blob: 4bd53b360277b2b02835ca891d6b0a4cf7aa2713 [file] [log] [blame]
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 */
9
10#include <linux/module.h>
11#include <linux/clk.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/of_platform.h>
14#include <linux/iopoll.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19#include <asm/unaligned.h>
20
21#include <linux/dmaengine.h>
22#include <linux/dma-mapping.h>
23#include <linux/dma/pxa-dma.h>
24#include <linux/platform_data/mtd-nand-pxa3xx.h>
25
26/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27#define FIFO_DEPTH 8
28#define FIFO_REP(x) (x / sizeof(u32))
29#define BCH_SEQ_READS (32 / FIFO_DEPTH)
30/* NFC does not support transfers of larger chunks at a time */
31#define MAX_CHUNK_SIZE 2112
32/* NFCv1 cannot read more that 7 bytes of ID */
33#define NFCV1_READID_LEN 7
34/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35#define POLL_PERIOD 0
36#define POLL_TIMEOUT 100000
37/* Interrupt maximum wait period in ms */
38#define IRQ_TIMEOUT 1000
39/* Latency in clock cycles between SoC pins and NFC logic */
40#define MIN_RD_DEL_CNT 3
41/* Maximum number of contiguous address cycles */
42#define MAX_ADDRESS_CYC_NFCV1 5
43#define MAX_ADDRESS_CYC_NFCV2 7
44/* System control registers/bits to enable the NAND controller on some SoCs */
45#define GENCONF_SOC_DEVICE_MUX 0x208
46#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50#define GENCONF_CLK_GATING_CTRL 0x220
51#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52#define GENCONF_ND_CLK_CTRL 0x700
53#define GENCONF_ND_CLK_CTRL_EN BIT(0)
54
55/* NAND controller data flash control register */
56#define NDCR 0x00
57#define NDCR_ALL_INT GENMASK(11, 0)
58#define NDCR_CS1_CMDDM BIT(7)
59#define NDCR_CS0_CMDDM BIT(8)
60#define NDCR_RDYM BIT(11)
61#define NDCR_ND_ARB_EN BIT(12)
62#define NDCR_RA_START BIT(15)
63#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65#define NDCR_DWIDTH_M BIT(26)
66#define NDCR_DWIDTH_C BIT(27)
67#define NDCR_ND_RUN BIT(28)
68#define NDCR_DMA_EN BIT(29)
69#define NDCR_ECC_EN BIT(30)
70#define NDCR_SPARE_EN BIT(31)
71#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73
74/* NAND interface timing parameter 0 register */
75#define NDTR0 0x04
76#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79#define NDTR0_SEL_NRE_EDGE BIT(7)
80#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85#define NDTR0_SELCNTR BIT(26)
86#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
87
88/* NAND interface timing parameter 1 register */
89#define NDTR1 0x0C
90#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93#define NDTR1_PRESCALE BIT(14)
94#define NDTR1_WAIT_MODE BIT(15)
95#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
96
97/* NAND controller status register */
98#define NDSR 0x14
99#define NDSR_WRCMDREQ BIT(0)
100#define NDSR_RDDREQ BIT(1)
101#define NDSR_WRDREQ BIT(2)
102#define NDSR_CORERR BIT(3)
103#define NDSR_UNCERR BIT(4)
104#define NDSR_CMDD(cs) BIT(8 - cs)
105#define NDSR_RDY(rb) BIT(11 + rb)
106#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
107
108/* NAND ECC control register */
109#define NDECCCTRL 0x28
110#define NDECCCTRL_BCH_EN BIT(0)
111
112/* NAND controller data buffer register */
113#define NDDB 0x40
114
115/* NAND controller command buffer 0 register */
116#define NDCB0 0x48
117#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121#define NDCB0_DBC BIT(19)
122#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123#define NDCB0_CSEL BIT(24)
124#define NDCB0_RDY_BYP BIT(27)
125#define NDCB0_LEN_OVRD BIT(28)
126#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
127
128/* NAND controller command buffer 1 register */
129#define NDCB1 0x4C
130#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131#define NDCB1_ADDRS_PAGE(x) (x << 16)
132
133/* NAND controller command buffer 2 register */
134#define NDCB2 0x50
135#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
137
138/* NAND controller command buffer 3 register */
139#define NDCB3 0x54
140#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
142
143/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144#define TYPE_READ 0
145#define TYPE_WRITE 1
146#define TYPE_ERASE 2
147#define TYPE_READ_ID 3
148#define TYPE_STATUS 4
149#define TYPE_RESET 5
150#define TYPE_NAKED_CMD 6
151#define TYPE_NAKED_ADDR 7
152#define TYPE_MASK 7
153#define XTYPE_MONOLITHIC_RW 0
154#define XTYPE_LAST_NAKED_RW 1
155#define XTYPE_FINAL_COMMAND 3
156#define XTYPE_READ 4
157#define XTYPE_WRITE_DISPATCH 4
158#define XTYPE_NAKED_RW 5
159#define XTYPE_COMMAND_DISPATCH 6
160#define XTYPE_MASK 7
161
162/**
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
168 *
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
183 */
184struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
198};
199
200#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
201 { \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
213 }
214
215/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
222};
223
224/**
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
231 *
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
237 */
238struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
242};
243
244/**
245 * NAND chip structure: stores NAND chip device related information
246 *
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
256 */
257struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
268};
269
270static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271{
272 return container_of(chip, struct marvell_nand_chip, chip);
273}
274
275static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
277{
278 return &nand->sels[nand->selected_die];
279}
280
281/**
282 * NAND controller capabilities for distinction between compatible strings
283 *
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
294 */
295struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
302};
303
304/**
305 * NAND controller structure: stores Marvell NAND controller information
306 *
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
310 * @ecc_clk: ECC block clock, two times the NAND controller clock
311 * @complete: Completion object to wait for NAND controller events
312 * @assigned_cs: Bitmask describing already assigned CS lines
313 * @chips: List containing all the NAND chips attached to
314 * this NAND controller
315 * @caps: NAND controller capabilities for each compatible string
316 * @dma_chan: DMA channel (NFCv1 only)
317 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
318 */
319struct marvell_nfc {
320 struct nand_hw_control controller;
321 struct device *dev;
322 void __iomem *regs;
323 struct clk *ecc_clk;
324 struct completion complete;
325 unsigned long assigned_cs;
326 struct list_head chips;
327 struct nand_chip *selected_chip;
328 const struct marvell_nfc_caps *caps;
329
330 /* DMA (NFCv1 only) */
331 bool use_dma;
332 struct dma_chan *dma_chan;
333 u8 *dma_buf;
334};
335
336static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
337{
338 return container_of(ctrl, struct marvell_nfc, controller);
339}
340
341/**
342 * NAND controller timings expressed in NAND Controller clock cycles
343 *
344 * @tRP: ND_nRE pulse width
345 * @tRH: ND_nRE high duration
346 * @tWP: ND_nWE pulse time
347 * @tWH: ND_nWE high duration
348 * @tCS: Enable signal setup time
349 * @tCH: Enable signal hold time
350 * @tADL: Address to write data delay
351 * @tAR: ND_ALE low to ND_nRE low delay
352 * @tWHR: ND_nWE high to ND_nRE low for status read
353 * @tRHW: ND_nRE high duration, read to write delay
354 * @tR: ND_nWE high to ND_nRE low for read
355 */
356struct marvell_nfc_timings {
357 /* NDTR0 fields */
358 unsigned int tRP;
359 unsigned int tRH;
360 unsigned int tWP;
361 unsigned int tWH;
362 unsigned int tCS;
363 unsigned int tCH;
364 unsigned int tADL;
365 /* NDTR1 fields */
366 unsigned int tAR;
367 unsigned int tWHR;
368 unsigned int tRHW;
369 unsigned int tR;
370};
371
372/**
373 * Derives a duration in numbers of clock cycles.
374 *
375 * @ps: Duration in pico-seconds
376 * @period_ns: Clock period in nano-seconds
377 *
378 * Convert the duration in nano-seconds, then divide by the period and
379 * return the number of clock periods.
380 */
381#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
382
383/**
384 * NAND driver structure filled during the parsing of the ->exec_op() subop
385 * subset of instructions.
386 *
387 * @ndcb: Array of values written to NDCBx registers
388 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
389 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
390 * @rdy_delay_ns: Optional delay after waiting for the RB pin
391 * @data_delay_ns: Optional delay after the data xfer
392 * @data_instr_idx: Index of the data instruction in the subop
393 * @data_instr: Pointer to the data instruction in the subop
394 */
395struct marvell_nfc_op {
396 u32 ndcb[4];
397 unsigned int cle_ale_delay_ns;
398 unsigned int rdy_timeout_ms;
399 unsigned int rdy_delay_ns;
400 unsigned int data_delay_ns;
401 unsigned int data_instr_idx;
402 const struct nand_op_instr *data_instr;
403};
404
405/*
406 * Internal helper to conditionnally apply a delay (from the above structure,
407 * most of the time).
408 */
409static void cond_delay(unsigned int ns)
410{
411 if (!ns)
412 return;
413
414 if (ns < 10000)
415 ndelay(ns);
416 else
417 udelay(DIV_ROUND_UP(ns, 1000));
418}
419
420/*
421 * The controller has many flags that could generate interrupts, most of them
422 * are disabled and polling is used. For the very slow signals, using interrupts
423 * may relax the CPU charge.
424 */
425static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
426{
427 u32 reg;
428
429 /* Writing 1 disables the interrupt */
430 reg = readl_relaxed(nfc->regs + NDCR);
431 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
432}
433
434static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
435{
436 u32 reg;
437
438 /* Writing 0 enables the interrupt */
439 reg = readl_relaxed(nfc->regs + NDCR);
440 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
441}
442
443static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
444{
445 writel_relaxed(int_mask, nfc->regs + NDSR);
446}
447
448static void marvell_nfc_force_byte_access(struct nand_chip *chip,
449 bool force_8bit)
450{
451 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
452 u32 ndcr;
453
454 /*
455 * Callers of this function do not verify if the NAND is using a 16-bit
456 * an 8-bit bus for normal operations, so we need to take care of that
457 * here by leaving the configuration unchanged if the NAND does not have
458 * the NAND_BUSWIDTH_16 flag set.
459 */
460 if (!(chip->options & NAND_BUSWIDTH_16))
461 return;
462
463 ndcr = readl_relaxed(nfc->regs + NDCR);
464
465 if (force_8bit)
466 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
467 else
468 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
469
470 writel_relaxed(ndcr, nfc->regs + NDCR);
471}
472
473static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
474{
475 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
476 u32 val;
477 int ret;
478
479 /*
480 * The command is being processed, wait for the ND_RUN bit to be
481 * cleared by the NFC. If not, we must clear it by hand.
482 */
483 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
484 (val & NDCR_ND_RUN) == 0,
485 POLL_PERIOD, POLL_TIMEOUT);
486 if (ret) {
487 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
488 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
489 nfc->regs + NDCR);
490 return ret;
491 }
492
493 return 0;
494}
495
496/*
497 * Any time a command has to be sent to the controller, the following sequence
498 * has to be followed:
499 * - call marvell_nfc_prepare_cmd()
500 * -> activate the ND_RUN bit that will kind of 'start a job'
501 * -> wait the signal indicating the NFC is waiting for a command
502 * - send the command (cmd and address cycles)
503 * - enventually send or receive the data
504 * - call marvell_nfc_end_cmd() with the corresponding flag
505 * -> wait the flag to be triggered or cancel the job with a timeout
506 *
507 * The following helpers are here to factorize the code a bit so that
508 * specialized functions responsible for executing the actual NAND
509 * operations do not have to replicate the same code blocks.
510 */
511static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
512{
513 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
514 u32 ndcr, val;
515 int ret;
516
517 /* Poll ND_RUN and clear NDSR before issuing any command */
518 ret = marvell_nfc_wait_ndrun(chip);
519 if (ret) {
Colin Ian Kinga76497d2018-01-19 07:55:31 +0000520 dev_err(nfc->dev, "Last operation did not succeed\n");
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100521 return ret;
522 }
523
524 ndcr = readl_relaxed(nfc->regs + NDCR);
525 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
526
527 /* Assert ND_RUN bit and wait the NFC to be ready */
528 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
529 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
530 val & NDSR_WRCMDREQ,
531 POLL_PERIOD, POLL_TIMEOUT);
532 if (ret) {
533 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
534 return -ETIMEDOUT;
535 }
536
537 /* Command may be written, clear WRCMDREQ status bit */
538 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
539
540 return 0;
541}
542
543static void marvell_nfc_send_cmd(struct nand_chip *chip,
544 struct marvell_nfc_op *nfc_op)
545{
546 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
547 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
548
549 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
550 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
551 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
552 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
553
554 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
555 nfc->regs + NDCB0);
556 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
557 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
558
559 /*
560 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
561 * fields are used (only available on NFCv2).
562 */
563 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
564 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
565 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
566 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
567 }
568}
569
570static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
571 const char *label)
572{
573 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
574 u32 val;
575 int ret;
576
577 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
578 val & flag,
579 POLL_PERIOD, POLL_TIMEOUT);
580
581 if (ret) {
582 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
583 label, val);
584 if (nfc->dma_chan)
585 dmaengine_terminate_all(nfc->dma_chan);
586 return ret;
587 }
588
589 /*
590 * DMA function uses this helper to poll on CMDD bits without wanting
591 * them to be cleared.
592 */
593 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
594 return 0;
595
596 writel_relaxed(flag, nfc->regs + NDSR);
597
598 return 0;
599}
600
601static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
602{
603 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
604 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
605
606 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
607}
608
609static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
610{
611 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
612 int ret;
613
614 /* Timeout is expressed in ms */
615 if (!timeout_ms)
616 timeout_ms = IRQ_TIMEOUT;
617
618 init_completion(&nfc->complete);
619
620 marvell_nfc_enable_int(nfc, NDCR_RDYM);
621 ret = wait_for_completion_timeout(&nfc->complete,
622 msecs_to_jiffies(timeout_ms));
623 marvell_nfc_disable_int(nfc, NDCR_RDYM);
624 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
625 if (!ret) {
626 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
627 return -ETIMEDOUT;
628 }
629
630 return 0;
631}
632
633static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
634{
635 struct nand_chip *chip = mtd_to_nand(mtd);
636 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
637 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
638 u32 ndcr_generic;
639
640 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
641 return;
642
643 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
644 nfc->selected_chip = NULL;
645 marvell_nand->selected_die = -1;
646 return;
647 }
648
649 /*
650 * Do not change the timing registers when using the DT property
651 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
652 * marvell_nand structure are supposedly empty.
653 */
654 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
655 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
656
657 /*
658 * Reset the NDCR register to a clean state for this particular chip,
659 * also clear ND_RUN bit.
660 */
661 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
662 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
663 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
664
665 /* Also reset the interrupt status register */
666 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
667
668 nfc->selected_chip = chip;
669 marvell_nand->selected_die = die_nr;
670}
671
672static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
673{
674 struct marvell_nfc *nfc = dev_id;
675 u32 st = readl_relaxed(nfc->regs + NDSR);
676 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
677
678 /*
679 * RDY interrupt mask is one bit in NDCR while there are two status
680 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
681 */
682 if (st & NDSR_RDY(1))
683 st |= NDSR_RDY(0);
684
685 if (!(st & ien))
686 return IRQ_NONE;
687
688 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
689
690 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
691 complete(&nfc->complete);
692
693 return IRQ_HANDLED;
694}
695
696/* HW ECC related functions */
697static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
698{
699 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
700 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
701
702 if (!(ndcr & NDCR_ECC_EN)) {
703 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
704
705 /*
706 * When enabling BCH, set threshold to 0 to always know the
707 * number of corrected bitflips.
708 */
709 if (chip->ecc.algo == NAND_ECC_BCH)
710 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
711 }
712}
713
714static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
715{
716 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
717 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
718
719 if (ndcr & NDCR_ECC_EN) {
720 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
721 if (chip->ecc.algo == NAND_ECC_BCH)
722 writel_relaxed(0, nfc->regs + NDECCCTRL);
723 }
724}
725
726/* DMA related helpers */
727static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
728{
729 u32 reg;
730
731 reg = readl_relaxed(nfc->regs + NDCR);
732 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
733}
734
735static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
736{
737 u32 reg;
738
739 reg = readl_relaxed(nfc->regs + NDCR);
740 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
741}
742
743/* Read/write PIO/DMA accessors */
744static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
745 enum dma_data_direction direction,
746 unsigned int len)
747{
748 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
749 struct dma_async_tx_descriptor *tx;
750 struct scatterlist sg;
751 dma_cookie_t cookie;
752 int ret;
753
754 marvell_nfc_enable_dma(nfc);
755 /* Prepare the DMA transfer */
756 sg_init_one(&sg, nfc->dma_buf, dma_len);
757 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
758 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
759 direction == DMA_FROM_DEVICE ?
760 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
761 DMA_PREP_INTERRUPT);
762 if (!tx) {
763 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
764 return -ENXIO;
765 }
766
767 /* Do the task and wait for it to finish */
768 cookie = dmaengine_submit(tx);
769 ret = dma_submit_error(cookie);
770 if (ret)
771 return -EIO;
772
773 dma_async_issue_pending(nfc->dma_chan);
774 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
775 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
776 marvell_nfc_disable_dma(nfc);
777 if (ret) {
778 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
779 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
780 dmaengine_terminate_all(nfc->dma_chan);
781 return -ETIMEDOUT;
782 }
783
784 return 0;
785}
786
787static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
788 unsigned int len)
789{
790 unsigned int last_len = len % FIFO_DEPTH;
791 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
792 int i;
793
794 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
795 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
796
797 if (last_len) {
798 u8 tmp_buf[FIFO_DEPTH];
799
800 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
801 memcpy(in + last_full_offset, tmp_buf, last_len);
802 }
803
804 return 0;
805}
806
807static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
808 unsigned int len)
809{
810 unsigned int last_len = len % FIFO_DEPTH;
811 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
812 int i;
813
814 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
815 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
816
817 if (last_len) {
818 u8 tmp_buf[FIFO_DEPTH];
819
820 memcpy(tmp_buf, out + last_full_offset, last_len);
821 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
822 }
823
824 return 0;
825}
826
827static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
828 u8 *data, int data_len,
829 u8 *spare, int spare_len,
830 u8 *ecc, int ecc_len,
831 unsigned int *max_bitflips)
832{
833 struct mtd_info *mtd = nand_to_mtd(chip);
834 int bf;
835
836 /*
837 * Blank pages (all 0xFF) that have not been written may be recognized
838 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
839 * check if the entire page (with ECC bytes) is actually blank or not.
840 */
841 if (!data)
842 data_len = 0;
843 if (!spare)
844 spare_len = 0;
845 if (!ecc)
846 ecc_len = 0;
847
848 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
849 spare, spare_len, chip->ecc.strength);
850 if (bf < 0) {
851 mtd->ecc_stats.failed++;
852 return;
853 }
854
855 /* Update the stats and max_bitflips */
856 mtd->ecc_stats.corrected += bf;
857 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
858}
859
860/*
861 * Check a chunk is correct or not according to hardware ECC engine.
862 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
863 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
864 * value indicating that a check on the emptyness of the subpage must be
865 * performed before declaring the subpage corrupted.
866 */
867static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
868 unsigned int *max_bitflips)
869{
870 struct mtd_info *mtd = nand_to_mtd(chip);
871 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
872 int bf = 0;
873 u32 ndsr;
874
875 ndsr = readl_relaxed(nfc->regs + NDSR);
876
877 /* Check uncorrectable error flag */
878 if (ndsr & NDSR_UNCERR) {
879 writel_relaxed(ndsr, nfc->regs + NDSR);
880
881 /*
882 * Do not increment ->ecc_stats.failed now, instead, return a
883 * non-zero value to indicate that this chunk was apparently
884 * bad, and it should be check to see if it empty or not. If
885 * the chunk (with ECC bytes) is not declared empty, the calling
886 * function must increment the failure count.
887 */
888 return -EBADMSG;
889 }
890
891 /* Check correctable error flag */
892 if (ndsr & NDSR_CORERR) {
893 writel_relaxed(ndsr, nfc->regs + NDSR);
894
895 if (chip->ecc.algo == NAND_ECC_BCH)
896 bf = NDSR_ERRCNT(ndsr);
897 else
898 bf = 1;
899 }
900
901 /* Update the stats and max_bitflips */
902 mtd->ecc_stats.corrected += bf;
903 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
904
905 return 0;
906}
907
908/* Hamming read helpers */
909static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
910 u8 *data_buf, u8 *oob_buf,
911 bool raw, int page)
912{
913 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
914 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
915 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
916 struct marvell_nfc_op nfc_op = {
917 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
918 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
919 NDCB0_DBC |
920 NDCB0_CMD1(NAND_CMD_READ0) |
921 NDCB0_CMD2(NAND_CMD_READSTART),
922 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
923 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
924 };
925 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
926 int ret;
927
928 /* NFCv2 needs more information about the operation being executed */
929 if (nfc->caps->is_nfcv2)
930 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
931
932 ret = marvell_nfc_prepare_cmd(chip);
933 if (ret)
934 return ret;
935
936 marvell_nfc_send_cmd(chip, &nfc_op);
937 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
938 "RDDREQ while draining FIFO (data/oob)");
939 if (ret)
940 return ret;
941
942 /*
943 * Read the page then the OOB area. Unlike what is shown in current
944 * documentation, spare bytes are protected by the ECC engine, and must
945 * be at the beginning of the OOB area or running this driver on legacy
946 * systems will prevent the discovery of the BBM/BBT.
947 */
948 if (nfc->use_dma) {
949 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
950 lt->data_bytes + oob_bytes);
951 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
952 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
953 } else {
954 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
955 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
956 }
957
958 ret = marvell_nfc_wait_cmdd(chip);
959
960 return ret;
961}
962
963static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
964 struct nand_chip *chip, u8 *buf,
965 int oob_required, int page)
966{
967 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
968 true, page);
969}
970
971static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
972 struct nand_chip *chip,
973 u8 *buf, int oob_required,
974 int page)
975{
976 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
977 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
978 int max_bitflips = 0, ret;
979 u8 *raw_buf;
980
981 marvell_nfc_enable_hw_ecc(chip);
982 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
983 page);
984 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
985 marvell_nfc_disable_hw_ecc(chip);
986
987 if (!ret)
988 return max_bitflips;
989
990 /*
991 * When ECC failures are detected, check if the full page has been
992 * written or not. Ignore the failure if it is actually empty.
993 */
994 raw_buf = kmalloc(full_sz, GFP_KERNEL);
995 if (!raw_buf)
996 return -ENOMEM;
997
998 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
999 lt->data_bytes, true, page);
1000 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1001 &max_bitflips);
1002 kfree(raw_buf);
1003
1004 return max_bitflips;
1005}
1006
1007/*
1008 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1009 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1010 * also stands for ->read_oob().
1011 */
1012static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1013 struct nand_chip *chip, int page)
1014{
1015 /* Invalidate page cache */
1016 chip->pagebuf = -1;
1017
1018 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1019 chip->oob_poi, true, page);
1020}
1021
1022/* Hamming write helpers */
1023static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1024 const u8 *data_buf,
1025 const u8 *oob_buf, bool raw,
1026 int page)
1027{
1028 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1029 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1030 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1031 struct marvell_nfc_op nfc_op = {
1032 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1033 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1034 NDCB0_CMD1(NAND_CMD_SEQIN) |
1035 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1036 NDCB0_DBC,
1037 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1038 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1039 };
1040 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1041 int ret;
1042
1043 /* NFCv2 needs more information about the operation being executed */
1044 if (nfc->caps->is_nfcv2)
1045 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1046
1047 ret = marvell_nfc_prepare_cmd(chip);
1048 if (ret)
1049 return ret;
1050
1051 marvell_nfc_send_cmd(chip, &nfc_op);
1052 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1053 "WRDREQ while loading FIFO (data)");
1054 if (ret)
1055 return ret;
1056
1057 /* Write the page then the OOB area */
1058 if (nfc->use_dma) {
1059 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1060 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1061 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1062 lt->ecc_bytes + lt->spare_bytes);
1063 } else {
1064 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1065 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1066 }
1067
1068 ret = marvell_nfc_wait_cmdd(chip);
1069 if (ret)
1070 return ret;
1071
1072 ret = marvell_nfc_wait_op(chip,
1073 chip->data_interface.timings.sdr.tPROG_max);
1074 return ret;
1075}
1076
1077static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1078 struct nand_chip *chip,
1079 const u8 *buf,
1080 int oob_required, int page)
1081{
1082 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1083 true, page);
1084}
1085
1086static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1087 struct nand_chip *chip,
1088 const u8 *buf,
1089 int oob_required, int page)
1090{
1091 int ret;
1092
1093 marvell_nfc_enable_hw_ecc(chip);
1094 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1095 false, page);
1096 marvell_nfc_disable_hw_ecc(chip);
1097
1098 return ret;
1099}
1100
1101/*
1102 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1103 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1104 * also stands for ->write_oob().
1105 */
1106static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1107 struct nand_chip *chip,
1108 int page)
1109{
1110 /* Invalidate page cache */
1111 chip->pagebuf = -1;
1112
1113 memset(chip->data_buf, 0xFF, mtd->writesize);
1114
1115 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1116 chip->oob_poi, true, page);
1117}
1118
1119/* BCH read helpers */
1120static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1121 struct nand_chip *chip, u8 *buf,
1122 int oob_required, int page)
1123{
1124 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1125 u8 *oob = chip->oob_poi;
1126 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1127 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1128 lt->last_spare_bytes;
1129 int data_len = lt->data_bytes;
1130 int spare_len = lt->spare_bytes;
1131 int ecc_len = lt->ecc_bytes;
1132 int chunk;
1133
1134 if (oob_required)
1135 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1136
1137 nand_read_page_op(chip, page, 0, NULL, 0);
1138
1139 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1140 /* Update last chunk length */
1141 if (chunk >= lt->full_chunk_cnt) {
1142 data_len = lt->last_data_bytes;
1143 spare_len = lt->last_spare_bytes;
1144 ecc_len = lt->last_ecc_bytes;
1145 }
1146
1147 /* Read data bytes*/
1148 nand_change_read_column_op(chip, chunk * chunk_size,
1149 buf + (lt->data_bytes * chunk),
1150 data_len, false);
1151
1152 /* Read spare bytes */
1153 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1154 spare_len, false);
1155
1156 /* Read ECC bytes */
1157 nand_read_data_op(chip, oob + ecc_offset +
1158 (ALIGN(lt->ecc_bytes, 32) * chunk),
1159 ecc_len, false);
1160 }
1161
1162 return 0;
1163}
1164
1165static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1166 u8 *data, unsigned int data_len,
1167 u8 *spare, unsigned int spare_len,
1168 int page)
1169{
1170 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1171 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1172 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1173 int i, ret;
1174 struct marvell_nfc_op nfc_op = {
1175 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1176 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1177 NDCB0_LEN_OVRD,
1178 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1179 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1180 .ndcb[3] = data_len + spare_len,
1181 };
1182
1183 ret = marvell_nfc_prepare_cmd(chip);
1184 if (ret)
1185 return;
1186
1187 if (chunk == 0)
1188 nfc_op.ndcb[0] |= NDCB0_DBC |
1189 NDCB0_CMD1(NAND_CMD_READ0) |
1190 NDCB0_CMD2(NAND_CMD_READSTART);
1191
1192 /*
1193 * Trigger the naked read operation only on the last chunk.
1194 * Otherwise, use monolithic read.
1195 */
1196 if (lt->nchunks == 1 || (chunk < lt->nchunks - 1))
1197 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1198 else
1199 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1200
1201 marvell_nfc_send_cmd(chip, &nfc_op);
1202
1203 /*
1204 * According to the datasheet, when reading from NDDB
1205 * with BCH enabled, after each 32 bytes reads, we
1206 * have to make sure that the NDSR.RDDREQ bit is set.
1207 *
1208 * Drain the FIFO, 8 32-bit reads at a time, and skip
1209 * the polling on the last read.
1210 *
1211 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1212 */
1213 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1214 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1215 "RDDREQ while draining FIFO (data)");
1216 marvell_nfc_xfer_data_in_pio(nfc, data,
1217 FIFO_DEPTH * BCH_SEQ_READS);
1218 data += FIFO_DEPTH * BCH_SEQ_READS;
1219 }
1220
1221 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1222 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1223 "RDDREQ while draining FIFO (OOB)");
1224 marvell_nfc_xfer_data_in_pio(nfc, spare,
1225 FIFO_DEPTH * BCH_SEQ_READS);
1226 spare += FIFO_DEPTH * BCH_SEQ_READS;
1227 }
1228}
1229
1230static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1231 struct nand_chip *chip,
1232 u8 *buf, int oob_required,
1233 int page)
1234{
1235 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1236 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1237 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1238 int max_bitflips = 0;
1239 u32 failure_mask = 0;
1240 int chunk, ecc_offset_in_page, ret;
1241
1242 /*
1243 * With BCH, OOB is not fully used (and thus not read entirely), not
1244 * expected bytes could show up at the end of the OOB buffer if not
1245 * explicitly erased.
1246 */
1247 if (oob_required)
1248 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1249
1250 marvell_nfc_enable_hw_ecc(chip);
1251
1252 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1253 /* Update length for the last chunk */
1254 if (chunk >= lt->full_chunk_cnt) {
1255 data_len = lt->last_data_bytes;
1256 spare_len = lt->last_spare_bytes;
1257 }
1258
1259 /* Read the chunk and detect number of bitflips */
1260 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1261 spare, spare_len, page);
1262 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1263 if (ret)
1264 failure_mask |= BIT(chunk);
1265
1266 data += data_len;
1267 spare += spare_len;
1268 }
1269
1270 marvell_nfc_disable_hw_ecc(chip);
1271
1272 if (!failure_mask)
1273 return max_bitflips;
1274
1275 /*
1276 * Please note that dumping the ECC bytes during a normal read with OOB
1277 * area would add a significant overhead as ECC bytes are "consumed" by
1278 * the controller in normal mode and must be re-read in raw mode. To
1279 * avoid dropping the performances, we prefer not to include them. The
1280 * user should re-read the page in raw mode if ECC bytes are required.
1281 *
1282 * However, for any subpage read error reported by ->correct(), the ECC
1283 * bytes must be read in raw mode and the full subpage must be checked
1284 * to see if it is entirely empty of if there was an actual error.
1285 */
1286 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1287 /* No failure reported for this chunk, move to the next one */
1288 if (!(failure_mask & BIT(chunk)))
1289 continue;
1290
1291 /* Derive ECC bytes positions (in page/buffer) and length */
1292 ecc = chip->oob_poi +
1293 (lt->full_chunk_cnt * lt->spare_bytes) +
1294 lt->last_spare_bytes +
1295 (chunk * ALIGN(lt->ecc_bytes, 32));
1296 ecc_offset_in_page =
1297 (chunk * (lt->data_bytes + lt->spare_bytes +
1298 lt->ecc_bytes)) +
1299 (chunk < lt->full_chunk_cnt ?
1300 lt->data_bytes + lt->spare_bytes :
1301 lt->last_data_bytes + lt->last_spare_bytes);
1302 ecc_len = chunk < lt->full_chunk_cnt ?
1303 lt->ecc_bytes : lt->last_ecc_bytes;
1304
1305 /* Do the actual raw read of the ECC bytes */
1306 nand_change_read_column_op(chip, ecc_offset_in_page,
1307 ecc, ecc_len, false);
1308
1309 /* Derive data/spare bytes positions (in buffer) and length */
1310 data = buf + (chunk * lt->data_bytes);
1311 data_len = chunk < lt->full_chunk_cnt ?
1312 lt->data_bytes : lt->last_data_bytes;
1313 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1314 lt->ecc_bytes));
1315 spare_len = chunk < lt->full_chunk_cnt ?
1316 lt->spare_bytes : lt->last_spare_bytes;
1317
1318 /* Check the entire chunk (data + spare + ecc) for emptyness */
1319 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1320 spare_len, ecc, ecc_len,
1321 &max_bitflips);
1322 }
1323
1324 return max_bitflips;
1325}
1326
1327static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1328 struct nand_chip *chip, int page)
1329{
1330 /* Invalidate page cache */
1331 chip->pagebuf = -1;
1332
1333 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1334}
1335
1336static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1337 struct nand_chip *chip, int page)
1338{
1339 /* Invalidate page cache */
1340 chip->pagebuf = -1;
1341
1342 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1343}
1344
1345/* BCH write helpers */
1346static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1347 struct nand_chip *chip,
1348 const u8 *buf,
1349 int oob_required, int page)
1350{
1351 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1352 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1353 int data_len = lt->data_bytes;
1354 int spare_len = lt->spare_bytes;
1355 int ecc_len = lt->ecc_bytes;
1356 int oob_len = spare_len + ecc_len;
1357 int spare_offset = 0;
1358 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1359 lt->last_spare_bytes;
1360 int chunk;
1361
1362 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1363
1364 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1365 if (chunk >= lt->full_chunk_cnt) {
1366 data_len = lt->last_data_bytes;
1367 spare_len = lt->last_spare_bytes;
1368 ecc_len = lt->last_ecc_bytes;
1369 oob_len = spare_len + ecc_len;
1370 }
1371
1372 /* Point to the column of the next chunk */
1373 nand_change_write_column_op(chip, chunk * full_chunk_size,
1374 NULL, 0, false);
1375
1376 /* Write the data */
1377 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1378 data_len, false);
1379
1380 if (!oob_required)
1381 continue;
1382
1383 /* Write the spare bytes */
1384 if (spare_len)
1385 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1386 spare_len, false);
1387
1388 /* Write the ECC bytes */
1389 if (ecc_len)
1390 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1391 ecc_len, false);
1392
1393 spare_offset += spare_len;
1394 ecc_offset += ALIGN(ecc_len, 32);
1395 }
1396
1397 return nand_prog_page_end_op(chip);
1398}
1399
1400static int
1401marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1402 const u8 *data, unsigned int data_len,
1403 const u8 *spare, unsigned int spare_len,
1404 int page)
1405{
1406 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1407 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1408 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1409 int ret;
1410 struct marvell_nfc_op nfc_op = {
1411 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1412 .ndcb[3] = data_len + spare_len,
1413 };
1414
1415 /*
1416 * First operation dispatches the CMD_SEQIN command, issue the address
1417 * cycles and asks for the first chunk of data.
1418 * All operations in the middle (if any) will issue a naked write and
1419 * also ask for data.
1420 * Last operation (if any) asks for the last chunk of data through a
1421 * last naked write.
1422 */
1423 if (chunk == 0) {
1424 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) |
1425 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1426 NDCB0_CMD1(NAND_CMD_SEQIN);
1427 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1428 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1429 } else if (chunk < lt->nchunks - 1) {
1430 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1431 } else {
1432 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1433 }
1434
1435 /* Always dispatch the PAGEPROG command on the last chunk */
1436 if (chunk == lt->nchunks - 1)
1437 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1438
1439 ret = marvell_nfc_prepare_cmd(chip);
1440 if (ret)
1441 return ret;
1442
1443 marvell_nfc_send_cmd(chip, &nfc_op);
1444 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1445 "WRDREQ while loading FIFO (data)");
1446 if (ret)
1447 return ret;
1448
1449 /* Transfer the contents */
1450 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1451 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1452
1453 return 0;
1454}
1455
1456static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1457 struct nand_chip *chip,
1458 const u8 *buf,
1459 int oob_required, int page)
1460{
1461 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1462 const u8 *data = buf;
1463 const u8 *spare = chip->oob_poi;
1464 int data_len = lt->data_bytes;
1465 int spare_len = lt->spare_bytes;
1466 int chunk, ret;
1467
1468 /* Spare data will be written anyway, so clear it to avoid garbage */
1469 if (!oob_required)
1470 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1471
1472 marvell_nfc_enable_hw_ecc(chip);
1473
1474 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1475 if (chunk >= lt->full_chunk_cnt) {
1476 data_len = lt->last_data_bytes;
1477 spare_len = lt->last_spare_bytes;
1478 }
1479
1480 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1481 spare, spare_len, page);
1482 data += data_len;
1483 spare += spare_len;
1484
1485 /*
1486 * Waiting only for CMDD or PAGED is not enough, ECC are
1487 * partially written. No flag is set once the operation is
1488 * really finished but the ND_RUN bit is cleared, so wait for it
1489 * before stepping into the next command.
1490 */
1491 marvell_nfc_wait_ndrun(chip);
1492 }
1493
1494 ret = marvell_nfc_wait_op(chip,
1495 chip->data_interface.timings.sdr.tPROG_max);
1496
1497 marvell_nfc_disable_hw_ecc(chip);
1498
1499 if (ret)
1500 return ret;
1501
1502 return 0;
1503}
1504
1505static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1506 struct nand_chip *chip,
1507 int page)
1508{
1509 /* Invalidate page cache */
1510 chip->pagebuf = -1;
1511
1512 memset(chip->data_buf, 0xFF, mtd->writesize);
1513
1514 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1515}
1516
1517static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1518 struct nand_chip *chip, int page)
1519{
1520 /* Invalidate page cache */
1521 chip->pagebuf = -1;
1522
1523 memset(chip->data_buf, 0xFF, mtd->writesize);
1524
1525 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1526}
1527
1528/* NAND framework ->exec_op() hooks and related helpers */
1529static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1530 const struct nand_subop *subop,
1531 struct marvell_nfc_op *nfc_op)
1532{
1533 const struct nand_op_instr *instr = NULL;
1534 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1535 bool first_cmd = true;
1536 unsigned int op_id;
1537 int i;
1538
1539 /* Reset the input structure as most of its fields will be OR'ed */
1540 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1541
1542 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1543 unsigned int offset, naddrs;
1544 const u8 *addrs;
1545 int len = nand_subop_get_data_len(subop, op_id);
1546
1547 instr = &subop->instrs[op_id];
1548
1549 switch (instr->type) {
1550 case NAND_OP_CMD_INSTR:
1551 if (first_cmd)
1552 nfc_op->ndcb[0] |=
1553 NDCB0_CMD1(instr->ctx.cmd.opcode);
1554 else
1555 nfc_op->ndcb[0] |=
1556 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1557 NDCB0_DBC;
1558
1559 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1560 first_cmd = false;
1561 break;
1562
1563 case NAND_OP_ADDR_INSTR:
1564 offset = nand_subop_get_addr_start_off(subop, op_id);
1565 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1566 addrs = &instr->ctx.addr.addrs[offset];
1567
1568 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1569
1570 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1571 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1572
1573 if (naddrs >= 5)
1574 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1575 if (naddrs >= 6)
1576 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1577 if (naddrs == 7)
1578 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1579
1580 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1581 break;
1582
1583 case NAND_OP_DATA_IN_INSTR:
1584 nfc_op->data_instr = instr;
1585 nfc_op->data_instr_idx = op_id;
1586 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1587 if (nfc->caps->is_nfcv2) {
1588 nfc_op->ndcb[0] |=
1589 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1590 NDCB0_LEN_OVRD;
1591 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1592 }
1593 nfc_op->data_delay_ns = instr->delay_ns;
1594 break;
1595
1596 case NAND_OP_DATA_OUT_INSTR:
1597 nfc_op->data_instr = instr;
1598 nfc_op->data_instr_idx = op_id;
1599 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1600 if (nfc->caps->is_nfcv2) {
1601 nfc_op->ndcb[0] |=
1602 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1603 NDCB0_LEN_OVRD;
1604 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1605 }
1606 nfc_op->data_delay_ns = instr->delay_ns;
1607 break;
1608
1609 case NAND_OP_WAITRDY_INSTR:
1610 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1611 nfc_op->rdy_delay_ns = instr->delay_ns;
1612 break;
1613 }
1614 }
1615}
1616
1617static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1618 const struct nand_subop *subop,
1619 struct marvell_nfc_op *nfc_op)
1620{
1621 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1622 const struct nand_op_instr *instr = nfc_op->data_instr;
1623 unsigned int op_id = nfc_op->data_instr_idx;
1624 unsigned int len = nand_subop_get_data_len(subop, op_id);
1625 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1626 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1627 int ret;
1628
1629 if (instr->ctx.data.force_8bit)
1630 marvell_nfc_force_byte_access(chip, true);
1631
1632 if (reading) {
1633 u8 *in = instr->ctx.data.buf.in + offset;
1634
1635 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1636 } else {
1637 const u8 *out = instr->ctx.data.buf.out + offset;
1638
1639 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1640 }
1641
1642 if (instr->ctx.data.force_8bit)
1643 marvell_nfc_force_byte_access(chip, false);
1644
1645 return ret;
1646}
1647
1648static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1649 const struct nand_subop *subop)
1650{
1651 struct marvell_nfc_op nfc_op;
1652 bool reading;
1653 int ret;
1654
1655 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1656 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1657
1658 ret = marvell_nfc_prepare_cmd(chip);
1659 if (ret)
1660 return ret;
1661
1662 marvell_nfc_send_cmd(chip, &nfc_op);
1663 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1664 "RDDREQ/WRDREQ while draining raw data");
1665 if (ret)
1666 return ret;
1667
1668 cond_delay(nfc_op.cle_ale_delay_ns);
1669
1670 if (reading) {
1671 if (nfc_op.rdy_timeout_ms) {
1672 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1673 if (ret)
1674 return ret;
1675 }
1676
1677 cond_delay(nfc_op.rdy_delay_ns);
1678 }
1679
1680 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1681 ret = marvell_nfc_wait_cmdd(chip);
1682 if (ret)
1683 return ret;
1684
1685 cond_delay(nfc_op.data_delay_ns);
1686
1687 if (!reading) {
1688 if (nfc_op.rdy_timeout_ms) {
1689 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1690 if (ret)
1691 return ret;
1692 }
1693
1694 cond_delay(nfc_op.rdy_delay_ns);
1695 }
1696
1697 /*
1698 * NDCR ND_RUN bit should be cleared automatically at the end of each
1699 * operation but experience shows that the behavior is buggy when it
1700 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1701 */
1702 if (!reading) {
1703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1704
1705 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1706 nfc->regs + NDCR);
1707 }
1708
1709 return 0;
1710}
1711
1712static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1713 const struct nand_subop *subop)
1714{
1715 struct marvell_nfc_op nfc_op;
1716 int ret;
1717
1718 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1719
1720 /*
1721 * Naked access are different in that they need to be flagged as naked
1722 * by the controller. Reset the controller registers fields that inform
1723 * on the type and refill them according to the ongoing operation.
1724 */
1725 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1726 NDCB0_CMD_XTYPE(XTYPE_MASK));
1727 switch (subop->instrs[0].type) {
1728 case NAND_OP_CMD_INSTR:
1729 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1730 break;
1731 case NAND_OP_ADDR_INSTR:
1732 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1733 break;
1734 case NAND_OP_DATA_IN_INSTR:
1735 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1736 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1737 break;
1738 case NAND_OP_DATA_OUT_INSTR:
1739 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1740 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1741 break;
1742 default:
1743 /* This should never happen */
1744 break;
1745 }
1746
1747 ret = marvell_nfc_prepare_cmd(chip);
1748 if (ret)
1749 return ret;
1750
1751 marvell_nfc_send_cmd(chip, &nfc_op);
1752
1753 if (!nfc_op.data_instr) {
1754 ret = marvell_nfc_wait_cmdd(chip);
1755 cond_delay(nfc_op.cle_ale_delay_ns);
1756 return ret;
1757 }
1758
1759 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1760 "RDDREQ/WRDREQ while draining raw data");
1761 if (ret)
1762 return ret;
1763
1764 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1765 ret = marvell_nfc_wait_cmdd(chip);
1766 if (ret)
1767 return ret;
1768
1769 /*
1770 * NDCR ND_RUN bit should be cleared automatically at the end of each
1771 * operation but experience shows that the behavior is buggy when it
1772 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1773 */
1774 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1775 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1776
1777 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1778 nfc->regs + NDCR);
1779 }
1780
1781 return 0;
1782}
1783
1784static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1785 const struct nand_subop *subop)
1786{
1787 struct marvell_nfc_op nfc_op;
1788 int ret;
1789
1790 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1791
1792 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1793 cond_delay(nfc_op.rdy_delay_ns);
1794
1795 return ret;
1796}
1797
1798static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1799 const struct nand_subop *subop)
1800{
1801 struct marvell_nfc_op nfc_op;
1802 int ret;
1803
1804 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1805 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1806 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1807
1808 ret = marvell_nfc_prepare_cmd(chip);
1809 if (ret)
1810 return ret;
1811
1812 marvell_nfc_send_cmd(chip, &nfc_op);
1813 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1814 "RDDREQ while reading ID");
1815 if (ret)
1816 return ret;
1817
1818 cond_delay(nfc_op.cle_ale_delay_ns);
1819
1820 if (nfc_op.rdy_timeout_ms) {
1821 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1822 if (ret)
1823 return ret;
1824 }
1825
1826 cond_delay(nfc_op.rdy_delay_ns);
1827
1828 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1829 ret = marvell_nfc_wait_cmdd(chip);
1830 if (ret)
1831 return ret;
1832
1833 cond_delay(nfc_op.data_delay_ns);
1834
1835 return 0;
1836}
1837
1838static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1839 const struct nand_subop *subop)
1840{
1841 struct marvell_nfc_op nfc_op;
1842 int ret;
1843
1844 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1845 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1846 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1847
1848 ret = marvell_nfc_prepare_cmd(chip);
1849 if (ret)
1850 return ret;
1851
1852 marvell_nfc_send_cmd(chip, &nfc_op);
1853 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1854 "RDDREQ while reading status");
1855 if (ret)
1856 return ret;
1857
1858 cond_delay(nfc_op.cle_ale_delay_ns);
1859
1860 if (nfc_op.rdy_timeout_ms) {
1861 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1862 if (ret)
1863 return ret;
1864 }
1865
1866 cond_delay(nfc_op.rdy_delay_ns);
1867
1868 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1869 ret = marvell_nfc_wait_cmdd(chip);
1870 if (ret)
1871 return ret;
1872
1873 cond_delay(nfc_op.data_delay_ns);
1874
1875 return 0;
1876}
1877
1878static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1879 const struct nand_subop *subop)
1880{
1881 struct marvell_nfc_op nfc_op;
1882 int ret;
1883
1884 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1885 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1886
1887 ret = marvell_nfc_prepare_cmd(chip);
1888 if (ret)
1889 return ret;
1890
1891 marvell_nfc_send_cmd(chip, &nfc_op);
1892 ret = marvell_nfc_wait_cmdd(chip);
1893 if (ret)
1894 return ret;
1895
1896 cond_delay(nfc_op.cle_ale_delay_ns);
1897
1898 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1899 if (ret)
1900 return ret;
1901
1902 cond_delay(nfc_op.rdy_delay_ns);
1903
1904 return 0;
1905}
1906
1907static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1908 const struct nand_subop *subop)
1909{
1910 struct marvell_nfc_op nfc_op;
1911 int ret;
1912
1913 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1915
1916 ret = marvell_nfc_prepare_cmd(chip);
1917 if (ret)
1918 return ret;
1919
1920 marvell_nfc_send_cmd(chip, &nfc_op);
1921 ret = marvell_nfc_wait_cmdd(chip);
1922 if (ret)
1923 return ret;
1924
1925 cond_delay(nfc_op.cle_ale_delay_ns);
1926
1927 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1928 if (ret)
1929 return ret;
1930
1931 cond_delay(nfc_op.rdy_delay_ns);
1932
1933 return 0;
1934}
1935
1936static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1937 /* Monolithic reads/writes */
1938 NAND_OP_PARSER_PATTERN(
1939 marvell_nfc_monolithic_access_exec,
1940 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1941 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1942 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1943 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1944 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1945 NAND_OP_PARSER_PATTERN(
1946 marvell_nfc_monolithic_access_exec,
1947 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1948 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1949 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1950 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1951 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1952 /* Naked commands */
1953 NAND_OP_PARSER_PATTERN(
1954 marvell_nfc_naked_access_exec,
1955 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1956 NAND_OP_PARSER_PATTERN(
1957 marvell_nfc_naked_access_exec,
1958 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1959 NAND_OP_PARSER_PATTERN(
1960 marvell_nfc_naked_access_exec,
1961 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1962 NAND_OP_PARSER_PATTERN(
1963 marvell_nfc_naked_access_exec,
1964 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1965 NAND_OP_PARSER_PATTERN(
1966 marvell_nfc_naked_waitrdy_exec,
1967 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1968 );
1969
1970static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1971 /* Naked commands not supported, use a function for each pattern */
1972 NAND_OP_PARSER_PATTERN(
1973 marvell_nfc_read_id_type_exec,
1974 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1975 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1976 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1977 NAND_OP_PARSER_PATTERN(
1978 marvell_nfc_erase_cmd_type_exec,
1979 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1980 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1981 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1982 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1983 NAND_OP_PARSER_PATTERN(
1984 marvell_nfc_read_status_exec,
1985 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1986 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1987 NAND_OP_PARSER_PATTERN(
1988 marvell_nfc_reset_cmd_type_exec,
1989 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1991 NAND_OP_PARSER_PATTERN(
1992 marvell_nfc_naked_waitrdy_exec,
1993 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1994 );
1995
1996static int marvell_nfc_exec_op(struct nand_chip *chip,
1997 const struct nand_operation *op,
1998 bool check_only)
1999{
2000 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2001
2002 if (nfc->caps->is_nfcv2)
2003 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2004 op, check_only);
2005 else
2006 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2007 op, check_only);
2008}
2009
2010/*
2011 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2012 * usable.
2013 */
2014static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2015 struct mtd_oob_region *oobregion)
2016{
2017 struct nand_chip *chip = mtd_to_nand(mtd);
2018 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2019
2020 if (section)
2021 return -ERANGE;
2022
2023 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2024 lt->last_ecc_bytes;
2025 oobregion->offset = mtd->oobsize - oobregion->length;
2026
2027 return 0;
2028}
2029
2030static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2031 struct mtd_oob_region *oobregion)
2032{
2033 struct nand_chip *chip = mtd_to_nand(mtd);
2034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2035
2036 if (section)
2037 return -ERANGE;
2038
2039 /*
2040 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2041 * 4KB page / 4bit BCH combination.
2042 */
2043 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2044 oobregion->offset = 6;
2045 else
2046 oobregion->offset = 2;
2047
2048 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2049 lt->last_spare_bytes - oobregion->offset;
2050
2051 return 0;
2052}
2053
2054static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2055 .ecc = marvell_nand_ooblayout_ecc,
2056 .free = marvell_nand_ooblayout_free,
2057};
2058
2059static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2060 struct nand_ecc_ctrl *ecc)
2061{
2062 struct nand_chip *chip = mtd_to_nand(mtd);
2063 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2064 const struct marvell_hw_ecc_layout *l;
2065 int i;
2066
2067 if (!nfc->caps->is_nfcv2 &&
2068 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2069 dev_err(nfc->dev,
2070 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2071 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2072 return -ENOTSUPP;
2073 }
2074
2075 to_marvell_nand(chip)->layout = NULL;
2076 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2077 l = &marvell_nfc_layouts[i];
2078 if (mtd->writesize == l->writesize &&
2079 ecc->size == l->chunk && ecc->strength == l->strength) {
2080 to_marvell_nand(chip)->layout = l;
2081 break;
2082 }
2083 }
2084
2085 if (!to_marvell_nand(chip)->layout ||
2086 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2087 dev_err(nfc->dev,
2088 "ECC strength %d at page size %d is not supported\n",
2089 ecc->strength, mtd->writesize);
2090 return -ENOTSUPP;
2091 }
2092
2093 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2094 ecc->steps = l->nchunks;
2095 ecc->size = l->data_bytes;
2096
2097 if (ecc->strength == 1) {
2098 chip->ecc.algo = NAND_ECC_HAMMING;
2099 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2100 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2101 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2102 ecc->read_oob = ecc->read_oob_raw;
2103 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2104 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2105 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2106 ecc->write_oob = ecc->write_oob_raw;
2107 } else {
2108 chip->ecc.algo = NAND_ECC_BCH;
2109 ecc->strength = 16;
2110 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2111 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2112 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2113 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2114 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2115 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2116 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2117 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2118 }
2119
2120 return 0;
2121}
2122
2123static int marvell_nand_ecc_init(struct mtd_info *mtd,
2124 struct nand_ecc_ctrl *ecc)
2125{
2126 struct nand_chip *chip = mtd_to_nand(mtd);
2127 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2128 int ret;
2129
2130 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2131 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2132 ecc->size = chip->ecc_step_ds;
2133 ecc->strength = chip->ecc_strength_ds;
2134 } else {
2135 dev_info(nfc->dev,
2136 "No minimum ECC strength, using 1b/512B\n");
2137 ecc->size = 512;
2138 ecc->strength = 1;
2139 }
2140 }
2141
2142 switch (ecc->mode) {
2143 case NAND_ECC_HW:
2144 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2145 if (ret)
2146 return ret;
2147 break;
2148 case NAND_ECC_NONE:
2149 case NAND_ECC_SOFT:
2150 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2151 mtd->writesize != SZ_2K) {
2152 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2153 mtd->writesize);
2154 return -EINVAL;
2155 }
2156 break;
2157 default:
2158 return -EINVAL;
2159 }
2160
2161 return 0;
2162}
2163
2164static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2165static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2166
2167static struct nand_bbt_descr bbt_main_descr = {
2168 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2169 NAND_BBT_2BIT | NAND_BBT_VERSION,
2170 .offs = 8,
2171 .len = 6,
2172 .veroffs = 14,
2173 .maxblocks = 8, /* Last 8 blocks in each chip */
2174 .pattern = bbt_pattern
2175};
2176
2177static struct nand_bbt_descr bbt_mirror_descr = {
2178 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2179 NAND_BBT_2BIT | NAND_BBT_VERSION,
2180 .offs = 8,
2181 .len = 6,
2182 .veroffs = 14,
2183 .maxblocks = 8, /* Last 8 blocks in each chip */
2184 .pattern = bbt_mirror_pattern
2185};
2186
2187static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2188 const struct nand_data_interface
2189 *conf)
2190{
2191 struct nand_chip *chip = mtd_to_nand(mtd);
2192 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2193 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2194 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2;
2195 const struct nand_sdr_timings *sdr;
2196 struct marvell_nfc_timings nfc_tmg;
2197 int read_delay;
2198
2199 sdr = nand_get_sdr_timings(conf);
2200 if (IS_ERR(sdr))
2201 return PTR_ERR(sdr);
2202
2203 /*
2204 * SDR timings are given in pico-seconds while NFC timings must be
2205 * expressed in NAND controller clock cycles, which is half of the
2206 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2207 * This is not written anywhere in the datasheet but was observed
2208 * with an oscilloscope.
2209 *
2210 * NFC datasheet gives equations from which thoses calculations
2211 * are derived, they tend to be slightly more restrictives than the
2212 * given core timings and may improve the overall speed.
2213 */
2214 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2215 nfc_tmg.tRH = nfc_tmg.tRP;
2216 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2217 nfc_tmg.tWH = nfc_tmg.tWP;
2218 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2219 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2220 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2221 /*
2222 * Read delay is the time of propagation from SoC pins to NFC internal
2223 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2224 * EDO mode, an additional delay of tRH must be taken into account so
2225 * the data is sampled on the falling edge instead of the rising edge.
2226 */
2227 read_delay = sdr->tRC_min >= 30000 ?
2228 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2229
2230 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2231 /*
2232 * tWHR and tRHW are supposed to be read to write delays (and vice
2233 * versa) but in some cases, ie. when doing a change column, they must
2234 * be greater than that to be sure tCCS delay is respected.
2235 */
2236 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2237 period_ns) - 2,
2238 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2239 period_ns);
2240
2241 /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */
2242 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2243
2244 if (chipnr < 0)
2245 return 0;
2246
2247 marvell_nand->ndtr0 =
2248 NDTR0_TRP(nfc_tmg.tRP) |
2249 NDTR0_TRH(nfc_tmg.tRH) |
2250 NDTR0_ETRP(nfc_tmg.tRP) |
2251 NDTR0_TWP(nfc_tmg.tWP) |
2252 NDTR0_TWH(nfc_tmg.tWH) |
2253 NDTR0_TCS(nfc_tmg.tCS) |
2254 NDTR0_TCH(nfc_tmg.tCH) |
2255 NDTR0_RD_CNT_DEL(read_delay) |
2256 NDTR0_SELCNTR |
2257 NDTR0_TADL(nfc_tmg.tADL);
2258
2259 marvell_nand->ndtr1 =
2260 NDTR1_TAR(nfc_tmg.tAR) |
2261 NDTR1_TWHR(nfc_tmg.tWHR) |
2262 NDTR1_TRHW(nfc_tmg.tRHW) |
2263 NDTR1_WAIT_MODE |
2264 NDTR1_TR(nfc_tmg.tR);
2265
2266 return 0;
2267}
2268
2269static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2270 struct device_node *np)
2271{
2272 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2273 struct marvell_nand_chip *marvell_nand;
2274 struct mtd_info *mtd;
2275 struct nand_chip *chip;
2276 int nsels, ret, i;
2277 u32 cs, rb;
2278
2279 /*
2280 * The legacy "num-cs" property indicates the number of CS on the only
2281 * chip connected to the controller (legacy bindings does not support
2282 * more than one chip). CS are only incremented one by one while the RB
2283 * pin is always the #0.
2284 *
2285 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2286 * properties must be filled. For each chip, expressed as a subnode,
2287 * "reg" points to the CS lines and "nand-rb" to the RB line.
2288 */
2289 if (pdata) {
2290 nsels = 1;
2291 } else if (nfc->caps->legacy_of_bindings &&
2292 !of_get_property(np, "num-cs", &nsels)) {
2293 dev_err(dev, "missing num-cs property\n");
2294 return -EINVAL;
2295 } else if (!of_get_property(np, "reg", &nsels)) {
2296 dev_err(dev, "missing reg property\n");
2297 return -EINVAL;
2298 }
2299
2300 if (!pdata)
2301 nsels /= sizeof(u32);
2302 if (!nsels) {
2303 dev_err(dev, "invalid reg property size\n");
2304 return -EINVAL;
2305 }
2306
2307 /* Alloc the nand chip structure */
2308 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2309 (nsels *
2310 sizeof(struct marvell_nand_chip_sel)),
2311 GFP_KERNEL);
2312 if (!marvell_nand) {
2313 dev_err(dev, "could not allocate chip structure\n");
2314 return -ENOMEM;
2315 }
2316
2317 marvell_nand->nsels = nsels;
2318 marvell_nand->selected_die = -1;
2319
2320 for (i = 0; i < nsels; i++) {
2321 if (pdata || nfc->caps->legacy_of_bindings) {
2322 /*
2323 * Legacy bindings use the CS lines in natural
2324 * order (0, 1, ...)
2325 */
2326 cs = i;
2327 } else {
2328 /* Retrieve CS id */
2329 ret = of_property_read_u32_index(np, "reg", i, &cs);
2330 if (ret) {
2331 dev_err(dev, "could not retrieve reg property: %d\n",
2332 ret);
2333 return ret;
2334 }
2335 }
2336
2337 if (cs >= nfc->caps->max_cs_nb) {
2338 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2339 cs, nfc->caps->max_cs_nb);
2340 return -EINVAL;
2341 }
2342
2343 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2344 dev_err(dev, "CS %d already assigned\n", cs);
2345 return -EINVAL;
2346 }
2347
2348 /*
2349 * The cs variable represents the chip select id, which must be
2350 * converted in bit fields for NDCB0 and NDCB2 to select the
2351 * right chip. Unfortunately, due to a lack of information on
2352 * the subject and incoherent documentation, the user should not
2353 * use CS1 and CS3 at all as asserting them is not supported in
2354 * a reliable way (due to multiplexing inside ADDR5 field).
2355 */
2356 marvell_nand->sels[i].cs = cs;
2357 switch (cs) {
2358 case 0:
2359 case 2:
2360 marvell_nand->sels[i].ndcb0_csel = 0;
2361 break;
2362 case 1:
2363 case 3:
2364 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2365 break;
2366 default:
2367 return -EINVAL;
2368 }
2369
2370 /* Retrieve RB id */
2371 if (pdata || nfc->caps->legacy_of_bindings) {
2372 /* Legacy bindings always use RB #0 */
2373 rb = 0;
2374 } else {
2375 ret = of_property_read_u32_index(np, "nand-rb", i,
2376 &rb);
2377 if (ret) {
2378 dev_err(dev,
2379 "could not retrieve RB property: %d\n",
2380 ret);
2381 return ret;
2382 }
2383 }
2384
2385 if (rb >= nfc->caps->max_rb_nb) {
2386 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2387 rb, nfc->caps->max_rb_nb);
2388 return -EINVAL;
2389 }
2390
2391 marvell_nand->sels[i].rb = rb;
2392 }
2393
2394 chip = &marvell_nand->chip;
2395 chip->controller = &nfc->controller;
2396 nand_set_flash_node(chip, np);
2397
2398 chip->exec_op = marvell_nfc_exec_op;
2399 chip->select_chip = marvell_nfc_select_chip;
2400 if (nfc->caps->is_nfcv2 &&
2401 !of_property_read_bool(np, "marvell,nand-keep-config"))
2402 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2403
2404 mtd = nand_to_mtd(chip);
2405 mtd->dev.parent = dev;
2406
2407 /*
2408 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2409 * in the DT node, this entry will be overwritten in nand_scan_ident().
2410 */
2411 chip->ecc.mode = NAND_ECC_HW;
2412
2413 /*
2414 * Save a reference value for timing registers before
2415 * ->setup_data_interface() is called.
2416 */
2417 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2418 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2419
2420 chip->options |= NAND_BUSWIDTH_AUTO;
2421 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2422 if (ret) {
2423 dev_err(dev, "could not identify the nand chip\n");
2424 return ret;
2425 }
2426
2427 if (pdata && pdata->flash_bbt)
2428 chip->bbt_options |= NAND_BBT_USE_FLASH;
2429
2430 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2431 /*
2432 * We'll use a bad block table stored in-flash and don't
2433 * allow writing the bad block marker to the flash.
2434 */
2435 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2436 chip->bbt_td = &bbt_main_descr;
2437 chip->bbt_md = &bbt_mirror_descr;
2438 }
2439
2440 /* Save the chip-specific fields of NDCR */
2441 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2442 if (chip->options & NAND_BUSWIDTH_16)
2443 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2444
2445 /*
2446 * On small page NANDs, only one cycle is needed to pass the
2447 * column address.
2448 */
2449 if (mtd->writesize <= 512) {
2450 marvell_nand->addr_cyc = 1;
2451 } else {
2452 marvell_nand->addr_cyc = 2;
2453 marvell_nand->ndcr |= NDCR_RA_START;
2454 }
2455
2456 /*
2457 * Now add the number of cycles needed to pass the row
2458 * address.
2459 *
2460 * Addressing a chip using CS 2 or 3 should also need the third row
2461 * cycle but due to inconsistance in the documentation and lack of
2462 * hardware to test this situation, this case is not supported.
2463 */
2464 if (chip->options & NAND_ROW_ADDR_3)
2465 marvell_nand->addr_cyc += 3;
2466 else
2467 marvell_nand->addr_cyc += 2;
2468
2469 if (pdata) {
2470 chip->ecc.size = pdata->ecc_step_size;
2471 chip->ecc.strength = pdata->ecc_strength;
2472 }
2473
2474 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2475 if (ret) {
2476 dev_err(dev, "ECC init failed: %d\n", ret);
2477 return ret;
2478 }
2479
2480 if (chip->ecc.mode == NAND_ECC_HW) {
2481 /*
2482 * Subpage write not available with hardware ECC, prohibit also
2483 * subpage read as in userspace subpage access would still be
2484 * allowed and subpage write, if used, would lead to numerous
2485 * uncorrectable ECC errors.
2486 */
2487 chip->options |= NAND_NO_SUBPAGE_WRITE;
2488 }
2489
2490 if (pdata || nfc->caps->legacy_of_bindings) {
2491 /*
2492 * We keep the MTD name unchanged to avoid breaking platforms
2493 * where the MTD cmdline parser is used and the bootloader
2494 * has not been updated to use the new naming scheme.
2495 */
2496 mtd->name = "pxa3xx_nand-0";
2497 } else if (!mtd->name) {
2498 /*
2499 * If the new bindings are used and the bootloader has not been
2500 * updated to pass a new mtdparts parameter on the cmdline, you
2501 * should define the following property in your NAND node, ie:
2502 *
2503 * label = "main-storage";
2504 *
2505 * This way, mtd->name will be set by the core when
2506 * nand_set_flash_node() is called.
2507 */
2508 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2509 "%s:nand.%d", dev_name(nfc->dev),
2510 marvell_nand->sels[0].cs);
2511 if (!mtd->name) {
2512 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2513 return -ENOMEM;
2514 }
2515 }
2516
2517 ret = nand_scan_tail(mtd);
2518 if (ret) {
2519 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2520 return ret;
2521 }
2522
2523 if (pdata)
2524 /* Legacy bindings support only one chip */
2525 ret = mtd_device_register(mtd, pdata->parts[0],
2526 pdata->nr_parts[0]);
2527 else
2528 ret = mtd_device_register(mtd, NULL, 0);
2529 if (ret) {
2530 dev_err(dev, "failed to register mtd device: %d\n", ret);
2531 nand_release(mtd);
2532 return ret;
2533 }
2534
2535 list_add_tail(&marvell_nand->node, &nfc->chips);
2536
2537 return 0;
2538}
2539
2540static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2541{
2542 struct device_node *np = dev->of_node;
2543 struct device_node *nand_np;
2544 int max_cs = nfc->caps->max_cs_nb;
2545 int nchips;
2546 int ret;
2547
2548 if (!np)
2549 nchips = 1;
2550 else
2551 nchips = of_get_child_count(np);
2552
2553 if (nchips > max_cs) {
2554 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2555 max_cs);
2556 return -EINVAL;
2557 }
2558
2559 /*
2560 * Legacy bindings do not use child nodes to exhibit NAND chip
2561 * properties and layout. Instead, NAND properties are mixed with the
2562 * controller ones, and partitions are defined as direct subnodes of the
2563 * NAND controller node.
2564 */
2565 if (nfc->caps->legacy_of_bindings) {
2566 ret = marvell_nand_chip_init(dev, nfc, np);
2567 return ret;
2568 }
2569
2570 for_each_child_of_node(np, nand_np) {
2571 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2572 if (ret) {
2573 of_node_put(nand_np);
2574 return ret;
2575 }
2576 }
2577
2578 return 0;
2579}
2580
2581static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2582{
2583 struct marvell_nand_chip *entry, *temp;
2584
2585 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2586 nand_release(nand_to_mtd(&entry->chip));
2587 list_del(&entry->node);
2588 }
2589}
2590
2591static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2592{
2593 struct platform_device *pdev = container_of(nfc->dev,
2594 struct platform_device,
2595 dev);
2596 struct dma_slave_config config = {};
2597 struct resource *r;
2598 dma_cap_mask_t mask;
2599 struct pxad_param param;
2600 int ret;
2601
2602 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2603 dev_warn(nfc->dev,
2604 "DMA not enabled in configuration\n");
2605 return -ENOTSUPP;
2606 }
2607
2608 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2609 if (ret)
2610 return ret;
2611
2612 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2613 if (!r) {
2614 dev_err(nfc->dev, "No resource defined for data DMA\n");
2615 return -ENXIO;
2616 }
2617
2618 param.drcmr = r->start;
2619 param.prio = PXAD_PRIO_LOWEST;
2620 dma_cap_zero(mask);
2621 dma_cap_set(DMA_SLAVE, mask);
2622 nfc->dma_chan =
2623 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2624 &param, nfc->dev,
2625 "data");
2626 if (!nfc->dma_chan) {
2627 dev_err(nfc->dev,
2628 "Unable to request data DMA channel\n");
2629 return -ENODEV;
2630 }
2631
2632 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2633 if (!r)
2634 return -ENXIO;
2635
2636 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2637 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2638 config.src_addr = r->start + NDDB;
2639 config.dst_addr = r->start + NDDB;
2640 config.src_maxburst = 32;
2641 config.dst_maxburst = 32;
2642 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2643 if (ret < 0) {
2644 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2645 return ret;
2646 }
2647
2648 /*
2649 * DMA must act on length multiple of 32 and this length may be
2650 * bigger than the destination buffer. Use this buffer instead
2651 * for DMA transfers and then copy the desired amount of data to
2652 * the provided buffer.
2653 */
2654 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_DMA);
2655 if (!nfc->dma_buf)
2656 return -ENOMEM;
2657
2658 nfc->use_dma = true;
2659
2660 return 0;
2661}
2662
2663static int marvell_nfc_init(struct marvell_nfc *nfc)
2664{
2665 struct device_node *np = nfc->dev->of_node;
2666
2667 /*
2668 * Some SoCs like A7k/A8k need to enable manually the NAND
2669 * controller, gated clocks and reset bits to avoid being bootloader
2670 * dependent. This is done through the use of the System Functions
2671 * registers.
2672 */
2673 if (nfc->caps->need_system_controller) {
2674 struct regmap *sysctrl_base =
2675 syscon_regmap_lookup_by_phandle(np,
2676 "marvell,system-controller");
2677 u32 reg;
2678
2679 if (IS_ERR(sysctrl_base))
2680 return PTR_ERR(sysctrl_base);
2681
2682 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2683 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2684 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2685 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2686 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2687
2688 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2689 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2690 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2691
2692 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2693 reg |= GENCONF_ND_CLK_CTRL_EN;
2694 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2695 }
2696
2697 /* Configure the DMA if appropriate */
2698 if (!nfc->caps->is_nfcv2)
2699 marvell_nfc_init_dma(nfc);
2700
2701 /*
2702 * ECC operations and interruptions are only enabled when specifically
2703 * needed. ECC shall not be activated in the early stages (fails probe).
2704 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2705 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2706 * offset in the read page and this will fail the protection.
2707 */
2708 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2709 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2710 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2711 writel_relaxed(0, nfc->regs + NDECCCTRL);
2712
2713 return 0;
2714}
2715
2716static int marvell_nfc_probe(struct platform_device *pdev)
2717{
2718 struct device *dev = &pdev->dev;
2719 struct resource *r;
2720 struct marvell_nfc *nfc;
2721 int ret;
2722 int irq;
2723
2724 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2725 GFP_KERNEL);
2726 if (!nfc)
2727 return -ENOMEM;
2728
2729 nfc->dev = dev;
2730 nand_hw_control_init(&nfc->controller);
2731 INIT_LIST_HEAD(&nfc->chips);
2732
2733 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2734 nfc->regs = devm_ioremap_resource(dev, r);
2735 if (IS_ERR(nfc->regs))
2736 return PTR_ERR(nfc->regs);
2737
2738 irq = platform_get_irq(pdev, 0);
2739 if (irq < 0) {
2740 dev_err(dev, "failed to retrieve irq\n");
2741 return irq;
2742 }
2743
2744 nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL);
2745 if (IS_ERR(nfc->ecc_clk))
2746 return PTR_ERR(nfc->ecc_clk);
2747
2748 ret = clk_prepare_enable(nfc->ecc_clk);
2749 if (ret)
2750 return ret;
2751
2752 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2753 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2754 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2755 0, "marvell-nfc", nfc);
2756 if (ret)
2757 goto unprepare_clk;
2758
2759 /* Get NAND controller capabilities */
2760 if (pdev->id_entry)
2761 nfc->caps = (void *)pdev->id_entry->driver_data;
2762 else
2763 nfc->caps = of_device_get_match_data(&pdev->dev);
2764
2765 if (!nfc->caps) {
2766 dev_err(dev, "Could not retrieve NFC caps\n");
2767 ret = -EINVAL;
2768 goto unprepare_clk;
2769 }
2770
2771 /* Init the controller and then probe the chips */
2772 ret = marvell_nfc_init(nfc);
2773 if (ret)
2774 goto unprepare_clk;
2775
2776 platform_set_drvdata(pdev, nfc);
2777
2778 ret = marvell_nand_chips_init(dev, nfc);
2779 if (ret)
2780 goto unprepare_clk;
2781
2782 return 0;
2783
2784unprepare_clk:
2785 clk_disable_unprepare(nfc->ecc_clk);
2786
2787 return ret;
2788}
2789
2790static int marvell_nfc_remove(struct platform_device *pdev)
2791{
2792 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2793
2794 marvell_nand_chips_cleanup(nfc);
2795
2796 if (nfc->use_dma) {
2797 dmaengine_terminate_all(nfc->dma_chan);
2798 dma_release_channel(nfc->dma_chan);
2799 }
2800
2801 clk_disable_unprepare(nfc->ecc_clk);
2802
2803 return 0;
2804}
2805
2806static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2807 .max_cs_nb = 4,
2808 .max_rb_nb = 2,
2809 .need_system_controller = true,
2810 .is_nfcv2 = true,
2811};
2812
2813static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2814 .max_cs_nb = 4,
2815 .max_rb_nb = 2,
2816 .is_nfcv2 = true,
2817};
2818
2819static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2820 .max_cs_nb = 2,
2821 .max_rb_nb = 1,
2822 .use_dma = true,
2823};
2824
2825static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2826 .max_cs_nb = 4,
2827 .max_rb_nb = 2,
2828 .need_system_controller = true,
2829 .legacy_of_bindings = true,
2830 .is_nfcv2 = true,
2831};
2832
2833static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2834 .max_cs_nb = 4,
2835 .max_rb_nb = 2,
2836 .legacy_of_bindings = true,
2837 .is_nfcv2 = true,
2838};
2839
2840static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2841 .max_cs_nb = 2,
2842 .max_rb_nb = 1,
2843 .legacy_of_bindings = true,
2844 .use_dma = true,
2845};
2846
2847static const struct platform_device_id marvell_nfc_platform_ids[] = {
2848 {
2849 .name = "pxa3xx-nand",
2850 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2851 },
2852 { /* sentinel */ },
2853};
2854MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2855
2856static const struct of_device_id marvell_nfc_of_ids[] = {
2857 {
2858 .compatible = "marvell,armada-8k-nand-controller",
2859 .data = &marvell_armada_8k_nfc_caps,
2860 },
2861 {
2862 .compatible = "marvell,armada370-nand-controller",
2863 .data = &marvell_armada370_nfc_caps,
2864 },
2865 {
2866 .compatible = "marvell,pxa3xx-nand-controller",
2867 .data = &marvell_pxa3xx_nfc_caps,
2868 },
2869 /* Support for old/deprecated bindings: */
2870 {
2871 .compatible = "marvell,armada-8k-nand",
2872 .data = &marvell_armada_8k_nfc_legacy_caps,
2873 },
2874 {
2875 .compatible = "marvell,armada370-nand",
2876 .data = &marvell_armada370_nfc_legacy_caps,
2877 },
2878 {
2879 .compatible = "marvell,pxa3xx-nand",
2880 .data = &marvell_pxa3xx_nfc_legacy_caps,
2881 },
2882 { /* sentinel */ },
2883};
2884MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2885
2886static struct platform_driver marvell_nfc_driver = {
2887 .driver = {
2888 .name = "marvell-nfc",
2889 .of_match_table = marvell_nfc_of_ids,
2890 },
2891 .id_table = marvell_nfc_platform_ids,
2892 .probe = marvell_nfc_probe,
2893 .remove = marvell_nfc_remove,
2894};
2895module_platform_driver(marvell_nfc_driver);
2896
2897MODULE_LICENSE("GPL");
2898MODULE_DESCRIPTION("Marvell NAND controller driver");