3135out_fail:
3136 return -1;
3137}
3138
3139static void config_pcie(struct adapter *adap)
3140{
3141 static const u16 ack_lat[4][6] = {
3142 {237, 416, 559, 1071, 2095, 4143},
3143 {128, 217, 289, 545, 1057, 2081},
3144 {73, 118, 154, 282, 538, 1050},
3145 {67, 107, 86, 150, 278, 534}
3146 };
3147 static const u16 rpl_tmr[4][6] = {
3148 {711, 1248, 1677, 3213, 6285, 12429},
3149 {384, 651, 867, 1635, 3171, 6243},
3150 {219, 354, 462, 846, 1614, 3150},
3151 {201, 321, 258, 450, 834, 1602}
3152 };
3153
3154 u16 val;
3155 unsigned int log2_width, pldsize;
3156 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3157
3158 pci_read_config_word(adap->pdev,
3159 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3160 &val);
3161 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3162 pci_read_config_word(adap->pdev,
3163 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3164 &val);
3165
3166 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3167 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3168 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3169 log2_width = fls(adap->params.pci.width) - 1;
3170 acklat = ack_lat[log2_width][pldsize];
3171 if (val & 1) /* check LOsEnable */
3172 acklat += fst_trn_tx * 4;
3173 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3174
3175 if (adap->params.rev == 0)
3176 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3177 V_T3A_ACKLAT(M_T3A_ACKLAT),
3178 V_T3A_ACKLAT(acklat));
3179 else
3180 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3181 V_ACKLAT(acklat));
3182
3183 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3184 V_REPLAYLMT(rpllmt));
3185
3186 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3187 t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
3188}
3189
3190/*
3191 * Initialize and configure T3 HW modules. This performs the
3192 * initialization steps that need to be done once after a card is reset.
3193 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3194 *
3195 * fw_params are passed to FW and their value is platform dependent. Only the
3196 * top 8 bits are available for use, the rest must be 0.
3197 */
3198int t3_init_hw(struct adapter *adapter, u32 fw_params)
3199{
3200 int err = -EIO, attempts = 100;
3201 const struct vpd_params *vpd = &adapter->params.vpd;
3202
3203 if (adapter->params.rev > 0)
3204 calibrate_xgm_t3b(adapter);
3205 else if (calibrate_xgm(adapter))
3206 goto out_err;
3207
3208 if (vpd->mclk) {
3209 partition_mem(adapter, &adapter->params.tp);
3210
3211 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3212 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3213 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3214 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3215 adapter->params.mc5.nfilters,
3216 adapter->params.mc5.nroutes))
3217 goto out_err;
3218 }
3219
3220 if (tp_init(adapter, &adapter->params.tp))
3221 goto out_err;
3222
3223 t3_tp_set_coalescing_size(adapter,
3224 min(adapter->params.sge.max_pkt_size,
3225 MAX_RX_COALESCING_LEN), 1);
3226 t3_tp_set_max_rxsize(adapter,
3227 min(adapter->params.sge.max_pkt_size, 16384U));
3228 ulp_config(adapter, &adapter->params.tp);
3229
3230 if (is_pcie(adapter))
3231 config_pcie(adapter);
3232 else
3233 t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
3234
Divy Le Ray8a9fab22007-05-30 21:10:52 -07003235 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
Divy Le Ray3f61e422007-08-21 20:49:41 -07003236 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3237 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003238 init_hw_for_avail_ports(adapter, adapter->params.nports);
3239 t3_sge_init(adapter, &adapter->params.sge);
3240
3241 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3242 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3243 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3244 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3245
3246 do { /* wait for uP to initialize */
3247 msleep(20);
3248 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003249 if (!attempts) {
3250 CH_ERR(adapter, "uP initialization timed out\n");
Divy Le Ray4d22de32007-01-18 22:04:14 -05003251 goto out_err;
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003252 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05003253
3254 err = 0;
3255out_err:
3256 return err;
3257}
3258
3259/**
3260 * get_pci_mode - determine a card's PCI mode
3261 * @adapter: the adapter
3262 * @p: where to store the PCI settings
3263 *
3264 * Determines a card's PCI mode and associated parameters, such as speed
3265 * and width.
3266 */
3267static void __devinit get_pci_mode(struct adapter *adapter,
3268 struct pci_params *p)
3269{
3270 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3271 u32 pci_mode, pcie_cap;
3272
3273 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3274 if (pcie_cap) {
3275 u16 val;
3276
3277 p->variant = PCI_VARIANT_PCIE;
3278 p->pcie_cap_addr = pcie_cap;
3279 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3280 &val);
3281 p->width = (val >> 4) & 0x3f;
3282 return;
3283 }
3284
3285 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3286 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3287 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3288 pci_mode = G_PCIXINITPAT(pci_mode);
3289 if (pci_mode == 0)
3290 p->variant = PCI_VARIANT_PCI;
3291 else if (pci_mode < 4)
3292 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3293 else if (pci_mode < 8)
3294 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3295 else
3296 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3297}
3298
3299/**
3300 * init_link_config - initialize a link's SW state
3301 * @lc: structure holding the link state
3302 * @ai: information about the current card
3303 *
3304 * Initializes the SW state maintained for each link, including the link's
3305 * capabilities and default speed/duplex/flow-control/autonegotiation
3306 * settings.
3307 */
3308static void __devinit init_link_config(struct link_config *lc,
3309 unsigned int caps)
3310{
3311 lc->supported = caps;
3312 lc->requested_speed = lc->speed = SPEED_INVALID;
3313 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3314 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3315 if (lc->supported & SUPPORTED_Autoneg) {
3316 lc->advertising = lc->supported;
3317 lc->autoneg = AUTONEG_ENABLE;
3318 lc->requested_fc |= PAUSE_AUTONEG;
3319 } else {
3320 lc->advertising = 0;
3321 lc->autoneg = AUTONEG_DISABLE;
3322 }
3323}
3324
3325/**
3326 * mc7_calc_size - calculate MC7 memory size
3327 * @cfg: the MC7 configuration
3328 *
3329 * Calculates the size of an MC7 memory in bytes from the value of its
3330 * configuration register.
3331 */
3332static unsigned int __devinit mc7_calc_size(u32 cfg)
3333{
3334 unsigned int width = G_WIDTH(cfg);
3335 unsigned int banks = !!(cfg & F_BKS) + 1;
3336 unsigned int org = !!(cfg & F_ORG) + 1;
3337 unsigned int density = G_DEN(cfg);
3338 unsigned int MBs = ((256 << density) * banks) / (org << width);
3339
3340 return MBs << 20;
3341}
3342
3343static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3344 unsigned int base_addr, const char *name)
3345{
3346 u32 cfg;
3347
3348 mc7->adapter = adapter;
3349 mc7->name = name;
3350 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3351 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003352 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003353 mc7->width = G_WIDTH(cfg);
3354}
3355
3356void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3357{
3358 mac->adapter = adapter;
3359 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3360 mac->nucast = 1;
3361
3362 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3363 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3364 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3365 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3366 F_ENRGMII, 0);
3367 }
3368}
3369
3370void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3371{
3372 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3373
3374 mi1_init(adapter, ai);
3375 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3376 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3377 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3378 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003379 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003380
3381 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3382 val |= F_ENRGMII;
3383
3384 /* Enable MAC clocks so we can access the registers */
3385 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3386 t3_read_reg(adapter, A_XGM_PORT_CFG);
3387
3388 val |= F_CLKDIVRESET_;
3389 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3390 t3_read_reg(adapter, A_XGM_PORT_CFG);
3391 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3392 t3_read_reg(adapter, A_XGM_PORT_CFG);
3393}
3394
3395/*
Divy Le Raye4d08352007-03-18 13:10:17 -07003396 * Reset the adapter.
3397 * Older PCIe cards lose their config space during reset, PCI-X
Divy Le Ray4d22de32007-01-18 22:04:14 -05003398 * ones don't.
3399 */
3400int t3_reset_adapter(struct adapter *adapter)
3401{
Divy Le Raye4d08352007-03-18 13:10:17 -07003402 int i, save_and_restore_pcie =
3403 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003404 uint16_t devid = 0;
3405
Divy Le Raye4d08352007-03-18 13:10:17 -07003406 if (save_and_restore_pcie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05003407 pci_save_state(adapter->pdev);
3408 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3409
3410 /*
3411 * Delay. Give Some time to device to reset fully.
3412 * XXX The delay time should be modified.
3413 */
3414 for (i = 0; i < 10; i++) {
3415 msleep(50);
3416 pci_read_config_word(adapter->pdev, 0x00, &devid);
3417 if (devid == 0x1425)
3418 break;
3419 }
3420
3421 if (devid != 0x1425)
3422 return -1;
3423
Divy Le Raye4d08352007-03-18 13:10:17 -07003424 if (save_and_restore_pcie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05003425 pci_restore_state(adapter->pdev);
3426 return 0;
3427}
3428
3429/*
3430 * Initialize adapter SW state for the various HW modules, set initial values
3431 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3432 * interface.
3433 */
3434int __devinit t3_prep_adapter(struct adapter *adapter,
3435 const struct adapter_info *ai, int reset)
3436{
3437 int ret;
3438 unsigned int i, j = 0;
3439
3440 get_pci_mode(adapter, &adapter->params.pci);
3441
3442 adapter->params.info = ai;
3443 adapter->params.nports = ai->nports;
3444 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3445 adapter->params.linkpoll_period = 0;
3446 adapter->params.stats_update_period = is_10G(adapter) ?
3447 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3448 adapter->params.pci.vpd_cap_addr =
3449 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3450 ret = get_vpd_params(adapter, &adapter->params.vpd);
3451 if (ret < 0)
3452 return ret;
3453
3454 if (reset && t3_reset_adapter(adapter))
3455 return -1;
3456
3457 t3_sge_prep(adapter, &adapter->params.sge);
3458
3459 if (adapter->params.vpd.mclk) {
3460 struct tp_params *p = &adapter->params.tp;
3461
3462 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3463 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3464 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3465
3466 p->nchan = ai->nports;
3467 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3468 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3469 p->cm_size = t3_mc7_size(&adapter->cm);
3470 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3471 p->chan_tx_size = p->pmtx_size / p->nchan;
3472 p->rx_pg_size = 64 * 1024;
3473 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3474 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3475 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3476 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3477 adapter->params.rev > 0 ? 12 : 6;
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003478 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05003479
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003480 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3481 t3_mc7_size(&adapter->pmtx) &&
3482 t3_mc7_size(&adapter->cm);
3483
3484 if (is_offload(adapter)) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05003485 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3486 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3487 DEFAULT_NFILTERS : 0;
3488 adapter->params.mc5.nroutes = 0;
3489 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3490
3491 init_mtus(adapter->params.mtus);
3492 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3493 }
3494
3495 early_hw_init(adapter, ai);
3496
3497 for_each_port(adapter, i) {
3498 u8 hw_addr[6];
3499 struct port_info *p = adap2pinfo(adapter, i);
3500
3501 while (!adapter->params.vpd.port_type[j])
3502 ++j;
3503
3504 p->port_type = &port_types[adapter->params.vpd.port_type[j]];
3505 p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3506 ai->mdio_ops);
3507 mac_prep(&p->mac, adapter, j);
3508 ++j;
3509
3510 /*
3511 * The VPD EEPROM stores the base Ethernet address for the
3512 * card. A port's address is derived from the base by adding
3513 * the port's index to the base's low octet.
3514 */
3515 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3516 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3517
3518 memcpy(adapter->port[i]->dev_addr, hw_addr,
3519 ETH_ALEN);
3520 memcpy(adapter->port[i]->perm_addr, hw_addr,
3521 ETH_ALEN);
3522 init_link_config(&p->link_config, p->port_type->caps);
3523 p->phy.ops->power_down(&p->phy, 1);
3524 if (!(p->port_type->caps & SUPPORTED_IRQ))
3525 adapter->params.linkpoll_period = 10;
3526 }
3527
3528 return 0;
3529}
3530
3531void t3_led_ready(struct adapter *adapter)
3532{
3533 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3534 F_GPIO0_OUT_VAL);
3535}