blob: 53fe97bd720fc4ab8270564338b1eb71950cd06e [file] [log] [blame]
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
90void *xen_initial_gdt;
91
92RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94static int xen_cpu_up_prepare_pv(unsigned int cpu);
95static int xen_cpu_dead_pv(unsigned int cpu);
96
97struct tls_descs {
98 struct desc_struct desc[3];
99};
100
101/*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110/*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115void xen_vcpu_restore(void)
116{
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137}
138
139static void __init xen_banner(void)
140{
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
145 pr_info("Booting paravirtualized kernel %son %s\n",
146 xen_feature(XENFEAT_auto_translated_physmap) ?
147 "with PVH extensions " : "", pv_info.name);
148 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
149 version >> 16, version & 0xffff, extra.extraversion,
150 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
151}
152/* Check if running on Xen version (major, minor) or later */
153bool
154xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155{
156 unsigned int version;
157
158 if (!xen_domain())
159 return false;
160
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
166}
167
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100168static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
169static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
170
171static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
172static __read_mostly unsigned int cpuid_leaf5_ecx_val;
173static __read_mostly unsigned int cpuid_leaf5_edx_val;
174
175static void xen_cpuid(unsigned int *ax, unsigned int *bx,
176 unsigned int *cx, unsigned int *dx)
177{
178 unsigned maskebx = ~0;
179 unsigned maskecx = ~0;
180 unsigned maskedx = ~0;
181 unsigned setecx = 0;
182 /*
183 * Mask out inconvenient features, to try and disable as many
184 * unsupported kernel subsystems as possible.
185 */
186 switch (*ax) {
187 case 1:
188 maskecx = cpuid_leaf1_ecx_mask;
189 setecx = cpuid_leaf1_ecx_set_mask;
190 maskedx = cpuid_leaf1_edx_mask;
191 break;
192
193 case CPUID_MWAIT_LEAF:
194 /* Synthesize the values.. */
195 *ax = 0;
196 *bx = 0;
197 *cx = cpuid_leaf5_ecx_val;
198 *dx = cpuid_leaf5_edx_val;
199 return;
200
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100201 case 0xb:
202 /* Suppress extended topology stuff */
203 maskebx = 0;
204 break;
205 }
206
207 asm(XEN_EMULATE_PREFIX "cpuid"
208 : "=a" (*ax),
209 "=b" (*bx),
210 "=c" (*cx),
211 "=d" (*dx)
212 : "0" (*ax), "2" (*cx));
213
214 *bx &= maskebx;
215 *cx &= maskecx;
216 *cx |= setecx;
217 *dx &= maskedx;
218}
219STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
220
221static bool __init xen_check_mwait(void)
222{
223#ifdef CONFIG_ACPI
224 struct xen_platform_op op = {
225 .cmd = XENPF_set_processor_pminfo,
226 .u.set_pminfo.id = -1,
227 .u.set_pminfo.type = XEN_PM_PDC,
228 };
229 uint32_t buf[3];
230 unsigned int ax, bx, cx, dx;
231 unsigned int mwait_mask;
232
233 /* We need to determine whether it is OK to expose the MWAIT
234 * capability to the kernel to harvest deeper than C3 states from ACPI
235 * _CST using the processor_harvest_xen.c module. For this to work, we
236 * need to gather the MWAIT_LEAF values (which the cstate.c code
237 * checks against). The hypervisor won't expose the MWAIT flag because
238 * it would break backwards compatibility; so we will find out directly
239 * from the hardware and hypercall.
240 */
241 if (!xen_initial_domain())
242 return false;
243
244 /*
245 * When running under platform earlier than Xen4.2, do not expose
246 * mwait, to avoid the risk of loading native acpi pad driver
247 */
248 if (!xen_running_on_version_or_later(4, 2))
249 return false;
250
251 ax = 1;
252 cx = 0;
253
254 native_cpuid(&ax, &bx, &cx, &dx);
255
256 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
257 (1 << (X86_FEATURE_MWAIT % 32));
258
259 if ((cx & mwait_mask) != mwait_mask)
260 return false;
261
262 /* We need to emulate the MWAIT_LEAF and for that we need both
263 * ecx and edx. The hypercall provides only partial information.
264 */
265
266 ax = CPUID_MWAIT_LEAF;
267 bx = 0;
268 cx = 0;
269 dx = 0;
270
271 native_cpuid(&ax, &bx, &cx, &dx);
272
273 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
274 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
275 */
276 buf[0] = ACPI_PDC_REVISION_ID;
277 buf[1] = 1;
278 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
279
280 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
281
282 if ((HYPERVISOR_platform_op(&op) == 0) &&
283 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
284 cpuid_leaf5_ecx_val = cx;
285 cpuid_leaf5_edx_val = dx;
286 }
287 return true;
288#else
289 return false;
290#endif
291}
292static void __init xen_init_cpuid_mask(void)
293{
294 unsigned int ax, bx, cx, dx;
295 unsigned int xsave_mask;
296
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100297 if (!xen_initial_domain())
298 cpuid_leaf1_edx_mask &=
299 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
300
301 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
302
303 ax = 1;
304 cx = 0;
305 cpuid(1, &ax, &bx, &cx, &dx);
306
307 xsave_mask =
308 (1 << (X86_FEATURE_XSAVE % 32)) |
309 (1 << (X86_FEATURE_OSXSAVE % 32));
310
311 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
312 if ((cx & xsave_mask) != xsave_mask)
313 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
314 if (xen_check_mwait())
315 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
316}
317
Juergen Gross0808e802017-04-13 08:55:41 +0200318static void __init xen_init_capabilities(void)
319{
320 setup_clear_cpu_cap(X86_BUG_SYSRET_SS_ATTRS);
321 setup_force_cpu_cap(X86_FEATURE_XENPV);
Juergen Gross3ee99df2017-04-12 08:20:29 +0200322 setup_clear_cpu_cap(X86_FEATURE_DCA);
Juergen Grossfd9145f2017-04-12 08:27:07 +0200323 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
Juergen Gross88f32562017-04-12 09:21:05 +0200324 setup_clear_cpu_cap(X86_FEATURE_MTRR);
Juergen Grossaa107152017-04-12 09:24:01 +0200325 setup_clear_cpu_cap(X86_FEATURE_ACC);
Juergen Gross0808e802017-04-13 08:55:41 +0200326}
327
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100328static void xen_set_debugreg(int reg, unsigned long val)
329{
330 HYPERVISOR_set_debugreg(reg, val);
331}
332
333static unsigned long xen_get_debugreg(int reg)
334{
335 return HYPERVISOR_get_debugreg(reg);
336}
337
338static void xen_end_context_switch(struct task_struct *next)
339{
340 xen_mc_flush();
341 paravirt_end_context_switch(next);
342}
343
344static unsigned long xen_store_tr(void)
345{
346 return 0;
347}
348
349/*
350 * Set the page permissions for a particular virtual address. If the
351 * address is a vmalloc mapping (or other non-linear mapping), then
352 * find the linear mapping of the page and also set its protections to
353 * match.
354 */
355static void set_aliased_prot(void *v, pgprot_t prot)
356{
357 int level;
358 pte_t *ptep;
359 pte_t pte;
360 unsigned long pfn;
361 struct page *page;
362 unsigned char dummy;
363
364 ptep = lookup_address((unsigned long)v, &level);
365 BUG_ON(ptep == NULL);
366
367 pfn = pte_pfn(*ptep);
368 page = pfn_to_page(pfn);
369
370 pte = pfn_pte(pfn, prot);
371
372 /*
373 * Careful: update_va_mapping() will fail if the virtual address
374 * we're poking isn't populated in the page tables. We don't
375 * need to worry about the direct map (that's always in the page
376 * tables), but we need to be careful about vmap space. In
377 * particular, the top level page table can lazily propagate
378 * entries between processes, so if we've switched mms since we
379 * vmapped the target in the first place, we might not have the
380 * top-level page table entry populated.
381 *
382 * We disable preemption because we want the same mm active when
383 * we probe the target and when we issue the hypercall. We'll
384 * have the same nominal mm, but if we're a kernel thread, lazy
385 * mm dropping could change our pgd.
386 *
387 * Out of an abundance of caution, this uses __get_user() to fault
388 * in the target address just in case there's some obscure case
389 * in which the target address isn't readable.
390 */
391
392 preempt_disable();
393
394 probe_kernel_read(&dummy, v, 1);
395
396 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
397 BUG();
398
399 if (!PageHighMem(page)) {
400 void *av = __va(PFN_PHYS(pfn));
401
402 if (av != v)
403 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
404 BUG();
405 } else
406 kmap_flush_unused();
407
408 preempt_enable();
409}
410
411static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
412{
413 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
414 int i;
415
416 /*
417 * We need to mark the all aliases of the LDT pages RO. We
418 * don't need to call vm_flush_aliases(), though, since that's
419 * only responsible for flushing aliases out the TLBs, not the
420 * page tables, and Xen will flush the TLB for us if needed.
421 *
422 * To avoid confusing future readers: none of this is necessary
423 * to load the LDT. The hypervisor only checks this when the
424 * LDT is faulted in due to subsequent descriptor access.
425 */
426
427 for (i = 0; i < entries; i += entries_per_page)
428 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
429}
430
431static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
432{
433 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
434 int i;
435
436 for (i = 0; i < entries; i += entries_per_page)
437 set_aliased_prot(ldt + i, PAGE_KERNEL);
438}
439
440static void xen_set_ldt(const void *addr, unsigned entries)
441{
442 struct mmuext_op *op;
443 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
444
445 trace_xen_cpu_set_ldt(addr, entries);
446
447 op = mcs.args;
448 op->cmd = MMUEXT_SET_LDT;
449 op->arg1.linear_addr = (unsigned long)addr;
450 op->arg2.nr_ents = entries;
451
452 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
453
454 xen_mc_issue(PARAVIRT_LAZY_CPU);
455}
456
457static void xen_load_gdt(const struct desc_ptr *dtr)
458{
459 unsigned long va = dtr->address;
460 unsigned int size = dtr->size + 1;
461 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
462 unsigned long frames[pages];
463 int f;
464
465 /*
466 * A GDT can be up to 64k in size, which corresponds to 8192
467 * 8-byte entries, or 16 4k pages..
468 */
469
470 BUG_ON(size > 65536);
471 BUG_ON(va & ~PAGE_MASK);
472
473 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
474 int level;
475 pte_t *ptep;
476 unsigned long pfn, mfn;
477 void *virt;
478
479 /*
480 * The GDT is per-cpu and is in the percpu data area.
481 * That can be virtually mapped, so we need to do a
482 * page-walk to get the underlying MFN for the
483 * hypercall. The page can also be in the kernel's
484 * linear range, so we need to RO that mapping too.
485 */
486 ptep = lookup_address(va, &level);
487 BUG_ON(ptep == NULL);
488
489 pfn = pte_pfn(*ptep);
490 mfn = pfn_to_mfn(pfn);
491 virt = __va(PFN_PHYS(pfn));
492
493 frames[f] = mfn;
494
495 make_lowmem_page_readonly((void *)va);
496 make_lowmem_page_readonly(virt);
497 }
498
499 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
500 BUG();
501}
502
503/*
504 * load_gdt for early boot, when the gdt is only mapped once
505 */
506static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
507{
508 unsigned long va = dtr->address;
509 unsigned int size = dtr->size + 1;
510 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
511 unsigned long frames[pages];
512 int f;
513
514 /*
515 * A GDT can be up to 64k in size, which corresponds to 8192
516 * 8-byte entries, or 16 4k pages..
517 */
518
519 BUG_ON(size > 65536);
520 BUG_ON(va & ~PAGE_MASK);
521
522 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
523 pte_t pte;
524 unsigned long pfn, mfn;
525
526 pfn = virt_to_pfn(va);
527 mfn = pfn_to_mfn(pfn);
528
529 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
530
531 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
532 BUG();
533
534 frames[f] = mfn;
535 }
536
537 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
538 BUG();
539}
540
541static inline bool desc_equal(const struct desc_struct *d1,
542 const struct desc_struct *d2)
543{
544 return d1->a == d2->a && d1->b == d2->b;
545}
546
547static void load_TLS_descriptor(struct thread_struct *t,
548 unsigned int cpu, unsigned int i)
549{
550 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
551 struct desc_struct *gdt;
552 xmaddr_t maddr;
553 struct multicall_space mc;
554
555 if (desc_equal(shadow, &t->tls_array[i]))
556 return;
557
558 *shadow = t->tls_array[i];
559
560 gdt = get_cpu_gdt_rw(cpu);
561 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
562 mc = __xen_mc_entry(0);
563
564 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
565}
566
567static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
568{
569 /*
570 * XXX sleazy hack: If we're being called in a lazy-cpu zone
571 * and lazy gs handling is enabled, it means we're in a
572 * context switch, and %gs has just been saved. This means we
573 * can zero it out to prevent faults on exit from the
574 * hypervisor if the next process has no %gs. Either way, it
575 * has been saved, and the new value will get loaded properly.
576 * This will go away as soon as Xen has been modified to not
577 * save/restore %gs for normal hypercalls.
578 *
579 * On x86_64, this hack is not used for %gs, because gs points
580 * to KERNEL_GS_BASE (and uses it for PDA references), so we
581 * must not zero %gs on x86_64
582 *
583 * For x86_64, we need to zero %fs, otherwise we may get an
584 * exception between the new %fs descriptor being loaded and
585 * %fs being effectively cleared at __switch_to().
586 */
587 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
588#ifdef CONFIG_X86_32
589 lazy_load_gs(0);
590#else
591 loadsegment(fs, 0);
592#endif
593 }
594
595 xen_mc_batch();
596
597 load_TLS_descriptor(t, cpu, 0);
598 load_TLS_descriptor(t, cpu, 1);
599 load_TLS_descriptor(t, cpu, 2);
600
601 xen_mc_issue(PARAVIRT_LAZY_CPU);
602}
603
604#ifdef CONFIG_X86_64
605static void xen_load_gs_index(unsigned int idx)
606{
607 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
608 BUG();
609}
610#endif
611
612static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
613 const void *ptr)
614{
615 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
616 u64 entry = *(u64 *)ptr;
617
618 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
619
620 preempt_disable();
621
622 xen_mc_flush();
623 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
624 BUG();
625
626 preempt_enable();
627}
628
629static int cvt_gate_to_trap(int vector, const gate_desc *val,
630 struct trap_info *info)
631{
632 unsigned long addr;
633
634 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
635 return 0;
636
637 info->vector = vector;
638
639 addr = gate_offset(*val);
640#ifdef CONFIG_X86_64
641 /*
642 * Look for known traps using IST, and substitute them
643 * appropriately. The debugger ones are the only ones we care
644 * about. Xen will handle faults like double_fault,
645 * so we should never see them. Warn if
646 * there's an unexpected IST-using fault handler.
647 */
648 if (addr == (unsigned long)debug)
649 addr = (unsigned long)xen_debug;
650 else if (addr == (unsigned long)int3)
651 addr = (unsigned long)xen_int3;
652 else if (addr == (unsigned long)stack_segment)
653 addr = (unsigned long)xen_stack_segment;
654 else if (addr == (unsigned long)double_fault) {
655 /* Don't need to handle these */
656 return 0;
657#ifdef CONFIG_X86_MCE
658 } else if (addr == (unsigned long)machine_check) {
659 /*
660 * when xen hypervisor inject vMCE to guest,
661 * use native mce handler to handle it
662 */
663 ;
664#endif
665 } else if (addr == (unsigned long)nmi)
666 /*
667 * Use the native version as well.
668 */
669 ;
670 else {
671 /* Some other trap using IST? */
672 if (WARN_ON(val->ist != 0))
673 return 0;
674 }
675#endif /* CONFIG_X86_64 */
676 info->address = addr;
677
678 info->cs = gate_segment(*val);
679 info->flags = val->dpl;
680 /* interrupt gates clear IF */
681 if (val->type == GATE_INTERRUPT)
682 info->flags |= 1 << 2;
683
684 return 1;
685}
686
687/* Locations of each CPU's IDT */
688static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
689
690/* Set an IDT entry. If the entry is part of the current IDT, then
691 also update Xen. */
692static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
693{
694 unsigned long p = (unsigned long)&dt[entrynum];
695 unsigned long start, end;
696
697 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
698
699 preempt_disable();
700
701 start = __this_cpu_read(idt_desc.address);
702 end = start + __this_cpu_read(idt_desc.size) + 1;
703
704 xen_mc_flush();
705
706 native_write_idt_entry(dt, entrynum, g);
707
708 if (p >= start && (p + 8) <= end) {
709 struct trap_info info[2];
710
711 info[1].address = 0;
712
713 if (cvt_gate_to_trap(entrynum, g, &info[0]))
714 if (HYPERVISOR_set_trap_table(info))
715 BUG();
716 }
717
718 preempt_enable();
719}
720
721static void xen_convert_trap_info(const struct desc_ptr *desc,
722 struct trap_info *traps)
723{
724 unsigned in, out, count;
725
726 count = (desc->size+1) / sizeof(gate_desc);
727 BUG_ON(count > 256);
728
729 for (in = out = 0; in < count; in++) {
730 gate_desc *entry = (gate_desc *)(desc->address) + in;
731
732 if (cvt_gate_to_trap(in, entry, &traps[out]))
733 out++;
734 }
735 traps[out].address = 0;
736}
737
738void xen_copy_trap_info(struct trap_info *traps)
739{
740 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
741
742 xen_convert_trap_info(desc, traps);
743}
744
745/* Load a new IDT into Xen. In principle this can be per-CPU, so we
746 hold a spinlock to protect the static traps[] array (static because
747 it avoids allocation, and saves stack space). */
748static void xen_load_idt(const struct desc_ptr *desc)
749{
750 static DEFINE_SPINLOCK(lock);
751 static struct trap_info traps[257];
752
753 trace_xen_cpu_load_idt(desc);
754
755 spin_lock(&lock);
756
757 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
758
759 xen_convert_trap_info(desc, traps);
760
761 xen_mc_flush();
762 if (HYPERVISOR_set_trap_table(traps))
763 BUG();
764
765 spin_unlock(&lock);
766}
767
768/* Write a GDT descriptor entry. Ignore LDT descriptors, since
769 they're handled differently. */
770static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
771 const void *desc, int type)
772{
773 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
774
775 preempt_disable();
776
777 switch (type) {
778 case DESC_LDT:
779 case DESC_TSS:
780 /* ignore */
781 break;
782
783 default: {
784 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
785
786 xen_mc_flush();
787 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
788 BUG();
789 }
790
791 }
792
793 preempt_enable();
794}
795
796/*
797 * Version of write_gdt_entry for use at early boot-time needed to
798 * update an entry as simply as possible.
799 */
800static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
801 const void *desc, int type)
802{
803 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
804
805 switch (type) {
806 case DESC_LDT:
807 case DESC_TSS:
808 /* ignore */
809 break;
810
811 default: {
812 xmaddr_t maddr = virt_to_machine(&dt[entry]);
813
814 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
815 dt[entry] = *(struct desc_struct *)desc;
816 }
817
818 }
819}
820
821static void xen_load_sp0(struct tss_struct *tss,
822 struct thread_struct *thread)
823{
824 struct multicall_space mcs;
825
826 mcs = xen_mc_entry(0);
827 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
828 xen_mc_issue(PARAVIRT_LAZY_CPU);
829 tss->x86_tss.sp0 = thread->sp0;
830}
831
832void xen_set_iopl_mask(unsigned mask)
833{
834 struct physdev_set_iopl set_iopl;
835
836 /* Force the change at ring 0. */
837 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
838 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
839}
840
841static void xen_io_delay(void)
842{
843}
844
845static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
846
847static unsigned long xen_read_cr0(void)
848{
849 unsigned long cr0 = this_cpu_read(xen_cr0_value);
850
851 if (unlikely(cr0 == 0)) {
852 cr0 = native_read_cr0();
853 this_cpu_write(xen_cr0_value, cr0);
854 }
855
856 return cr0;
857}
858
859static void xen_write_cr0(unsigned long cr0)
860{
861 struct multicall_space mcs;
862
863 this_cpu_write(xen_cr0_value, cr0);
864
865 /* Only pay attention to cr0.TS; everything else is
866 ignored. */
867 mcs = xen_mc_entry(0);
868
869 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
870
871 xen_mc_issue(PARAVIRT_LAZY_CPU);
872}
873
874static void xen_write_cr4(unsigned long cr4)
875{
876 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
877
878 native_write_cr4(cr4);
879}
880#ifdef CONFIG_X86_64
881static inline unsigned long xen_read_cr8(void)
882{
883 return 0;
884}
885static inline void xen_write_cr8(unsigned long val)
886{
887 BUG_ON(val);
888}
889#endif
890
891static u64 xen_read_msr_safe(unsigned int msr, int *err)
892{
893 u64 val;
894
895 if (pmu_msr_read(msr, &val, err))
896 return val;
897
898 val = native_read_msr_safe(msr, err);
899 switch (msr) {
900 case MSR_IA32_APICBASE:
901#ifdef CONFIG_X86_X2APIC
902 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
903#endif
904 val &= ~X2APIC_ENABLE;
905 break;
906 }
907 return val;
908}
909
910static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
911{
912 int ret;
913
914 ret = 0;
915
916 switch (msr) {
917#ifdef CONFIG_X86_64
918 unsigned which;
919 u64 base;
920
921 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
922 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
923 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
924
925 set:
926 base = ((u64)high << 32) | low;
927 if (HYPERVISOR_set_segment_base(which, base) != 0)
928 ret = -EIO;
929 break;
930#endif
931
932 case MSR_STAR:
933 case MSR_CSTAR:
934 case MSR_LSTAR:
935 case MSR_SYSCALL_MASK:
936 case MSR_IA32_SYSENTER_CS:
937 case MSR_IA32_SYSENTER_ESP:
938 case MSR_IA32_SYSENTER_EIP:
939 /* Fast syscall setup is all done in hypercalls, so
940 these are all ignored. Stub them out here to stop
941 Xen console noise. */
942 break;
943
944 default:
945 if (!pmu_msr_write(msr, low, high, &ret))
946 ret = native_write_msr_safe(msr, low, high);
947 }
948
949 return ret;
950}
951
952static u64 xen_read_msr(unsigned int msr)
953{
954 /*
955 * This will silently swallow a #GP from RDMSR. It may be worth
956 * changing that.
957 */
958 int err;
959
960 return xen_read_msr_safe(msr, &err);
961}
962
963static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
964{
965 /*
966 * This will silently swallow a #GP from WRMSR. It may be worth
967 * changing that.
968 */
969 xen_write_msr_safe(msr, low, high);
970}
971
972void xen_setup_shared_info(void)
973{
974 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
975 set_fixmap(FIX_PARAVIRT_BOOTMAP,
976 xen_start_info->shared_info);
977
978 HYPERVISOR_shared_info =
979 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
980 } else
981 HYPERVISOR_shared_info =
982 (struct shared_info *)__va(xen_start_info->shared_info);
983
984#ifndef CONFIG_SMP
985 /* In UP this is as good a place as any to set up shared info */
986 xen_setup_vcpu_info_placement();
987#endif
988
989 xen_setup_mfn_list_list();
990}
991
992/* This is called once we have the cpu_possible_mask */
993void xen_setup_vcpu_info_placement(void)
994{
995 int cpu;
996
997 for_each_possible_cpu(cpu) {
998 /* Set up direct vCPU id mapping for PV guests. */
999 per_cpu(xen_vcpu_id, cpu) = cpu;
1000 xen_vcpu_setup(cpu);
1001 }
1002
1003 /*
1004 * xen_vcpu_setup managed to place the vcpu_info within the
1005 * percpu area for all cpus, so make use of it.
1006 */
1007 if (xen_have_vcpu_info_placement) {
1008 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1009 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1010 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1011 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1012 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1013 }
1014}
1015
1016static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1017 unsigned long addr, unsigned len)
1018{
1019 char *start, *end, *reloc;
1020 unsigned ret;
1021
1022 start = end = reloc = NULL;
1023
1024#define SITE(op, x) \
1025 case PARAVIRT_PATCH(op.x): \
1026 if (xen_have_vcpu_info_placement) { \
1027 start = (char *)xen_##x##_direct; \
1028 end = xen_##x##_direct_end; \
1029 reloc = xen_##x##_direct_reloc; \
1030 } \
1031 goto patch_site
1032
1033 switch (type) {
1034 SITE(pv_irq_ops, irq_enable);
1035 SITE(pv_irq_ops, irq_disable);
1036 SITE(pv_irq_ops, save_fl);
1037 SITE(pv_irq_ops, restore_fl);
1038#undef SITE
1039
1040 patch_site:
1041 if (start == NULL || (end-start) > len)
1042 goto default_patch;
1043
1044 ret = paravirt_patch_insns(insnbuf, len, start, end);
1045
1046 /* Note: because reloc is assigned from something that
1047 appears to be an array, gcc assumes it's non-null,
1048 but doesn't know its relationship with start and
1049 end. */
1050 if (reloc > start && reloc < end) {
1051 int reloc_off = reloc - start;
1052 long *relocp = (long *)(insnbuf + reloc_off);
1053 long delta = start - (char *)addr;
1054
1055 *relocp += delta;
1056 }
1057 break;
1058
1059 default_patch:
1060 default:
1061 ret = paravirt_patch_default(type, clobbers, insnbuf,
1062 addr, len);
1063 break;
1064 }
1065
1066 return ret;
1067}
1068
1069static const struct pv_info xen_info __initconst = {
1070 .shared_kernel_pmd = 0,
1071
1072#ifdef CONFIG_X86_64
1073 .extra_user_64bit_cs = FLAT_USER_CS64,
1074#endif
1075 .name = "Xen",
1076};
1077
1078static const struct pv_init_ops xen_init_ops __initconst = {
1079 .patch = xen_patch,
1080};
1081
1082static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1083 .cpuid = xen_cpuid,
1084
1085 .set_debugreg = xen_set_debugreg,
1086 .get_debugreg = xen_get_debugreg,
1087
1088 .read_cr0 = xen_read_cr0,
1089 .write_cr0 = xen_write_cr0,
1090
1091 .read_cr4 = native_read_cr4,
1092 .write_cr4 = xen_write_cr4,
1093
1094#ifdef CONFIG_X86_64
1095 .read_cr8 = xen_read_cr8,
1096 .write_cr8 = xen_write_cr8,
1097#endif
1098
1099 .wbinvd = native_wbinvd,
1100
1101 .read_msr = xen_read_msr,
1102 .write_msr = xen_write_msr,
1103
1104 .read_msr_safe = xen_read_msr_safe,
1105 .write_msr_safe = xen_write_msr_safe,
1106
1107 .read_pmc = xen_read_pmc,
1108
1109 .iret = xen_iret,
1110#ifdef CONFIG_X86_64
1111 .usergs_sysret64 = xen_sysret64,
1112#endif
1113
1114 .load_tr_desc = paravirt_nop,
1115 .set_ldt = xen_set_ldt,
1116 .load_gdt = xen_load_gdt,
1117 .load_idt = xen_load_idt,
1118 .load_tls = xen_load_tls,
1119#ifdef CONFIG_X86_64
1120 .load_gs_index = xen_load_gs_index,
1121#endif
1122
1123 .alloc_ldt = xen_alloc_ldt,
1124 .free_ldt = xen_free_ldt,
1125
1126 .store_idt = native_store_idt,
1127 .store_tr = xen_store_tr,
1128
1129 .write_ldt_entry = xen_write_ldt_entry,
1130 .write_gdt_entry = xen_write_gdt_entry,
1131 .write_idt_entry = xen_write_idt_entry,
1132 .load_sp0 = xen_load_sp0,
1133
1134 .set_iopl_mask = xen_set_iopl_mask,
1135 .io_delay = xen_io_delay,
1136
1137 /* Xen takes care of %gs when switching to usermode for us */
1138 .swapgs = paravirt_nop,
1139
1140 .start_context_switch = paravirt_start_context_switch,
1141 .end_context_switch = xen_end_context_switch,
1142};
1143
1144static void xen_restart(char *msg)
1145{
1146 xen_reboot(SHUTDOWN_reboot);
1147}
1148
1149static void xen_machine_halt(void)
1150{
1151 xen_reboot(SHUTDOWN_poweroff);
1152}
1153
1154static void xen_machine_power_off(void)
1155{
1156 if (pm_power_off)
1157 pm_power_off();
1158 xen_reboot(SHUTDOWN_poweroff);
1159}
1160
1161static void xen_crash_shutdown(struct pt_regs *regs)
1162{
1163 xen_reboot(SHUTDOWN_crash);
1164}
1165
1166static const struct machine_ops xen_machine_ops __initconst = {
1167 .restart = xen_restart,
1168 .halt = xen_machine_halt,
1169 .power_off = xen_machine_power_off,
1170 .shutdown = xen_machine_halt,
1171 .crash_shutdown = xen_crash_shutdown,
1172 .emergency_restart = xen_emergency_restart,
1173};
1174
1175static unsigned char xen_get_nmi_reason(void)
1176{
1177 unsigned char reason = 0;
1178
1179 /* Construct a value which looks like it came from port 0x61. */
1180 if (test_bit(_XEN_NMIREASON_io_error,
1181 &HYPERVISOR_shared_info->arch.nmi_reason))
1182 reason |= NMI_REASON_IOCHK;
1183 if (test_bit(_XEN_NMIREASON_pci_serr,
1184 &HYPERVISOR_shared_info->arch.nmi_reason))
1185 reason |= NMI_REASON_SERR;
1186
1187 return reason;
1188}
1189
1190static void __init xen_boot_params_init_edd(void)
1191{
1192#if IS_ENABLED(CONFIG_EDD)
1193 struct xen_platform_op op;
1194 struct edd_info *edd_info;
1195 u32 *mbr_signature;
1196 unsigned nr;
1197 int ret;
1198
1199 edd_info = boot_params.eddbuf;
1200 mbr_signature = boot_params.edd_mbr_sig_buffer;
1201
1202 op.cmd = XENPF_firmware_info;
1203
1204 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1205 for (nr = 0; nr < EDDMAXNR; nr++) {
1206 struct edd_info *info = edd_info + nr;
1207
1208 op.u.firmware_info.index = nr;
1209 info->params.length = sizeof(info->params);
1210 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1211 &info->params);
1212 ret = HYPERVISOR_platform_op(&op);
1213 if (ret)
1214 break;
1215
1216#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1217 C(device);
1218 C(version);
1219 C(interface_support);
1220 C(legacy_max_cylinder);
1221 C(legacy_max_head);
1222 C(legacy_sectors_per_track);
1223#undef C
1224 }
1225 boot_params.eddbuf_entries = nr;
1226
1227 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1228 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1229 op.u.firmware_info.index = nr;
1230 ret = HYPERVISOR_platform_op(&op);
1231 if (ret)
1232 break;
1233 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1234 }
1235 boot_params.edd_mbr_sig_buf_entries = nr;
1236#endif
1237}
1238
1239/*
1240 * Set up the GDT and segment registers for -fstack-protector. Until
1241 * we do this, we have to be careful not to call any stack-protected
1242 * function, which is most of the kernel.
1243 */
1244static void xen_setup_gdt(int cpu)
1245{
1246 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1247 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1248
1249 setup_stack_canary_segment(0);
1250 switch_to_new_gdt(0);
1251
1252 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1253 pv_cpu_ops.load_gdt = xen_load_gdt;
1254}
1255
1256static void __init xen_dom0_set_legacy_features(void)
1257{
1258 x86_platform.legacy.rtc = 1;
1259}
1260
1261/* First C function to be called on Xen boot */
1262asmlinkage __visible void __init xen_start_kernel(void)
1263{
1264 struct physdev_set_iopl set_iopl;
1265 unsigned long initrd_start = 0;
1266 int rc;
1267
1268 if (!xen_start_info)
1269 return;
1270
1271 xen_domain_type = XEN_PV_DOMAIN;
1272
1273 xen_setup_features();
1274
1275 xen_setup_machphys_mapping();
1276
1277 /* Install Xen paravirt ops */
1278 pv_info = xen_info;
1279 pv_init_ops = xen_init_ops;
1280 pv_cpu_ops = xen_cpu_ops;
1281
1282 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1283
1284 x86_init.resources.memory_setup = xen_memory_setup;
1285 x86_init.oem.arch_setup = xen_arch_setup;
1286 x86_init.oem.banner = xen_banner;
1287
1288 xen_init_time_ops();
1289
1290 /*
1291 * Set up some pagetable state before starting to set any ptes.
1292 */
1293
1294 xen_init_mmu_ops();
1295
1296 /* Prevent unwanted bits from being set in PTEs. */
1297 __supported_pte_mask &= ~_PAGE_GLOBAL;
1298
1299 /*
1300 * Prevent page tables from being allocated in highmem, even
1301 * if CONFIG_HIGHPTE is enabled.
1302 */
1303 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1304
1305 /* Work out if we support NX */
1306 x86_configure_nx();
1307
1308 /* Get mfn list */
1309 xen_build_dynamic_phys_to_machine();
1310
1311 /*
1312 * Set up kernel GDT and segment registers, mainly so that
1313 * -fstack-protector code can be executed.
1314 */
1315 xen_setup_gdt(0);
1316
1317 xen_init_irq_ops();
1318 xen_init_cpuid_mask();
Juergen Gross0808e802017-04-13 08:55:41 +02001319 xen_init_capabilities();
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001320
1321#ifdef CONFIG_X86_LOCAL_APIC
1322 /*
1323 * set up the basic apic ops.
1324 */
1325 xen_init_apic();
1326#endif
1327
1328 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1329 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1330 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1331 }
1332
1333 machine_ops = xen_machine_ops;
1334
1335 /*
1336 * The only reliable way to retain the initial address of the
1337 * percpu gdt_page is to remember it here, so we can go and
1338 * mark it RW later, when the initial percpu area is freed.
1339 */
1340 xen_initial_gdt = &per_cpu(gdt_page, 0);
1341
1342 xen_smp_init();
1343
1344#ifdef CONFIG_ACPI_NUMA
1345 /*
1346 * The pages we from Xen are not related to machine pages, so
1347 * any NUMA information the kernel tries to get from ACPI will
1348 * be meaningless. Prevent it from trying.
1349 */
1350 acpi_numa = -1;
1351#endif
1352 /* Don't do the full vcpu_info placement stuff until we have a
1353 possible map and a non-dummy shared_info. */
1354 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1355
1356 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1357
1358 local_irq_disable();
1359 early_boot_irqs_disabled = true;
1360
1361 xen_raw_console_write("mapping kernel into physical memory\n");
1362 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1363 xen_start_info->nr_pages);
1364 xen_reserve_special_pages();
1365
1366 /* keep using Xen gdt for now; no urgent need to change it */
1367
1368#ifdef CONFIG_X86_32
1369 pv_info.kernel_rpl = 1;
1370 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1371 pv_info.kernel_rpl = 0;
1372#else
1373 pv_info.kernel_rpl = 0;
1374#endif
1375 /* set the limit of our address space */
1376 xen_reserve_top();
1377
1378 /*
1379 * We used to do this in xen_arch_setup, but that is too late
1380 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1381 * early_amd_init which pokes 0xcf8 port.
1382 */
1383 set_iopl.iopl = 1;
1384 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1385 if (rc != 0)
1386 xen_raw_printk("physdev_op failed %d\n", rc);
1387
1388#ifdef CONFIG_X86_32
1389 /* set up basic CPUID stuff */
1390 cpu_detect(&new_cpu_data);
1391 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1392 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1393#endif
1394
1395 if (xen_start_info->mod_start) {
1396 if (xen_start_info->flags & SIF_MOD_START_PFN)
1397 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1398 else
1399 initrd_start = __pa(xen_start_info->mod_start);
1400 }
1401
1402 /* Poke various useful things into boot_params */
1403 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1404 boot_params.hdr.ramdisk_image = initrd_start;
1405 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1406 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1407 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1408
1409 if (!xen_initial_domain()) {
1410 add_preferred_console("xenboot", 0, NULL);
1411 add_preferred_console("tty", 0, NULL);
1412 add_preferred_console("hvc", 0, NULL);
1413 if (pci_xen)
1414 x86_init.pci.arch_init = pci_xen_init;
1415 } else {
1416 const struct dom0_vga_console_info *info =
1417 (void *)((char *)xen_start_info +
1418 xen_start_info->console.dom0.info_off);
1419 struct xen_platform_op op = {
1420 .cmd = XENPF_firmware_info,
1421 .interface_version = XENPF_INTERFACE_VERSION,
1422 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1423 };
1424
1425 x86_platform.set_legacy_features =
1426 xen_dom0_set_legacy_features;
1427 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1428 xen_start_info->console.domU.mfn = 0;
1429 xen_start_info->console.domU.evtchn = 0;
1430
1431 if (HYPERVISOR_platform_op(&op) == 0)
1432 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1433
1434 /* Make sure ACS will be enabled */
1435 pci_request_acs();
1436
1437 xen_acpi_sleep_register();
1438
1439 /* Avoid searching for BIOS MP tables */
1440 x86_init.mpparse.find_smp_config = x86_init_noop;
1441 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1442
1443 xen_boot_params_init_edd();
1444 }
1445#ifdef CONFIG_PCI
1446 /* PCI BIOS service won't work from a PV guest. */
1447 pci_probe &= ~PCI_PROBE_BIOS;
1448#endif
1449 xen_raw_console_write("about to get started...\n");
1450
1451 /* Let's presume PV guests always boot on vCPU with id 0. */
1452 per_cpu(xen_vcpu_id, 0) = 0;
1453
1454 xen_setup_runstate_info(0);
1455
1456 xen_efi_init();
1457
1458 /* Start the world */
1459#ifdef CONFIG_X86_32
1460 i386_start_kernel();
1461#else
1462 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1463 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1464#endif
1465}
1466
1467static int xen_cpu_up_prepare_pv(unsigned int cpu)
1468{
1469 int rc;
1470
1471 xen_setup_timer(cpu);
1472
1473 rc = xen_smp_intr_init(cpu);
1474 if (rc) {
1475 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1476 cpu, rc);
1477 return rc;
1478 }
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001479
1480 rc = xen_smp_intr_init_pv(cpu);
1481 if (rc) {
1482 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1483 cpu, rc);
1484 return rc;
1485 }
1486
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001487 return 0;
1488}
1489
1490static int xen_cpu_dead_pv(unsigned int cpu)
1491{
1492 xen_smp_intr_free(cpu);
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001493 xen_smp_intr_free_pv(cpu);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001494
1495 xen_teardown_timer(cpu);
1496
1497 return 0;
1498}
1499
1500static uint32_t __init xen_platform_pv(void)
1501{
1502 if (xen_pv_domain())
1503 return xen_cpuid_base();
1504
1505 return 0;
1506}
1507
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001508const struct hypervisor_x86 x86_hyper_xen_pv = {
1509 .name = "Xen PV",
1510 .detect = xen_platform_pv,
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001511 .pin_vcpu = xen_pin_vcpu,
1512};
1513EXPORT_SYMBOL(x86_hyper_xen_pv);