blob: 91ceca7bcb52e70c476174e07b90b8975c7933b1 [file] [log] [blame]
Eric Dumazetafe4fd02013-08-29 15:49:55 -07001/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
49#include <net/netlink.h>
50#include <net/pkt_sched.h>
51#include <net/sock.h>
52#include <net/tcp_states.h>
53
54/*
55 * Per flow structure, dynamically allocated
56 */
57struct fq_flow {
58 struct sk_buff *head; /* list of skbs for this flow : first skb */
59 union {
60 struct sk_buff *tail; /* last skb in the list */
61 unsigned long age; /* jiffies when flow was emptied, for gc */
62 };
63 struct rb_node fq_node; /* anchor in fq_root[] trees */
64 struct sock *sk;
65 int qlen; /* number of packets in flow queue */
66 int credit;
67 u32 socket_hash; /* sk_hash */
68 struct fq_flow *next; /* next pointer in RR lists, or &detached */
69
70 struct rb_node rate_node; /* anchor in q->delayed tree */
71 u64 time_next_packet;
72};
73
74struct fq_flow_head {
75 struct fq_flow *first;
76 struct fq_flow *last;
77};
78
79struct fq_sched_data {
80 struct fq_flow_head new_flows;
81
82 struct fq_flow_head old_flows;
83
84 struct rb_root delayed; /* for rate limited flows */
85 u64 time_next_delayed_flow;
86
87 struct fq_flow internal; /* for non classified or high prio packets */
88 u32 quantum;
89 u32 initial_quantum;
90 u32 flow_default_rate;/* rate per flow : bytes per second */
91 u32 flow_max_rate; /* optional max rate per flow */
92 u32 flow_plimit; /* max packets per flow */
93 struct rb_root *fq_root;
94 u8 rate_enable;
95 u8 fq_trees_log;
96
97 u32 flows;
98 u32 inactive_flows;
99 u32 throttled_flows;
100
101 u64 stat_gc_flows;
102 u64 stat_internal_packets;
103 u64 stat_tcp_retrans;
104 u64 stat_throttled;
105 u64 stat_flows_plimit;
106 u64 stat_pkts_too_long;
107 u64 stat_allocation_errors;
108 struct qdisc_watchdog watchdog;
109};
110
111/* special value to mark a detached flow (not on old/new list) */
112static struct fq_flow detached, throttled;
113
114static void fq_flow_set_detached(struct fq_flow *f)
115{
116 f->next = &detached;
117}
118
119static bool fq_flow_is_detached(const struct fq_flow *f)
120{
121 return f->next == &detached;
122}
123
124static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
125{
126 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
127
128 while (*p) {
129 struct fq_flow *aux;
130
131 parent = *p;
132 aux = container_of(parent, struct fq_flow, rate_node);
133 if (f->time_next_packet >= aux->time_next_packet)
134 p = &parent->rb_right;
135 else
136 p = &parent->rb_left;
137 }
138 rb_link_node(&f->rate_node, parent, p);
139 rb_insert_color(&f->rate_node, &q->delayed);
140 q->throttled_flows++;
141 q->stat_throttled++;
142
143 f->next = &throttled;
144 if (q->time_next_delayed_flow > f->time_next_packet)
145 q->time_next_delayed_flow = f->time_next_packet;
146}
147
148
149static struct kmem_cache *fq_flow_cachep __read_mostly;
150
151static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
152{
153 if (head->first)
154 head->last->next = flow;
155 else
156 head->first = flow;
157 head->last = flow;
158 flow->next = NULL;
159}
160
161/* limit number of collected flows per round */
162#define FQ_GC_MAX 8
163#define FQ_GC_AGE (3*HZ)
164
165static bool fq_gc_candidate(const struct fq_flow *f)
166{
167 return fq_flow_is_detached(f) &&
168 time_after(jiffies, f->age + FQ_GC_AGE);
169}
170
171static void fq_gc(struct fq_sched_data *q,
172 struct rb_root *root,
173 struct sock *sk)
174{
175 struct fq_flow *f, *tofree[FQ_GC_MAX];
176 struct rb_node **p, *parent;
177 int fcnt = 0;
178
179 p = &root->rb_node;
180 parent = NULL;
181 while (*p) {
182 parent = *p;
183
184 f = container_of(parent, struct fq_flow, fq_node);
185 if (f->sk == sk)
186 break;
187
188 if (fq_gc_candidate(f)) {
189 tofree[fcnt++] = f;
190 if (fcnt == FQ_GC_MAX)
191 break;
192 }
193
194 if (f->sk > sk)
195 p = &parent->rb_right;
196 else
197 p = &parent->rb_left;
198 }
199
200 q->flows -= fcnt;
201 q->inactive_flows -= fcnt;
202 q->stat_gc_flows += fcnt;
203 while (fcnt) {
204 struct fq_flow *f = tofree[--fcnt];
205
206 rb_erase(&f->fq_node, root);
207 kmem_cache_free(fq_flow_cachep, f);
208 }
209}
210
211static const u8 prio2band[TC_PRIO_MAX + 1] = {
212 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
213};
214
215static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
216{
217 struct rb_node **p, *parent;
218 struct sock *sk = skb->sk;
219 struct rb_root *root;
220 struct fq_flow *f;
221 int band;
222
223 /* warning: no starvation prevention... */
224 band = prio2band[skb->priority & TC_PRIO_MAX];
225 if (unlikely(band == 0))
226 return &q->internal;
227
228 if (unlikely(!sk)) {
229 /* By forcing low order bit to 1, we make sure to not
230 * collide with a local flow (socket pointers are word aligned)
231 */
232 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
233 }
234
235 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
236
237 if (q->flows >= (2U << q->fq_trees_log) &&
238 q->inactive_flows > q->flows/2)
239 fq_gc(q, root, sk);
240
241 p = &root->rb_node;
242 parent = NULL;
243 while (*p) {
244 parent = *p;
245
246 f = container_of(parent, struct fq_flow, fq_node);
247 if (f->sk == sk) {
248 /* socket might have been reallocated, so check
249 * if its sk_hash is the same.
250 * It not, we need to refill credit with
251 * initial quantum
252 */
253 if (unlikely(skb->sk &&
254 f->socket_hash != sk->sk_hash)) {
255 f->credit = q->initial_quantum;
256 f->socket_hash = sk->sk_hash;
257 }
258 return f;
259 }
260 if (f->sk > sk)
261 p = &parent->rb_right;
262 else
263 p = &parent->rb_left;
264 }
265
266 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
267 if (unlikely(!f)) {
268 q->stat_allocation_errors++;
269 return &q->internal;
270 }
271 fq_flow_set_detached(f);
272 f->sk = sk;
273 if (skb->sk)
274 f->socket_hash = sk->sk_hash;
275 f->credit = q->initial_quantum;
276
277 rb_link_node(&f->fq_node, parent, p);
278 rb_insert_color(&f->fq_node, root);
279
280 q->flows++;
281 q->inactive_flows++;
282 return f;
283}
284
285
286/* remove one skb from head of flow queue */
287static struct sk_buff *fq_dequeue_head(struct fq_flow *flow)
288{
289 struct sk_buff *skb = flow->head;
290
291 if (skb) {
292 flow->head = skb->next;
293 skb->next = NULL;
294 flow->qlen--;
295 }
296 return skb;
297}
298
299/* We might add in the future detection of retransmits
300 * For the time being, just return false
301 */
302static bool skb_is_retransmit(struct sk_buff *skb)
303{
304 return false;
305}
306
307/* add skb to flow queue
308 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
309 * We special case tcp retransmits to be transmitted before other packets.
310 * We rely on fact that TCP retransmits are unlikely, so we do not waste
311 * a separate queue or a pointer.
312 * head-> [retrans pkt 1]
313 * [retrans pkt 2]
314 * [ normal pkt 1]
315 * [ normal pkt 2]
316 * [ normal pkt 3]
317 * tail-> [ normal pkt 4]
318 */
319static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
320{
321 struct sk_buff *prev, *head = flow->head;
322
323 skb->next = NULL;
324 if (!head) {
325 flow->head = skb;
326 flow->tail = skb;
327 return;
328 }
329 if (likely(!skb_is_retransmit(skb))) {
330 flow->tail->next = skb;
331 flow->tail = skb;
332 return;
333 }
334
335 /* This skb is a tcp retransmit,
336 * find the last retrans packet in the queue
337 */
338 prev = NULL;
339 while (skb_is_retransmit(head)) {
340 prev = head;
341 head = head->next;
342 if (!head)
343 break;
344 }
345 if (!prev) { /* no rtx packet in queue, become the new head */
346 skb->next = flow->head;
347 flow->head = skb;
348 } else {
349 if (prev == flow->tail)
350 flow->tail = skb;
351 else
352 skb->next = prev->next;
353 prev->next = skb;
354 }
355}
356
357static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
358{
359 struct fq_sched_data *q = qdisc_priv(sch);
360 struct fq_flow *f;
361
362 if (unlikely(sch->q.qlen >= sch->limit))
363 return qdisc_drop(skb, sch);
364
365 f = fq_classify(skb, q);
366 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
367 q->stat_flows_plimit++;
368 return qdisc_drop(skb, sch);
369 }
370
371 f->qlen++;
372 flow_queue_add(f, skb);
373 if (skb_is_retransmit(skb))
374 q->stat_tcp_retrans++;
375 sch->qstats.backlog += qdisc_pkt_len(skb);
376 if (fq_flow_is_detached(f)) {
377 fq_flow_add_tail(&q->new_flows, f);
378 if (q->quantum > f->credit)
379 f->credit = q->quantum;
380 q->inactive_flows--;
381 qdisc_unthrottled(sch);
382 }
383 if (unlikely(f == &q->internal)) {
384 q->stat_internal_packets++;
385 qdisc_unthrottled(sch);
386 }
387 sch->q.qlen++;
388
389 return NET_XMIT_SUCCESS;
390}
391
392static void fq_check_throttled(struct fq_sched_data *q, u64 now)
393{
394 struct rb_node *p;
395
396 if (q->time_next_delayed_flow > now)
397 return;
398
399 q->time_next_delayed_flow = ~0ULL;
400 while ((p = rb_first(&q->delayed)) != NULL) {
401 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
402
403 if (f->time_next_packet > now) {
404 q->time_next_delayed_flow = f->time_next_packet;
405 break;
406 }
407 rb_erase(p, &q->delayed);
408 q->throttled_flows--;
409 fq_flow_add_tail(&q->old_flows, f);
410 }
411}
412
413static struct sk_buff *fq_dequeue(struct Qdisc *sch)
414{
415 struct fq_sched_data *q = qdisc_priv(sch);
416 u64 now = ktime_to_ns(ktime_get());
417 struct fq_flow_head *head;
418 struct sk_buff *skb;
419 struct fq_flow *f;
420
421 skb = fq_dequeue_head(&q->internal);
422 if (skb)
423 goto out;
424 fq_check_throttled(q, now);
425begin:
426 head = &q->new_flows;
427 if (!head->first) {
428 head = &q->old_flows;
429 if (!head->first) {
430 if (q->time_next_delayed_flow != ~0ULL)
431 qdisc_watchdog_schedule_ns(&q->watchdog,
432 q->time_next_delayed_flow);
433 return NULL;
434 }
435 }
436 f = head->first;
437
438 if (f->credit <= 0) {
439 f->credit += q->quantum;
440 head->first = f->next;
441 fq_flow_add_tail(&q->old_flows, f);
442 goto begin;
443 }
444
445 if (unlikely(f->head && now < f->time_next_packet)) {
446 head->first = f->next;
447 fq_flow_set_throttled(q, f);
448 goto begin;
449 }
450
451 skb = fq_dequeue_head(f);
452 if (!skb) {
453 head->first = f->next;
454 /* force a pass through old_flows to prevent starvation */
455 if ((head == &q->new_flows) && q->old_flows.first) {
456 fq_flow_add_tail(&q->old_flows, f);
457 } else {
458 fq_flow_set_detached(f);
459 f->age = jiffies;
460 q->inactive_flows++;
461 }
462 goto begin;
463 }
464 f->time_next_packet = now;
465 f->credit -= qdisc_pkt_len(skb);
466
467 if (f->credit <= 0 &&
468 q->rate_enable &&
469 skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
470 u32 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
471
472 rate = min(rate, q->flow_max_rate);
473 if (rate) {
474 u64 len = (u64)qdisc_pkt_len(skb) * NSEC_PER_SEC;
475
476 do_div(len, rate);
477 /* Since socket rate can change later,
478 * clamp the delay to 125 ms.
479 * TODO: maybe segment the too big skb, as in commit
480 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
481 */
482 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
483 len = 125 * NSEC_PER_MSEC;
484 q->stat_pkts_too_long++;
485 }
486
487 f->time_next_packet = now + len;
488 }
489 }
490out:
491 prefetch(&skb->end);
492 sch->qstats.backlog -= qdisc_pkt_len(skb);
493 qdisc_bstats_update(sch, skb);
494 sch->q.qlen--;
495 qdisc_unthrottled(sch);
496 return skb;
497}
498
499static void fq_reset(struct Qdisc *sch)
500{
501 struct sk_buff *skb;
502
503 while ((skb = fq_dequeue(sch)) != NULL)
504 kfree_skb(skb);
505}
506
507static void fq_rehash(struct fq_sched_data *q,
508 struct rb_root *old_array, u32 old_log,
509 struct rb_root *new_array, u32 new_log)
510{
511 struct rb_node *op, **np, *parent;
512 struct rb_root *oroot, *nroot;
513 struct fq_flow *of, *nf;
514 int fcnt = 0;
515 u32 idx;
516
517 for (idx = 0; idx < (1U << old_log); idx++) {
518 oroot = &old_array[idx];
519 while ((op = rb_first(oroot)) != NULL) {
520 rb_erase(op, oroot);
521 of = container_of(op, struct fq_flow, fq_node);
522 if (fq_gc_candidate(of)) {
523 fcnt++;
524 kmem_cache_free(fq_flow_cachep, of);
525 continue;
526 }
527 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
528
529 np = &nroot->rb_node;
530 parent = NULL;
531 while (*np) {
532 parent = *np;
533
534 nf = container_of(parent, struct fq_flow, fq_node);
535 BUG_ON(nf->sk == of->sk);
536
537 if (nf->sk > of->sk)
538 np = &parent->rb_right;
539 else
540 np = &parent->rb_left;
541 }
542
543 rb_link_node(&of->fq_node, parent, np);
544 rb_insert_color(&of->fq_node, nroot);
545 }
546 }
547 q->flows -= fcnt;
548 q->inactive_flows -= fcnt;
549 q->stat_gc_flows += fcnt;
550}
551
552static int fq_resize(struct fq_sched_data *q, u32 log)
553{
554 struct rb_root *array;
555 u32 idx;
556
557 if (q->fq_root && log == q->fq_trees_log)
558 return 0;
559
560 array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
561 if (!array)
562 return -ENOMEM;
563
564 for (idx = 0; idx < (1U << log); idx++)
565 array[idx] = RB_ROOT;
566
567 if (q->fq_root) {
568 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
569 kfree(q->fq_root);
570 }
571 q->fq_root = array;
572 q->fq_trees_log = log;
573
574 return 0;
575}
576
577static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
578 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
579 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
580 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
581 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
582 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
583 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
584 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
585 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
586};
587
588static int fq_change(struct Qdisc *sch, struct nlattr *opt)
589{
590 struct fq_sched_data *q = qdisc_priv(sch);
591 struct nlattr *tb[TCA_FQ_MAX + 1];
592 int err, drop_count = 0;
593 u32 fq_log;
594
595 if (!opt)
596 return -EINVAL;
597
598 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
599 if (err < 0)
600 return err;
601
602 sch_tree_lock(sch);
603
604 fq_log = q->fq_trees_log;
605
606 if (tb[TCA_FQ_BUCKETS_LOG]) {
607 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
608
609 if (nval >= 1 && nval <= ilog2(256*1024))
610 fq_log = nval;
611 else
612 err = -EINVAL;
613 }
614 if (tb[TCA_FQ_PLIMIT])
615 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
616
617 if (tb[TCA_FQ_FLOW_PLIMIT])
618 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
619
620 if (tb[TCA_FQ_QUANTUM])
621 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
622
623 if (tb[TCA_FQ_INITIAL_QUANTUM])
624 q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
625
626 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
627 q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
628
629 if (tb[TCA_FQ_FLOW_MAX_RATE])
630 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
631
632 if (tb[TCA_FQ_RATE_ENABLE]) {
633 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
634
635 if (enable <= 1)
636 q->rate_enable = enable;
637 else
638 err = -EINVAL;
639 }
640
641 if (!err)
642 err = fq_resize(q, fq_log);
643
644 while (sch->q.qlen > sch->limit) {
645 struct sk_buff *skb = fq_dequeue(sch);
646
647 kfree_skb(skb);
648 drop_count++;
649 }
650 qdisc_tree_decrease_qlen(sch, drop_count);
651
652 sch_tree_unlock(sch);
653 return err;
654}
655
656static void fq_destroy(struct Qdisc *sch)
657{
658 struct fq_sched_data *q = qdisc_priv(sch);
659 struct rb_root *root;
660 struct rb_node *p;
661 unsigned int idx;
662
663 if (q->fq_root) {
664 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
665 root = &q->fq_root[idx];
666 while ((p = rb_first(root)) != NULL) {
667 rb_erase(p, root);
668 kmem_cache_free(fq_flow_cachep,
669 container_of(p, struct fq_flow, fq_node));
670 }
671 }
672 kfree(q->fq_root);
673 }
674 qdisc_watchdog_cancel(&q->watchdog);
675}
676
677static int fq_init(struct Qdisc *sch, struct nlattr *opt)
678{
679 struct fq_sched_data *q = qdisc_priv(sch);
680 int err;
681
682 sch->limit = 10000;
683 q->flow_plimit = 100;
684 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
685 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
686 q->flow_default_rate = 0;
687 q->flow_max_rate = ~0U;
688 q->rate_enable = 1;
689 q->new_flows.first = NULL;
690 q->old_flows.first = NULL;
691 q->delayed = RB_ROOT;
692 q->fq_root = NULL;
693 q->fq_trees_log = ilog2(1024);
694 qdisc_watchdog_init(&q->watchdog, sch);
695
696 if (opt)
697 err = fq_change(sch, opt);
698 else
699 err = fq_resize(q, q->fq_trees_log);
700
701 return err;
702}
703
704static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
705{
706 struct fq_sched_data *q = qdisc_priv(sch);
707 struct nlattr *opts;
708
709 opts = nla_nest_start(skb, TCA_OPTIONS);
710 if (opts == NULL)
711 goto nla_put_failure;
712
713 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
714 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
715 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
716 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
717 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
718 nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
719 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
720 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
721 goto nla_put_failure;
722
723 nla_nest_end(skb, opts);
724 return skb->len;
725
726nla_put_failure:
727 return -1;
728}
729
730static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
731{
732 struct fq_sched_data *q = qdisc_priv(sch);
733 u64 now = ktime_to_ns(ktime_get());
734 struct tc_fq_qd_stats st = {
735 .gc_flows = q->stat_gc_flows,
736 .highprio_packets = q->stat_internal_packets,
737 .tcp_retrans = q->stat_tcp_retrans,
738 .throttled = q->stat_throttled,
739 .flows_plimit = q->stat_flows_plimit,
740 .pkts_too_long = q->stat_pkts_too_long,
741 .allocation_errors = q->stat_allocation_errors,
742 .flows = q->flows,
743 .inactive_flows = q->inactive_flows,
744 .throttled_flows = q->throttled_flows,
745 .time_next_delayed_flow = q->time_next_delayed_flow - now,
746 };
747
748 return gnet_stats_copy_app(d, &st, sizeof(st));
749}
750
751static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
752 .id = "fq",
753 .priv_size = sizeof(struct fq_sched_data),
754
755 .enqueue = fq_enqueue,
756 .dequeue = fq_dequeue,
757 .peek = qdisc_peek_dequeued,
758 .init = fq_init,
759 .reset = fq_reset,
760 .destroy = fq_destroy,
761 .change = fq_change,
762 .dump = fq_dump,
763 .dump_stats = fq_dump_stats,
764 .owner = THIS_MODULE,
765};
766
767static int __init fq_module_init(void)
768{
769 int ret;
770
771 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
772 sizeof(struct fq_flow),
773 0, 0, NULL);
774 if (!fq_flow_cachep)
775 return -ENOMEM;
776
777 ret = register_qdisc(&fq_qdisc_ops);
778 if (ret)
779 kmem_cache_destroy(fq_flow_cachep);
780 return ret;
781}
782
783static void __exit fq_module_exit(void)
784{
785 unregister_qdisc(&fq_qdisc_ops);
786 kmem_cache_destroy(fq_flow_cachep);
787}
788
789module_init(fq_module_init)
790module_exit(fq_module_exit)
791MODULE_AUTHOR("Eric Dumazet");
792MODULE_LICENSE("GPL");