blob: 171895072435bd7efa0303e401a3f907d12cdc7d [file] [log] [blame]
Chris Wilsonf54d1862016-10-25 13:00:45 +01001/*
2 * Fence mechanism for dma-buf to allow for asynchronous dma access
3 *
4 * Copyright (C) 2012 Canonical Ltd
5 * Copyright (C) 2012 Texas Instruments
6 *
7 * Authors:
8 * Rob Clark <robdclark@gmail.com>
9 * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 2 as published by
13 * the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 */
20
21#ifndef __LINUX_DMA_FENCE_H
22#define __LINUX_DMA_FENCE_H
23
24#include <linux/err.h>
25#include <linux/wait.h>
26#include <linux/list.h>
27#include <linux/bitops.h>
28#include <linux/kref.h>
29#include <linux/sched.h>
30#include <linux/printk.h>
31#include <linux/rcupdate.h>
32
33struct dma_fence;
34struct dma_fence_ops;
35struct dma_fence_cb;
36
37/**
38 * struct dma_fence - software synchronization primitive
39 * @refcount: refcount for this fence
40 * @ops: dma_fence_ops associated with this fence
41 * @rcu: used for releasing fence with kfree_rcu
42 * @cb_list: list of all callbacks to call
43 * @lock: spin_lock_irqsave used for locking
44 * @context: execution context this fence belongs to, returned by
45 * dma_fence_context_alloc()
46 * @seqno: the sequence number of this fence inside the execution context,
47 * can be compared to decide which fence would be signaled later.
48 * @flags: A mask of DMA_FENCE_FLAG_* defined below
49 * @timestamp: Timestamp when the fence was signaled.
Chris Wilsona009e972017-01-04 14:12:22 +000050 * @error: Optional, only valid if < 0, must be set before calling
Chris Wilsonf54d1862016-10-25 13:00:45 +010051 * dma_fence_signal, indicates that the fence has completed with an error.
52 *
53 * the flags member must be manipulated and read using the appropriate
54 * atomic ops (bit_*), so taking the spinlock will not be needed most
55 * of the time.
56 *
57 * DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
Chris Wilson76250f22017-02-14 12:40:01 +000058 * DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signaling
Chris Wilsonf54d1862016-10-25 13:00:45 +010059 * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called
60 * DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
61 * implementer of the fence for its own purposes. Can be used in different
62 * ways by different fence implementers, so do not rely on this.
63 *
64 * Since atomic bitops are used, this is not guaranteed to be the case.
65 * Particularly, if the bit was set, but dma_fence_signal was called right
66 * before this bit was set, it would have been able to set the
67 * DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
68 * Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
69 * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
70 * after dma_fence_signal was called, any enable_signaling call will have either
71 * been completed, or never called at all.
72 */
73struct dma_fence {
74 struct kref refcount;
75 const struct dma_fence_ops *ops;
76 struct rcu_head rcu;
77 struct list_head cb_list;
78 spinlock_t *lock;
79 u64 context;
80 unsigned seqno;
81 unsigned long flags;
82 ktime_t timestamp;
Chris Wilsona009e972017-01-04 14:12:22 +000083 int error;
Chris Wilsonf54d1862016-10-25 13:00:45 +010084};
85
86enum dma_fence_flag_bits {
87 DMA_FENCE_FLAG_SIGNALED_BIT,
Chris Wilson76250f22017-02-14 12:40:01 +000088 DMA_FENCE_FLAG_TIMESTAMP_BIT,
Chris Wilsonf54d1862016-10-25 13:00:45 +010089 DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
90 DMA_FENCE_FLAG_USER_BITS, /* must always be last member */
91};
92
93typedef void (*dma_fence_func_t)(struct dma_fence *fence,
94 struct dma_fence_cb *cb);
95
96/**
97 * struct dma_fence_cb - callback for dma_fence_add_callback
98 * @node: used by dma_fence_add_callback to append this struct to fence::cb_list
99 * @func: dma_fence_func_t to call
100 *
101 * This struct will be initialized by dma_fence_add_callback, additional
102 * data can be passed along by embedding dma_fence_cb in another struct.
103 */
104struct dma_fence_cb {
105 struct list_head node;
106 dma_fence_func_t func;
107};
108
109/**
110 * struct dma_fence_ops - operations implemented for fence
111 * @get_driver_name: returns the driver name.
112 * @get_timeline_name: return the name of the context this fence belongs to.
113 * @enable_signaling: enable software signaling of fence.
114 * @signaled: [optional] peek whether the fence is signaled, can be null.
115 * @wait: custom wait implementation, or dma_fence_default_wait.
116 * @release: [optional] called on destruction of fence, can be null
117 * @fill_driver_data: [optional] callback to fill in free-form debug info
118 * Returns amount of bytes filled, or -errno.
119 * @fence_value_str: [optional] fills in the value of the fence as a string
120 * @timeline_value_str: [optional] fills in the current value of the timeline
121 * as a string
122 *
123 * Notes on enable_signaling:
124 * For fence implementations that have the capability for hw->hw
125 * signaling, they can implement this op to enable the necessary
126 * irqs, or insert commands into cmdstream, etc. This is called
127 * in the first wait() or add_callback() path to let the fence
128 * implementation know that there is another driver waiting on
129 * the signal (ie. hw->sw case).
130 *
131 * This function can be called called from atomic context, but not
132 * from irq context, so normal spinlocks can be used.
133 *
134 * A return value of false indicates the fence already passed,
135 * or some failure occurred that made it impossible to enable
136 * signaling. True indicates successful enabling.
137 *
Chris Wilsona009e972017-01-04 14:12:22 +0000138 * fence->error may be set in enable_signaling, but only when false is
Chris Wilsonf54d1862016-10-25 13:00:45 +0100139 * returned.
140 *
141 * Calling dma_fence_signal before enable_signaling is called allows
142 * for a tiny race window in which enable_signaling is called during,
143 * before, or after dma_fence_signal. To fight this, it is recommended
144 * that before enable_signaling returns true an extra reference is
145 * taken on the fence, to be released when the fence is signaled.
146 * This will mean dma_fence_signal will still be called twice, but
147 * the second time will be a noop since it was already signaled.
148 *
149 * Notes on signaled:
Chris Wilsona009e972017-01-04 14:12:22 +0000150 * May set fence->error if returning true.
Chris Wilsonf54d1862016-10-25 13:00:45 +0100151 *
152 * Notes on wait:
153 * Must not be NULL, set to dma_fence_default_wait for default implementation.
154 * the dma_fence_default_wait implementation should work for any fence, as long
155 * as enable_signaling works correctly.
156 *
157 * Must return -ERESTARTSYS if the wait is intr = true and the wait was
158 * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
159 * timed out. Can also return other error values on custom implementations,
160 * which should be treated as if the fence is signaled. For example a hardware
161 * lockup could be reported like that.
162 *
163 * Notes on release:
164 * Can be NULL, this function allows additional commands to run on
165 * destruction of the fence. Can be called from irq context.
166 * If pointer is set to NULL, kfree will get called instead.
167 */
168
169struct dma_fence_ops {
170 const char * (*get_driver_name)(struct dma_fence *fence);
171 const char * (*get_timeline_name)(struct dma_fence *fence);
172 bool (*enable_signaling)(struct dma_fence *fence);
173 bool (*signaled)(struct dma_fence *fence);
174 signed long (*wait)(struct dma_fence *fence,
175 bool intr, signed long timeout);
176 void (*release)(struct dma_fence *fence);
177
178 int (*fill_driver_data)(struct dma_fence *fence, void *data, int size);
179 void (*fence_value_str)(struct dma_fence *fence, char *str, int size);
180 void (*timeline_value_str)(struct dma_fence *fence,
181 char *str, int size);
182};
183
184void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
185 spinlock_t *lock, u64 context, unsigned seqno);
186
187void dma_fence_release(struct kref *kref);
188void dma_fence_free(struct dma_fence *fence);
189
190/**
191 * dma_fence_put - decreases refcount of the fence
192 * @fence: [in] fence to reduce refcount of
193 */
194static inline void dma_fence_put(struct dma_fence *fence)
195{
196 if (fence)
197 kref_put(&fence->refcount, dma_fence_release);
198}
199
200/**
201 * dma_fence_get - increases refcount of the fence
202 * @fence: [in] fence to increase refcount of
203 *
204 * Returns the same fence, with refcount increased by 1.
205 */
206static inline struct dma_fence *dma_fence_get(struct dma_fence *fence)
207{
208 if (fence)
209 kref_get(&fence->refcount);
210 return fence;
211}
212
213/**
214 * dma_fence_get_rcu - get a fence from a reservation_object_list with
215 * rcu read lock
216 * @fence: [in] fence to increase refcount of
217 *
218 * Function returns NULL if no refcount could be obtained, or the fence.
219 */
220static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
221{
222 if (kref_get_unless_zero(&fence->refcount))
223 return fence;
224 else
225 return NULL;
226}
227
228/**
229 * dma_fence_get_rcu_safe - acquire a reference to an RCU tracked fence
Daniel Vetter8a5846b2016-11-14 12:58:18 +0100230 * @fencep: [in] pointer to fence to increase refcount of
Chris Wilsonf54d1862016-10-25 13:00:45 +0100231 *
232 * Function returns NULL if no refcount could be obtained, or the fence.
233 * This function handles acquiring a reference to a fence that may be
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -0800234 * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
Chris Wilsonf54d1862016-10-25 13:00:45 +0100235 * so long as the caller is using RCU on the pointer to the fence.
236 *
237 * An alternative mechanism is to employ a seqlock to protect a bunch of
238 * fences, such as used by struct reservation_object. When using a seqlock,
239 * the seqlock must be taken before and checked after a reference to the
240 * fence is acquired (as shown here).
241 *
242 * The caller is required to hold the RCU read lock.
243 */
244static inline struct dma_fence *
245dma_fence_get_rcu_safe(struct dma_fence * __rcu *fencep)
246{
247 do {
248 struct dma_fence *fence;
249
250 fence = rcu_dereference(*fencep);
251 if (!fence || !dma_fence_get_rcu(fence))
252 return NULL;
253
254 /* The atomic_inc_not_zero() inside dma_fence_get_rcu()
255 * provides a full memory barrier upon success (such as now).
256 * This is paired with the write barrier from assigning
257 * to the __rcu protected fence pointer so that if that
258 * pointer still matches the current fence, we know we
259 * have successfully acquire a reference to it. If it no
260 * longer matches, we are holding a reference to some other
261 * reallocated pointer. This is possible if the allocator
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -0800262 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
Chris Wilsonf54d1862016-10-25 13:00:45 +0100263 * fence remains valid for the RCU grace period, but it
264 * may be reallocated. When using such allocators, we are
265 * responsible for ensuring the reference we get is to
266 * the right fence, as below.
267 */
268 if (fence == rcu_access_pointer(*fencep))
269 return rcu_pointer_handoff(fence);
270
271 dma_fence_put(fence);
272 } while (1);
273}
274
275int dma_fence_signal(struct dma_fence *fence);
276int dma_fence_signal_locked(struct dma_fence *fence);
277signed long dma_fence_default_wait(struct dma_fence *fence,
278 bool intr, signed long timeout);
279int dma_fence_add_callback(struct dma_fence *fence,
280 struct dma_fence_cb *cb,
281 dma_fence_func_t func);
282bool dma_fence_remove_callback(struct dma_fence *fence,
283 struct dma_fence_cb *cb);
284void dma_fence_enable_sw_signaling(struct dma_fence *fence);
285
286/**
287 * dma_fence_is_signaled_locked - Return an indication if the fence
288 * is signaled yet.
289 * @fence: [in] the fence to check
290 *
291 * Returns true if the fence was already signaled, false if not. Since this
292 * function doesn't enable signaling, it is not guaranteed to ever return
293 * true if dma_fence_add_callback, dma_fence_wait or
294 * dma_fence_enable_sw_signaling haven't been called before.
295 *
296 * This function requires fence->lock to be held.
297 */
298static inline bool
299dma_fence_is_signaled_locked(struct dma_fence *fence)
300{
301 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
302 return true;
303
304 if (fence->ops->signaled && fence->ops->signaled(fence)) {
305 dma_fence_signal_locked(fence);
306 return true;
307 }
308
309 return false;
310}
311
312/**
313 * dma_fence_is_signaled - Return an indication if the fence is signaled yet.
314 * @fence: [in] the fence to check
315 *
316 * Returns true if the fence was already signaled, false if not. Since this
317 * function doesn't enable signaling, it is not guaranteed to ever return
318 * true if dma_fence_add_callback, dma_fence_wait or
319 * dma_fence_enable_sw_signaling haven't been called before.
320 *
321 * It's recommended for seqno fences to call dma_fence_signal when the
322 * operation is complete, it makes it possible to prevent issues from
323 * wraparound between time of issue and time of use by checking the return
324 * value of this function before calling hardware-specific wait instructions.
325 */
326static inline bool
327dma_fence_is_signaled(struct dma_fence *fence)
328{
329 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
330 return true;
331
332 if (fence->ops->signaled && fence->ops->signaled(fence)) {
333 dma_fence_signal(fence);
334 return true;
335 }
336
337 return false;
338}
339
340/**
Chris Wilson81114772017-06-29 13:59:24 +0100341 * __dma_fence_is_later - return if f1 is chronologically later than f2
342 * @f1: [in] the first fence's seqno
343 * @f2: [in] the second fence's seqno from the same context
344 *
345 * Returns true if f1 is chronologically later than f2. Both fences must be
346 * from the same context, since a seqno is not common across contexts.
347 */
348static inline bool __dma_fence_is_later(u32 f1, u32 f2)
349{
350 return (int)(f1 - f2) > 0;
351}
352
353/**
Chris Wilsonf54d1862016-10-25 13:00:45 +0100354 * dma_fence_is_later - return if f1 is chronologically later than f2
355 * @f1: [in] the first fence from the same context
356 * @f2: [in] the second fence from the same context
357 *
358 * Returns true if f1 is chronologically later than f2. Both fences must be
359 * from the same context, since a seqno is not re-used across contexts.
360 */
361static inline bool dma_fence_is_later(struct dma_fence *f1,
362 struct dma_fence *f2)
363{
364 if (WARN_ON(f1->context != f2->context))
365 return false;
366
Chris Wilson81114772017-06-29 13:59:24 +0100367 return __dma_fence_is_later(f1->seqno, f2->seqno);
Chris Wilsonf54d1862016-10-25 13:00:45 +0100368}
369
370/**
371 * dma_fence_later - return the chronologically later fence
372 * @f1: [in] the first fence from the same context
373 * @f2: [in] the second fence from the same context
374 *
375 * Returns NULL if both fences are signaled, otherwise the fence that would be
376 * signaled last. Both fences must be from the same context, since a seqno is
377 * not re-used across contexts.
378 */
379static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
380 struct dma_fence *f2)
381{
382 if (WARN_ON(f1->context != f2->context))
383 return NULL;
384
385 /*
386 * Can't check just DMA_FENCE_FLAG_SIGNALED_BIT here, it may never
387 * have been set if enable_signaling wasn't called, and enabling that
388 * here is overkill.
389 */
390 if (dma_fence_is_later(f1, f2))
391 return dma_fence_is_signaled(f1) ? NULL : f1;
392 else
393 return dma_fence_is_signaled(f2) ? NULL : f2;
394}
395
Chris Wilsond6c99f42017-01-04 14:12:21 +0000396/**
397 * dma_fence_get_status_locked - returns the status upon completion
398 * @fence: [in] the dma_fence to query
399 *
400 * Drivers can supply an optional error status condition before they signal
401 * the fence (to indicate whether the fence was completed due to an error
402 * rather than success). The value of the status condition is only valid
403 * if the fence has been signaled, dma_fence_get_status_locked() first checks
404 * the signal state before reporting the error status.
405 *
406 * Returns 0 if the fence has not yet been signaled, 1 if the fence has
407 * been signaled without an error condition, or a negative error code
408 * if the fence has been completed in err.
409 */
410static inline int dma_fence_get_status_locked(struct dma_fence *fence)
411{
412 if (dma_fence_is_signaled_locked(fence))
Chris Wilsona009e972017-01-04 14:12:22 +0000413 return fence->error ?: 1;
Chris Wilsond6c99f42017-01-04 14:12:21 +0000414 else
415 return 0;
416}
417
418int dma_fence_get_status(struct dma_fence *fence);
419
Chris Wilsona009e972017-01-04 14:12:22 +0000420/**
421 * dma_fence_set_error - flag an error condition on the fence
422 * @fence: [in] the dma_fence
423 * @error: [in] the error to store
424 *
425 * Drivers can supply an optional error status condition before they signal
426 * the fence, to indicate that the fence was completed due to an error
427 * rather than success. This must be set before signaling (so that the value
428 * is visible before any waiters on the signal callback are woken). This
429 * helper exists to help catching erroneous setting of #dma_fence.error.
430 */
431static inline void dma_fence_set_error(struct dma_fence *fence,
432 int error)
433{
Daniel Vetter6ce31262017-07-20 14:51:07 +0200434 WARN_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
435 WARN_ON(error >= 0 || error < -MAX_ERRNO);
Chris Wilsona009e972017-01-04 14:12:22 +0000436
437 fence->error = error;
438}
439
Chris Wilsonf54d1862016-10-25 13:00:45 +0100440signed long dma_fence_wait_timeout(struct dma_fence *,
441 bool intr, signed long timeout);
442signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
443 uint32_t count,
monk.liu7392b4b2016-11-04 16:16:09 -0400444 bool intr, signed long timeout,
445 uint32_t *idx);
Chris Wilsonf54d1862016-10-25 13:00:45 +0100446
447/**
448 * dma_fence_wait - sleep until the fence gets signaled
449 * @fence: [in] the fence to wait on
450 * @intr: [in] if true, do an interruptible wait
451 *
452 * This function will return -ERESTARTSYS if interrupted by a signal,
453 * or 0 if the fence was signaled. Other error values may be
454 * returned on custom implementations.
455 *
456 * Performs a synchronous wait on this fence. It is assumed the caller
457 * directly or indirectly holds a reference to the fence, otherwise the
458 * fence might be freed before return, resulting in undefined behavior.
459 */
460static inline signed long dma_fence_wait(struct dma_fence *fence, bool intr)
461{
462 signed long ret;
463
464 /* Since dma_fence_wait_timeout cannot timeout with
465 * MAX_SCHEDULE_TIMEOUT, only valid return values are
466 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
467 */
468 ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
469
470 return ret < 0 ? ret : 0;
471}
472
473u64 dma_fence_context_alloc(unsigned num);
474
475#define DMA_FENCE_TRACE(f, fmt, args...) \
476 do { \
477 struct dma_fence *__ff = (f); \
478 if (IS_ENABLED(CONFIG_DMA_FENCE_TRACE)) \
479 pr_info("f %llu#%u: " fmt, \
480 __ff->context, __ff->seqno, ##args); \
481 } while (0)
482
483#define DMA_FENCE_WARN(f, fmt, args...) \
484 do { \
485 struct dma_fence *__ff = (f); \
486 pr_warn("f %llu#%u: " fmt, __ff->context, __ff->seqno, \
487 ##args); \
488 } while (0)
489
490#define DMA_FENCE_ERR(f, fmt, args...) \
491 do { \
492 struct dma_fence *__ff = (f); \
493 pr_err("f %llu#%u: " fmt, __ff->context, __ff->seqno, \
494 ##args); \
495 } while (0)
496
497#endif /* __LINUX_DMA_FENCE_H */