blob: 4e2b1b06b411d12accfad7ae28ef00cc28dbe95b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
Christoph Lameter19460892005-06-23 00:08:19 -070031#include <linux/blkdev.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
Adrian Bunk93d17d32005-06-25 14:59:10 -070040static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
42/*
43 * For the allocated request tables
44 */
45static kmem_cache_t *request_cachep;
46
47/*
48 * For queue allocation
49 */
50static kmem_cache_t *requestq_cachep;
51
52/*
53 * For io context allocations
54 */
55static kmem_cache_t *iocontext_cachep;
56
57static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62/*
63 * Controlling structure to kblockd
64 */
65static struct workqueue_struct *kblockd_workqueue;
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
111/*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116static void clear_queue_congested(request_queue_t *q, int rw)
117{
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126}
127
128/*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132static void set_queue_congested(request_queue_t *q, int rw)
133{
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138}
139
140/**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150{
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157}
158
159EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162{
163 q->activity_fn = fn;
164 q->activity_data = data;
165}
166
167EXPORT_SYMBOL(blk_queue_activity_fn);
168
169/**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181{
182 q->prep_rq_fn = pfn;
183}
184
185EXPORT_SYMBOL(blk_queue_prep_rq);
186
187/**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204{
205 q->merge_bvec_fn = mbfn;
206}
207
208EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210/**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233{
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
Stuart McLaren309c0a12005-09-06 15:17:47 -0700238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268}
269
270EXPORT_SYMBOL(blk_queue_make_request);
271
272static inline void rq_init(request_queue_t *q, struct request *rq)
273{
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +0200279 rq->ioprio = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 rq->buffer = NULL;
281 rq->ref_count = 1;
282 rq->q = q;
283 rq->waiting = NULL;
284 rq->special = NULL;
285 rq->data_len = 0;
286 rq->data = NULL;
Mike Christie df46b9a2005-06-20 14:04:44 +0200287 rq->nr_phys_segments = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 rq->sense = NULL;
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291}
292
293/**
294 * blk_queue_ordered - does this queue support ordered writes
295 * @q: the request queue
296 * @flag: see below
297 *
298 * Description:
299 * For journalled file systems, doing ordered writes on a commit
300 * block instead of explicitly doing wait_on_buffer (which is bad
301 * for performance) can be a big win. Block drivers supporting this
302 * feature should call this function and indicate so.
303 *
304 **/
305void blk_queue_ordered(request_queue_t *q, int flag)
306{
307 switch (flag) {
308 case QUEUE_ORDERED_NONE:
309 if (q->flush_rq)
310 kmem_cache_free(request_cachep, q->flush_rq);
311 q->flush_rq = NULL;
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_TAG:
315 q->ordered = flag;
316 break;
317 case QUEUE_ORDERED_FLUSH:
318 q->ordered = flag;
319 if (!q->flush_rq)
320 q->flush_rq = kmem_cache_alloc(request_cachep,
321 GFP_KERNEL);
322 break;
323 default:
324 printk("blk_queue_ordered: bad value %d\n", flag);
325 break;
326 }
327}
328
329EXPORT_SYMBOL(blk_queue_ordered);
330
331/**
332 * blk_queue_issue_flush_fn - set function for issuing a flush
333 * @q: the request queue
334 * @iff: the function to be called issuing the flush
335 *
336 * Description:
337 * If a driver supports issuing a flush command, the support is notified
338 * to the block layer by defining it through this call.
339 *
340 **/
341void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
342{
343 q->issue_flush_fn = iff;
344}
345
346EXPORT_SYMBOL(blk_queue_issue_flush_fn);
347
348/*
349 * Cache flushing for ordered writes handling
350 */
351static void blk_pre_flush_end_io(struct request *flush_rq)
352{
353 struct request *rq = flush_rq->end_io_data;
354 request_queue_t *q = rq->q;
355
356 rq->flags |= REQ_BAR_PREFLUSH;
357
358 if (!flush_rq->errors)
359 elv_requeue_request(q, rq);
360 else {
361 q->end_flush_fn(q, flush_rq);
362 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
363 q->request_fn(q);
364 }
365}
366
367static void blk_post_flush_end_io(struct request *flush_rq)
368{
369 struct request *rq = flush_rq->end_io_data;
370 request_queue_t *q = rq->q;
371
372 rq->flags |= REQ_BAR_POSTFLUSH;
373
374 q->end_flush_fn(q, flush_rq);
375 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
376 q->request_fn(q);
377}
378
379struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
380{
381 struct request *flush_rq = q->flush_rq;
382
383 BUG_ON(!blk_barrier_rq(rq));
384
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
386 return NULL;
387
388 rq_init(q, flush_rq);
389 flush_rq->elevator_private = NULL;
390 flush_rq->flags = REQ_BAR_FLUSH;
391 flush_rq->rq_disk = rq->rq_disk;
392 flush_rq->rl = NULL;
393
394 /*
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
397 */
398 if (!q->prepare_flush_fn(q, flush_rq)) {
399 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
400 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
401 return rq;
402 }
403
404 /*
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
407 */
408 if (!list_empty(&rq->queuelist))
409 blkdev_dequeue_request(rq);
410
411 elv_deactivate_request(q, rq);
412
413 flush_rq->end_io_data = rq;
414 flush_rq->end_io = blk_pre_flush_end_io;
415
416 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
417 return flush_rq;
418}
419
420static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421{
422 struct request *flush_rq = q->flush_rq;
423
424 BUG_ON(!blk_barrier_rq(rq));
425
426 rq_init(q, flush_rq);
427 flush_rq->elevator_private = NULL;
428 flush_rq->flags = REQ_BAR_FLUSH;
429 flush_rq->rq_disk = rq->rq_disk;
430 flush_rq->rl = NULL;
431
432 if (q->prepare_flush_fn(q, flush_rq)) {
433 flush_rq->end_io_data = rq;
434 flush_rq->end_io = blk_post_flush_end_io;
435
436 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
437 q->request_fn(q);
438 }
439}
440
441static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
442 int sectors)
443{
444 if (sectors > rq->nr_sectors)
445 sectors = rq->nr_sectors;
446
447 rq->nr_sectors -= sectors;
448 return rq->nr_sectors;
449}
450
451static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
452 int sectors, int queue_locked)
453{
454 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 return 0;
456 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 return 0;
458 if (blk_barrier_postflush(rq))
459 return 0;
460
461 if (!blk_check_end_barrier(q, rq, sectors)) {
462 unsigned long flags = 0;
463
464 if (!queue_locked)
465 spin_lock_irqsave(q->queue_lock, flags);
466
467 blk_start_post_flush(q, rq);
468
469 if (!queue_locked)
470 spin_unlock_irqrestore(q->queue_lock, flags);
471 }
472
473 return 1;
474}
475
476/**
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
479 * @rq: the request
480 * @sectors: number of sectors to complete
481 *
482 * Description:
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
486 * queue lock.
487 **/
488int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489{
490 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491}
492EXPORT_SYMBOL(blk_complete_barrier_rq);
493
494/**
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
497 * @rq: the request
498 * @sectors: number of sectors to complete
499 *
500 * Description:
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
503 **/
504int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
505 int sectors)
506{
507 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508}
509EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
510
511/**
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
515 *
516 * Description:
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
522 **/
523void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524{
525 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
526
527 /*
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
531 */
532 if (bounce_pfn < blk_max_low_pfn) {
533 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
534 init_emergency_isa_pool();
535 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 } else
537 q->bounce_gfp = GFP_NOIO;
538
539 q->bounce_pfn = bounce_pfn;
540}
541
542EXPORT_SYMBOL(blk_queue_bounce_limit);
543
544/**
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
548 *
549 * Description:
550 * Enables a low level driver to set an upper limit on the size of
551 * received requests.
552 **/
553void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554{
555 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
556 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
558 }
559
560 q->max_sectors = q->max_hw_sectors = max_sectors;
561}
562
563EXPORT_SYMBOL(blk_queue_max_sectors);
564
565/**
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
569 *
570 * Description:
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
574 **/
575void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
576{
577 if (!max_segments) {
578 max_segments = 1;
579 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
580 }
581
582 q->max_phys_segments = max_segments;
583}
584
585EXPORT_SYMBOL(blk_queue_max_phys_segments);
586
587/**
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
591 *
592 * Description:
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
596 * to the device.
597 **/
598void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
599{
600 if (!max_segments) {
601 max_segments = 1;
602 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
603 }
604
605 q->max_hw_segments = max_segments;
606}
607
608EXPORT_SYMBOL(blk_queue_max_hw_segments);
609
610/**
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
614 *
615 * Description:
616 * Enables a low level driver to set an upper limit on the size of a
617 * coalesced segment
618 **/
619void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
620{
621 if (max_size < PAGE_CACHE_SIZE) {
622 max_size = PAGE_CACHE_SIZE;
623 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
624 }
625
626 q->max_segment_size = max_size;
627}
628
629EXPORT_SYMBOL(blk_queue_max_segment_size);
630
631/**
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
635 *
636 * Description:
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
641 **/
642void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
643{
644 q->hardsect_size = size;
645}
646
647EXPORT_SYMBOL(blk_queue_hardsect_size);
648
649/*
650 * Returns the minimum that is _not_ zero, unless both are zero.
651 */
652#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
653
654/**
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
658 **/
659void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
660{
661 /* zero is "infinity" */
662 t->max_sectors = t->max_hw_sectors =
663 min_not_zero(t->max_sectors,b->max_sectors);
664
665 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
666 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
667 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
668 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
669}
670
671EXPORT_SYMBOL(blk_queue_stack_limits);
672
673/**
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
677 **/
678void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
679{
680 if (mask < PAGE_CACHE_SIZE - 1) {
681 mask = PAGE_CACHE_SIZE - 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
683 }
684
685 q->seg_boundary_mask = mask;
686}
687
688EXPORT_SYMBOL(blk_queue_segment_boundary);
689
690/**
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
694 *
695 * description:
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
698 *
699 **/
700void blk_queue_dma_alignment(request_queue_t *q, int mask)
701{
702 q->dma_alignment = mask;
703}
704
705EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707/**
708 * blk_queue_find_tag - find a request by its tag and queue
709 *
710 * @q: The request queue for the device
711 * @tag: The tag of the request
712 *
713 * Notes:
714 * Should be used when a device returns a tag and you want to match
715 * it with a request.
716 *
717 * no locks need be held.
718 **/
719struct request *blk_queue_find_tag(request_queue_t *q, int tag)
720{
721 struct blk_queue_tag *bqt = q->queue_tags;
722
Tejun Heoba025082005-08-05 13:28:11 -0700723 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724 return NULL;
725
726 return bqt->tag_index[tag];
727}
728
729EXPORT_SYMBOL(blk_queue_find_tag);
730
731/**
732 * __blk_queue_free_tags - release tag maintenance info
733 * @q: the request queue for the device
734 *
735 * Notes:
736 * blk_cleanup_queue() will take care of calling this function, if tagging
737 * has been used. So there's no need to call this directly.
738 **/
739static void __blk_queue_free_tags(request_queue_t *q)
740{
741 struct blk_queue_tag *bqt = q->queue_tags;
742
743 if (!bqt)
744 return;
745
746 if (atomic_dec_and_test(&bqt->refcnt)) {
747 BUG_ON(bqt->busy);
748 BUG_ON(!list_empty(&bqt->busy_list));
749
750 kfree(bqt->tag_index);
751 bqt->tag_index = NULL;
752
753 kfree(bqt->tag_map);
754 bqt->tag_map = NULL;
755
756 kfree(bqt);
757 }
758
759 q->queue_tags = NULL;
760 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
761}
762
763/**
764 * blk_queue_free_tags - release tag maintenance info
765 * @q: the request queue for the device
766 *
767 * Notes:
768 * This is used to disabled tagged queuing to a device, yet leave
769 * queue in function.
770 **/
771void blk_queue_free_tags(request_queue_t *q)
772{
773 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
774}
775
776EXPORT_SYMBOL(blk_queue_free_tags);
777
778static int
779init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
780{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781 struct request **tag_index;
782 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700783 int nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784
785 if (depth > q->nr_requests * 2) {
786 depth = q->nr_requests * 2;
787 printk(KERN_ERR "%s: adjusted depth to %d\n",
788 __FUNCTION__, depth);
789 }
790
791 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
792 if (!tag_index)
793 goto fail;
794
Tejun Heof7d37d02005-06-23 00:08:50 -0700795 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700796 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 if (!tag_map)
798 goto fail;
799
800 memset(tag_index, 0, depth * sizeof(struct request *));
Tejun Heofa72b902005-06-23 00:08:49 -0700801 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
Tejun Heoba025082005-08-05 13:28:11 -0700802 tags->real_max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803 tags->max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804 tags->tag_index = tag_index;
805 tags->tag_map = tag_map;
806
Linus Torvalds1da177e2005-04-16 15:20:36 -0700807 return 0;
808fail:
809 kfree(tag_index);
810 return -ENOMEM;
811}
812
813/**
814 * blk_queue_init_tags - initialize the queue tag info
815 * @q: the request queue for the device
816 * @depth: the maximum queue depth supported
817 * @tags: the tag to use
818 **/
819int blk_queue_init_tags(request_queue_t *q, int depth,
820 struct blk_queue_tag *tags)
821{
822 int rc;
823
824 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
825
826 if (!tags && !q->queue_tags) {
827 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
828 if (!tags)
829 goto fail;
830
831 if (init_tag_map(q, tags, depth))
832 goto fail;
833
834 INIT_LIST_HEAD(&tags->busy_list);
835 tags->busy = 0;
836 atomic_set(&tags->refcnt, 1);
837 } else if (q->queue_tags) {
838 if ((rc = blk_queue_resize_tags(q, depth)))
839 return rc;
840 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
841 return 0;
842 } else
843 atomic_inc(&tags->refcnt);
844
845 /*
846 * assign it, all done
847 */
848 q->queue_tags = tags;
849 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
850 return 0;
851fail:
852 kfree(tags);
853 return -ENOMEM;
854}
855
856EXPORT_SYMBOL(blk_queue_init_tags);
857
858/**
859 * blk_queue_resize_tags - change the queueing depth
860 * @q: the request queue for the device
861 * @new_depth: the new max command queueing depth
862 *
863 * Notes:
864 * Must be called with the queue lock held.
865 **/
866int blk_queue_resize_tags(request_queue_t *q, int new_depth)
867{
868 struct blk_queue_tag *bqt = q->queue_tags;
869 struct request **tag_index;
870 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700871 int max_depth, nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872
873 if (!bqt)
874 return -ENXIO;
875
876 /*
Tejun Heoba025082005-08-05 13:28:11 -0700877 * if we already have large enough real_max_depth. just
878 * adjust max_depth. *NOTE* as requests with tag value
879 * between new_depth and real_max_depth can be in-flight, tag
880 * map can not be shrunk blindly here.
881 */
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
884 return 0;
885 }
886
887 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888 * save the old state info, so we can copy it back
889 */
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
Tejun Heoba025082005-08-05 13:28:11 -0700892 max_depth = bqt->real_max_depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893
894 if (init_tag_map(q, bqt, new_depth))
895 return -ENOMEM;
896
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
Tejun Heof7d37d02005-06-23 00:08:50 -0700898 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700899 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700900
901 kfree(tag_index);
902 kfree(tag_map);
903 return 0;
904}
905
906EXPORT_SYMBOL(blk_queue_resize_tags);
907
908/**
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
912 *
913 * Description:
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
918 *
919 * Notes:
920 * queue lock must be held.
921 **/
922void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923{
924 struct blk_queue_tag *bqt = q->queue_tags;
925 int tag = rq->tag;
926
927 BUG_ON(tag == -1);
928
Tejun Heoba025082005-08-05 13:28:11 -0700929 if (unlikely(tag >= bqt->real_max_depth))
Tejun Heo040c9282005-06-23 00:08:51 -0700930 /*
931 * This can happen after tag depth has been reduced.
932 * FIXME: how about a warning or info message here?
933 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700934 return;
935
936 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
Tejun Heo040c9282005-06-23 00:08:51 -0700937 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
938 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 return;
940 }
941
942 list_del_init(&rq->queuelist);
943 rq->flags &= ~REQ_QUEUED;
944 rq->tag = -1;
945
946 if (unlikely(bqt->tag_index[tag] == NULL))
Tejun Heo040c9282005-06-23 00:08:51 -0700947 printk(KERN_ERR "%s: tag %d is missing\n",
948 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949
950 bqt->tag_index[tag] = NULL;
951 bqt->busy--;
952}
953
954EXPORT_SYMBOL(blk_queue_end_tag);
955
956/**
957 * blk_queue_start_tag - find a free tag and assign it
958 * @q: the request queue for the device
959 * @rq: the block request that needs tagging
960 *
961 * Description:
962 * This can either be used as a stand-alone helper, or possibly be
963 * assigned as the queue &prep_rq_fn (in which case &struct request
964 * automagically gets a tag assigned). Note that this function
965 * assumes that any type of request can be queued! if this is not
966 * true for your device, you must check the request type before
967 * calling this function. The request will also be removed from
968 * the request queue, so it's the drivers responsibility to readd
969 * it if it should need to be restarted for some reason.
970 *
971 * Notes:
972 * queue lock must be held.
973 **/
974int blk_queue_start_tag(request_queue_t *q, struct request *rq)
975{
976 struct blk_queue_tag *bqt = q->queue_tags;
Tejun Heo2bf0fdad2005-06-23 00:08:48 -0700977 int tag;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978
979 if (unlikely((rq->flags & REQ_QUEUED))) {
980 printk(KERN_ERR
Tejun Heo040c9282005-06-23 00:08:51 -0700981 "%s: request %p for device [%s] already tagged %d",
982 __FUNCTION__, rq,
983 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984 BUG();
985 }
986
Tejun Heo2bf0fdad2005-06-23 00:08:48 -0700987 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
988 if (tag >= bqt->max_depth)
989 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 __set_bit(tag, bqt->tag_map);
992
993 rq->flags |= REQ_QUEUED;
994 rq->tag = tag;
995 bqt->tag_index[tag] = rq;
996 blkdev_dequeue_request(rq);
997 list_add(&rq->queuelist, &bqt->busy_list);
998 bqt->busy++;
999 return 0;
1000}
1001
1002EXPORT_SYMBOL(blk_queue_start_tag);
1003
1004/**
1005 * blk_queue_invalidate_tags - invalidate all pending tags
1006 * @q: the request queue for the device
1007 *
1008 * Description:
1009 * Hardware conditions may dictate a need to stop all pending requests.
1010 * In this case, we will safely clear the block side of the tag queue and
1011 * readd all requests to the request queue in the right order.
1012 *
1013 * Notes:
1014 * queue lock must be held.
1015 **/
1016void blk_queue_invalidate_tags(request_queue_t *q)
1017{
1018 struct blk_queue_tag *bqt = q->queue_tags;
1019 struct list_head *tmp, *n;
1020 struct request *rq;
1021
1022 list_for_each_safe(tmp, n, &bqt->busy_list) {
1023 rq = list_entry_rq(tmp);
1024
1025 if (rq->tag == -1) {
Tejun Heo040c9282005-06-23 00:08:51 -07001026 printk(KERN_ERR
1027 "%s: bad tag found on list\n", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028 list_del_init(&rq->queuelist);
1029 rq->flags &= ~REQ_QUEUED;
1030 } else
1031 blk_queue_end_tag(q, rq);
1032
1033 rq->flags &= ~REQ_STARTED;
1034 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1035 }
1036}
1037
1038EXPORT_SYMBOL(blk_queue_invalidate_tags);
1039
1040static char *rq_flags[] = {
1041 "REQ_RW",
1042 "REQ_FAILFAST",
1043 "REQ_SOFTBARRIER",
1044 "REQ_HARDBARRIER",
1045 "REQ_CMD",
1046 "REQ_NOMERGE",
1047 "REQ_STARTED",
1048 "REQ_DONTPREP",
1049 "REQ_QUEUED",
1050 "REQ_PC",
1051 "REQ_BLOCK_PC",
1052 "REQ_SENSE",
1053 "REQ_FAILED",
1054 "REQ_QUIET",
1055 "REQ_SPECIAL",
1056 "REQ_DRIVE_CMD",
1057 "REQ_DRIVE_TASK",
1058 "REQ_DRIVE_TASKFILE",
1059 "REQ_PREEMPT",
1060 "REQ_PM_SUSPEND",
1061 "REQ_PM_RESUME",
1062 "REQ_PM_SHUTDOWN",
1063};
1064
1065void blk_dump_rq_flags(struct request *rq, char *msg)
1066{
1067 int bit;
1068
1069 printk("%s: dev %s: flags = ", msg,
1070 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1071 bit = 0;
1072 do {
1073 if (rq->flags & (1 << bit))
1074 printk("%s ", rq_flags[bit]);
1075 bit++;
1076 } while (bit < __REQ_NR_BITS);
1077
1078 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1079 rq->nr_sectors,
1080 rq->current_nr_sectors);
1081 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1082
1083 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1084 printk("cdb: ");
1085 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1086 printk("%02x ", rq->cmd[bit]);
1087 printk("\n");
1088 }
1089}
1090
1091EXPORT_SYMBOL(blk_dump_rq_flags);
1092
1093void blk_recount_segments(request_queue_t *q, struct bio *bio)
1094{
1095 struct bio_vec *bv, *bvprv = NULL;
1096 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1097 int high, highprv = 1;
1098
1099 if (unlikely(!bio->bi_io_vec))
1100 return;
1101
1102 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1103 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1104 bio_for_each_segment(bv, bio, i) {
1105 /*
1106 * the trick here is making sure that a high page is never
1107 * considered part of another segment, since that might
1108 * change with the bounce page.
1109 */
1110 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1111 if (high || highprv)
1112 goto new_hw_segment;
1113 if (cluster) {
1114 if (seg_size + bv->bv_len > q->max_segment_size)
1115 goto new_segment;
1116 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1117 goto new_segment;
1118 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1119 goto new_segment;
1120 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1121 goto new_hw_segment;
1122
1123 seg_size += bv->bv_len;
1124 hw_seg_size += bv->bv_len;
1125 bvprv = bv;
1126 continue;
1127 }
1128new_segment:
1129 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1130 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1131 hw_seg_size += bv->bv_len;
1132 } else {
1133new_hw_segment:
1134 if (hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1137 nr_hw_segs++;
1138 }
1139
1140 nr_phys_segs++;
1141 bvprv = bv;
1142 seg_size = bv->bv_len;
1143 highprv = high;
1144 }
1145 if (hw_seg_size > bio->bi_hw_back_size)
1146 bio->bi_hw_back_size = hw_seg_size;
1147 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1148 bio->bi_hw_front_size = hw_seg_size;
1149 bio->bi_phys_segments = nr_phys_segs;
1150 bio->bi_hw_segments = nr_hw_segs;
1151 bio->bi_flags |= (1 << BIO_SEG_VALID);
1152}
1153
1154
Adrian Bunk93d17d32005-06-25 14:59:10 -07001155static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156 struct bio *nxt)
1157{
1158 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1159 return 0;
1160
1161 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1162 return 0;
1163 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1164 return 0;
1165
1166 /*
1167 * bio and nxt are contigous in memory, check if the queue allows
1168 * these two to be merged into one
1169 */
1170 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1171 return 1;
1172
1173 return 0;
1174}
1175
Adrian Bunk93d17d32005-06-25 14:59:10 -07001176static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177 struct bio *nxt)
1178{
1179 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1180 blk_recount_segments(q, bio);
1181 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1182 blk_recount_segments(q, nxt);
1183 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1184 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1185 return 0;
1186 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1187 return 0;
1188
1189 return 1;
1190}
1191
Linus Torvalds1da177e2005-04-16 15:20:36 -07001192/*
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1195 */
1196int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1197{
1198 struct bio_vec *bvec, *bvprv;
1199 struct bio *bio;
1200 int nsegs, i, cluster;
1201
1202 nsegs = 0;
1203 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1204
1205 /*
1206 * for each bio in rq
1207 */
1208 bvprv = NULL;
1209 rq_for_each_bio(bio, rq) {
1210 /*
1211 * for each segment in bio
1212 */
1213 bio_for_each_segment(bvec, bio, i) {
1214 int nbytes = bvec->bv_len;
1215
1216 if (bvprv && cluster) {
1217 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1218 goto new_segment;
1219
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1221 goto new_segment;
1222 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1223 goto new_segment;
1224
1225 sg[nsegs - 1].length += nbytes;
1226 } else {
1227new_segment:
1228 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1229 sg[nsegs].page = bvec->bv_page;
1230 sg[nsegs].length = nbytes;
1231 sg[nsegs].offset = bvec->bv_offset;
1232
1233 nsegs++;
1234 }
1235 bvprv = bvec;
1236 } /* segments in bio */
1237 } /* bios in rq */
1238
1239 return nsegs;
1240}
1241
1242EXPORT_SYMBOL(blk_rq_map_sg);
1243
1244/*
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1247 */
1248
1249static inline int ll_new_mergeable(request_queue_t *q,
1250 struct request *req,
1251 struct bio *bio)
1252{
1253 int nr_phys_segs = bio_phys_segments(q, bio);
1254
1255 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1256 req->flags |= REQ_NOMERGE;
1257 if (req == q->last_merge)
1258 q->last_merge = NULL;
1259 return 0;
1260 }
1261
1262 /*
1263 * A hw segment is just getting larger, bump just the phys
1264 * counter.
1265 */
1266 req->nr_phys_segments += nr_phys_segs;
1267 return 1;
1268}
1269
1270static inline int ll_new_hw_segment(request_queue_t *q,
1271 struct request *req,
1272 struct bio *bio)
1273{
1274 int nr_hw_segs = bio_hw_segments(q, bio);
1275 int nr_phys_segs = bio_phys_segments(q, bio);
1276
1277 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1278 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1279 req->flags |= REQ_NOMERGE;
1280 if (req == q->last_merge)
1281 q->last_merge = NULL;
1282 return 0;
1283 }
1284
1285 /*
1286 * This will form the start of a new hw segment. Bump both
1287 * counters.
1288 */
1289 req->nr_hw_segments += nr_hw_segs;
1290 req->nr_phys_segments += nr_phys_segs;
1291 return 1;
1292}
1293
1294static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1295 struct bio *bio)
1296{
1297 int len;
1298
1299 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1300 req->flags |= REQ_NOMERGE;
1301 if (req == q->last_merge)
1302 q->last_merge = NULL;
1303 return 0;
1304 }
1305 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1306 blk_recount_segments(q, req->biotail);
1307 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1308 blk_recount_segments(q, bio);
1309 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len)) {
1312 int mergeable = ll_new_mergeable(q, req, bio);
1313
1314 if (mergeable) {
1315 if (req->nr_hw_segments == 1)
1316 req->bio->bi_hw_front_size = len;
1317 if (bio->bi_hw_segments == 1)
1318 bio->bi_hw_back_size = len;
1319 }
1320 return mergeable;
1321 }
1322
1323 return ll_new_hw_segment(q, req, bio);
1324}
1325
1326static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1327 struct bio *bio)
1328{
1329 int len;
1330
1331 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1332 req->flags |= REQ_NOMERGE;
1333 if (req == q->last_merge)
1334 q->last_merge = NULL;
1335 return 0;
1336 }
1337 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1338 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1339 blk_recount_segments(q, bio);
1340 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1341 blk_recount_segments(q, req->bio);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len)) {
1344 int mergeable = ll_new_mergeable(q, req, bio);
1345
1346 if (mergeable) {
1347 if (bio->bi_hw_segments == 1)
1348 bio->bi_hw_front_size = len;
1349 if (req->nr_hw_segments == 1)
1350 req->biotail->bi_hw_back_size = len;
1351 }
1352 return mergeable;
1353 }
1354
1355 return ll_new_hw_segment(q, req, bio);
1356}
1357
1358static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1359 struct request *next)
1360{
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001361 int total_phys_segments;
1362 int total_hw_segments;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001363
1364 /*
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1367 */
1368 if (req->special || next->special)
1369 return 0;
1370
1371 /*
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001372 * Will it become too large?
Linus Torvalds1da177e2005-04-16 15:20:36 -07001373 */
1374 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1375 return 0;
1376
1377 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1378 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1379 total_phys_segments--;
1380
1381 if (total_phys_segments > q->max_phys_segments)
1382 return 0;
1383
1384 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1385 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1386 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1387 /*
1388 * propagate the combined length to the end of the requests
1389 */
1390 if (req->nr_hw_segments == 1)
1391 req->bio->bi_hw_front_size = len;
1392 if (next->nr_hw_segments == 1)
1393 next->biotail->bi_hw_back_size = len;
1394 total_hw_segments--;
1395 }
1396
1397 if (total_hw_segments > q->max_hw_segments)
1398 return 0;
1399
1400 /* Merge is OK... */
1401 req->nr_phys_segments = total_phys_segments;
1402 req->nr_hw_segments = total_hw_segments;
1403 return 1;
1404}
1405
1406/*
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1409 * on the list.
1410 *
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1413 */
1414void blk_plug_device(request_queue_t *q)
1415{
1416 WARN_ON(!irqs_disabled());
1417
1418 /*
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1421 */
1422 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1423 return;
1424
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1426 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1427}
1428
1429EXPORT_SYMBOL(blk_plug_device);
1430
1431/*
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1434 */
1435int blk_remove_plug(request_queue_t *q)
1436{
1437 WARN_ON(!irqs_disabled());
1438
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1440 return 0;
1441
1442 del_timer(&q->unplug_timer);
1443 return 1;
1444}
1445
1446EXPORT_SYMBOL(blk_remove_plug);
1447
1448/*
1449 * remove the plug and let it rip..
1450 */
1451void __generic_unplug_device(request_queue_t *q)
1452{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001453 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 return;
1455
1456 if (!blk_remove_plug(q))
1457 return;
1458
Jens Axboe22e2c502005-06-27 10:55:12 +02001459 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460}
1461EXPORT_SYMBOL(__generic_unplug_device);
1462
1463/**
1464 * generic_unplug_device - fire a request queue
1465 * @q: The &request_queue_t in question
1466 *
1467 * Description:
1468 * Linux uses plugging to build bigger requests queues before letting
1469 * the device have at them. If a queue is plugged, the I/O scheduler
1470 * is still adding and merging requests on the queue. Once the queue
1471 * gets unplugged, the request_fn defined for the queue is invoked and
1472 * transfers started.
1473 **/
1474void generic_unplug_device(request_queue_t *q)
1475{
1476 spin_lock_irq(q->queue_lock);
1477 __generic_unplug_device(q);
1478 spin_unlock_irq(q->queue_lock);
1479}
1480EXPORT_SYMBOL(generic_unplug_device);
1481
1482static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1483 struct page *page)
1484{
1485 request_queue_t *q = bdi->unplug_io_data;
1486
1487 /*
1488 * devices don't necessarily have an ->unplug_fn defined
1489 */
1490 if (q->unplug_fn)
1491 q->unplug_fn(q);
1492}
1493
1494static void blk_unplug_work(void *data)
1495{
1496 request_queue_t *q = data;
1497
1498 q->unplug_fn(q);
1499}
1500
1501static void blk_unplug_timeout(unsigned long data)
1502{
1503 request_queue_t *q = (request_queue_t *)data;
1504
1505 kblockd_schedule_work(&q->unplug_work);
1506}
1507
1508/**
1509 * blk_start_queue - restart a previously stopped queue
1510 * @q: The &request_queue_t in question
1511 *
1512 * Description:
1513 * blk_start_queue() will clear the stop flag on the queue, and call
1514 * the request_fn for the queue if it was in a stopped state when
1515 * entered. Also see blk_stop_queue(). Queue lock must be held.
1516 **/
1517void blk_start_queue(request_queue_t *q)
1518{
1519 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1520
1521 /*
1522 * one level of recursion is ok and is much faster than kicking
1523 * the unplug handling
1524 */
1525 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1526 q->request_fn(q);
1527 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1528 } else {
1529 blk_plug_device(q);
1530 kblockd_schedule_work(&q->unplug_work);
1531 }
1532}
1533
1534EXPORT_SYMBOL(blk_start_queue);
1535
1536/**
1537 * blk_stop_queue - stop a queue
1538 * @q: The &request_queue_t in question
1539 *
1540 * Description:
1541 * The Linux block layer assumes that a block driver will consume all
1542 * entries on the request queue when the request_fn strategy is called.
1543 * Often this will not happen, because of hardware limitations (queue
1544 * depth settings). If a device driver gets a 'queue full' response,
1545 * or if it simply chooses not to queue more I/O at one point, it can
1546 * call this function to prevent the request_fn from being called until
1547 * the driver has signalled it's ready to go again. This happens by calling
1548 * blk_start_queue() to restart queue operations. Queue lock must be held.
1549 **/
1550void blk_stop_queue(request_queue_t *q)
1551{
1552 blk_remove_plug(q);
1553 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1554}
1555EXPORT_SYMBOL(blk_stop_queue);
1556
1557/**
1558 * blk_sync_queue - cancel any pending callbacks on a queue
1559 * @q: the queue
1560 *
1561 * Description:
1562 * The block layer may perform asynchronous callback activity
1563 * on a queue, such as calling the unplug function after a timeout.
1564 * A block device may call blk_sync_queue to ensure that any
1565 * such activity is cancelled, thus allowing it to release resources
1566 * the the callbacks might use. The caller must already have made sure
1567 * that its ->make_request_fn will not re-add plugging prior to calling
1568 * this function.
1569 *
1570 */
1571void blk_sync_queue(struct request_queue *q)
1572{
1573 del_timer_sync(&q->unplug_timer);
1574 kblockd_flush();
1575}
1576EXPORT_SYMBOL(blk_sync_queue);
1577
1578/**
1579 * blk_run_queue - run a single device queue
1580 * @q: The queue to run
1581 */
1582void blk_run_queue(struct request_queue *q)
1583{
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(q->queue_lock, flags);
1587 blk_remove_plug(q);
Ken Chena2997382005-04-16 15:25:43 -07001588 if (!elv_queue_empty(q))
1589 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590 spin_unlock_irqrestore(q->queue_lock, flags);
1591}
1592EXPORT_SYMBOL(blk_run_queue);
1593
1594/**
1595 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1596 * @q: the request queue to be released
1597 *
1598 * Description:
1599 * blk_cleanup_queue is the pair to blk_init_queue() or
1600 * blk_queue_make_request(). It should be called when a request queue is
1601 * being released; typically when a block device is being de-registered.
1602 * Currently, its primary task it to free all the &struct request
1603 * structures that were allocated to the queue and the queue itself.
1604 *
1605 * Caveat:
1606 * Hopefully the low level driver will have finished any
1607 * outstanding requests first...
1608 **/
1609void blk_cleanup_queue(request_queue_t * q)
1610{
1611 struct request_list *rl = &q->rq;
1612
1613 if (!atomic_dec_and_test(&q->refcnt))
1614 return;
1615
1616 if (q->elevator)
1617 elevator_exit(q->elevator);
1618
1619 blk_sync_queue(q);
1620
1621 if (rl->rq_pool)
1622 mempool_destroy(rl->rq_pool);
1623
1624 if (q->queue_tags)
1625 __blk_queue_free_tags(q);
1626
1627 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1628
1629 kmem_cache_free(requestq_cachep, q);
1630}
1631
1632EXPORT_SYMBOL(blk_cleanup_queue);
1633
1634static int blk_init_free_list(request_queue_t *q)
1635{
1636 struct request_list *rl = &q->rq;
1637
1638 rl->count[READ] = rl->count[WRITE] = 0;
1639 rl->starved[READ] = rl->starved[WRITE] = 0;
1640 init_waitqueue_head(&rl->wait[READ]);
1641 init_waitqueue_head(&rl->wait[WRITE]);
1642 init_waitqueue_head(&rl->drain);
1643
Christoph Lameter19460892005-06-23 00:08:19 -07001644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1645 mempool_free_slab, request_cachep, q->node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646
1647 if (!rl->rq_pool)
1648 return -ENOMEM;
1649
1650 return 0;
1651}
1652
1653static int __make_request(request_queue_t *, struct bio *);
1654
1655request_queue_t *blk_alloc_queue(int gfp_mask)
1656{
Christoph Lameter19460892005-06-23 00:08:19 -07001657 return blk_alloc_queue_node(gfp_mask, -1);
1658}
1659EXPORT_SYMBOL(blk_alloc_queue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660
Christoph Lameter19460892005-06-23 00:08:19 -07001661request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1662{
1663 request_queue_t *q;
1664
1665 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 if (!q)
1667 return NULL;
1668
1669 memset(q, 0, sizeof(*q));
1670 init_timer(&q->unplug_timer);
1671 atomic_set(&q->refcnt, 1);
1672
1673 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1674 q->backing_dev_info.unplug_io_data = q;
1675
1676 return q;
1677}
Christoph Lameter19460892005-06-23 00:08:19 -07001678EXPORT_SYMBOL(blk_alloc_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679
1680/**
1681 * blk_init_queue - prepare a request queue for use with a block device
1682 * @rfn: The function to be called to process requests that have been
1683 * placed on the queue.
1684 * @lock: Request queue spin lock
1685 *
1686 * Description:
1687 * If a block device wishes to use the standard request handling procedures,
1688 * which sorts requests and coalesces adjacent requests, then it must
1689 * call blk_init_queue(). The function @rfn will be called when there
1690 * are requests on the queue that need to be processed. If the device
1691 * supports plugging, then @rfn may not be called immediately when requests
1692 * are available on the queue, but may be called at some time later instead.
1693 * Plugged queues are generally unplugged when a buffer belonging to one
1694 * of the requests on the queue is needed, or due to memory pressure.
1695 *
1696 * @rfn is not required, or even expected, to remove all requests off the
1697 * queue, but only as many as it can handle at a time. If it does leave
1698 * requests on the queue, it is responsible for arranging that the requests
1699 * get dealt with eventually.
1700 *
1701 * The queue spin lock must be held while manipulating the requests on the
1702 * request queue.
1703 *
1704 * Function returns a pointer to the initialized request queue, or NULL if
1705 * it didn't succeed.
1706 *
1707 * Note:
1708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1709 * when the block device is deactivated (such as at module unload).
1710 **/
Christoph Lameter19460892005-06-23 00:08:19 -07001711
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1713{
Christoph Lameter19460892005-06-23 00:08:19 -07001714 return blk_init_queue_node(rfn, lock, -1);
1715}
1716EXPORT_SYMBOL(blk_init_queue);
1717
1718request_queue_t *
1719blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1720{
1721 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722
1723 if (!q)
1724 return NULL;
1725
Christoph Lameter19460892005-06-23 00:08:19 -07001726 q->node = node_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001727 if (blk_init_free_list(q))
1728 goto out_init;
1729
152587d2005-04-12 16:22:06 -05001730 /*
1731 * if caller didn't supply a lock, they get per-queue locking with
1732 * our embedded lock
1733 */
1734 if (!lock) {
1735 spin_lock_init(&q->__queue_lock);
1736 lock = &q->__queue_lock;
1737 }
1738
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739 q->request_fn = rfn;
1740 q->back_merge_fn = ll_back_merge_fn;
1741 q->front_merge_fn = ll_front_merge_fn;
1742 q->merge_requests_fn = ll_merge_requests_fn;
1743 q->prep_rq_fn = NULL;
1744 q->unplug_fn = generic_unplug_device;
1745 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1746 q->queue_lock = lock;
1747
1748 blk_queue_segment_boundary(q, 0xffffffff);
1749
1750 blk_queue_make_request(q, __make_request);
1751 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1752
1753 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1754 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1755
1756 /*
1757 * all done
1758 */
1759 if (!elevator_init(q, NULL)) {
1760 blk_queue_congestion_threshold(q);
1761 return q;
1762 }
1763
1764 blk_cleanup_queue(q);
1765out_init:
1766 kmem_cache_free(requestq_cachep, q);
1767 return NULL;
1768}
Christoph Lameter19460892005-06-23 00:08:19 -07001769EXPORT_SYMBOL(blk_init_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
1771int blk_get_queue(request_queue_t *q)
1772{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001773 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 atomic_inc(&q->refcnt);
1775 return 0;
1776 }
1777
1778 return 1;
1779}
1780
1781EXPORT_SYMBOL(blk_get_queue);
1782
1783static inline void blk_free_request(request_queue_t *q, struct request *rq)
1784{
1785 elv_put_request(q, rq);
1786 mempool_free(rq, q->rq.rq_pool);
1787}
1788
Jens Axboe22e2c502005-06-27 10:55:12 +02001789static inline struct request *
1790blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791{
1792 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1793
1794 if (!rq)
1795 return NULL;
1796
1797 /*
1798 * first three bits are identical in rq->flags and bio->bi_rw,
1799 * see bio.h and blkdev.h
1800 */
1801 rq->flags = rw;
1802
Jens Axboe22e2c502005-06-27 10:55:12 +02001803 if (!elv_set_request(q, rq, bio, gfp_mask))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 return rq;
1805
1806 mempool_free(rq, q->rq.rq_pool);
1807 return NULL;
1808}
1809
1810/*
1811 * ioc_batching returns true if the ioc is a valid batching request and
1812 * should be given priority access to a request.
1813 */
1814static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1815{
1816 if (!ioc)
1817 return 0;
1818
1819 /*
1820 * Make sure the process is able to allocate at least 1 request
1821 * even if the batch times out, otherwise we could theoretically
1822 * lose wakeups.
1823 */
1824 return ioc->nr_batch_requests == q->nr_batching ||
1825 (ioc->nr_batch_requests > 0
1826 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1827}
1828
1829/*
1830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1831 * will cause the process to be a "batcher" on all queues in the system. This
1832 * is the behaviour we want though - once it gets a wakeup it should be given
1833 * a nice run.
1834 */
Adrian Bunk93d17d32005-06-25 14:59:10 -07001835static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836{
1837 if (!ioc || ioc_batching(q, ioc))
1838 return;
1839
1840 ioc->nr_batch_requests = q->nr_batching;
1841 ioc->last_waited = jiffies;
1842}
1843
1844static void __freed_request(request_queue_t *q, int rw)
1845{
1846 struct request_list *rl = &q->rq;
1847
1848 if (rl->count[rw] < queue_congestion_off_threshold(q))
1849 clear_queue_congested(q, rw);
1850
1851 if (rl->count[rw] + 1 <= q->nr_requests) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852 if (waitqueue_active(&rl->wait[rw]))
1853 wake_up(&rl->wait[rw]);
1854
1855 blk_clear_queue_full(q, rw);
1856 }
1857}
1858
1859/*
1860 * A request has just been released. Account for it, update the full and
1861 * congestion status, wake up any waiters. Called under q->queue_lock.
1862 */
1863static void freed_request(request_queue_t *q, int rw)
1864{
1865 struct request_list *rl = &q->rq;
1866
1867 rl->count[rw]--;
1868
1869 __freed_request(q, rw);
1870
1871 if (unlikely(rl->starved[rw ^ 1]))
1872 __freed_request(q, rw ^ 1);
1873
1874 if (!rl->count[READ] && !rl->count[WRITE]) {
1875 smp_mb();
1876 if (unlikely(waitqueue_active(&rl->drain)))
1877 wake_up(&rl->drain);
1878 }
1879}
1880
1881#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1882/*
Nick Piggind6344532005-06-28 20:45:14 -07001883 * Get a free request, queue_lock must be held.
1884 * Returns NULL on failure, with queue_lock held.
1885 * Returns !NULL on success, with queue_lock *not held*.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001887static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1888 int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889{
1890 struct request *rq = NULL;
1891 struct request_list *rl = &q->rq;
Nick Pigginfb3cc432005-06-28 20:45:15 -07001892 struct io_context *ioc = current_io_context(GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893
1894 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1895 goto out;
1896
Linus Torvalds1da177e2005-04-16 15:20:36 -07001897 if (rl->count[rw]+1 >= q->nr_requests) {
1898 /*
1899 * The queue will fill after this allocation, so set it as
1900 * full, and mark this process as "batching". This process
1901 * will be allowed to complete a batch of requests, others
1902 * will be blocked.
1903 */
1904 if (!blk_queue_full(q, rw)) {
1905 ioc_set_batching(q, ioc);
1906 blk_set_queue_full(q, rw);
1907 }
1908 }
1909
Jens Axboe22e2c502005-06-27 10:55:12 +02001910 switch (elv_may_queue(q, rw, bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911 case ELV_MQUEUE_NO:
1912 goto rq_starved;
1913 case ELV_MQUEUE_MAY:
1914 break;
1915 case ELV_MQUEUE_MUST:
1916 goto get_rq;
1917 }
1918
1919 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1920 /*
1921 * The queue is full and the allocating process is not a
1922 * "batcher", and not exempted by the IO scheduler
1923 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924 goto out;
1925 }
1926
1927get_rq:
Jens Axboe082cf692005-06-28 16:35:11 +02001928 /*
1929 * Only allow batching queuers to allocate up to 50% over the defined
1930 * limit of requests, otherwise we could have thousands of requests
1931 * allocated with any setting of ->nr_requests
1932 */
Hugh Dickinsfd782a42005-06-29 15:15:40 +01001933 if (rl->count[rw] >= (3 * q->nr_requests / 2))
Jens Axboe082cf692005-06-28 16:35:11 +02001934 goto out;
Hugh Dickinsfd782a42005-06-29 15:15:40 +01001935
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936 rl->count[rw]++;
1937 rl->starved[rw] = 0;
1938 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1939 set_queue_congested(q, rw);
1940 spin_unlock_irq(q->queue_lock);
1941
Jens Axboe22e2c502005-06-27 10:55:12 +02001942 rq = blk_alloc_request(q, rw, bio, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 if (!rq) {
1944 /*
1945 * Allocation failed presumably due to memory. Undo anything
1946 * we might have messed up.
1947 *
1948 * Allocating task should really be put onto the front of the
1949 * wait queue, but this is pretty rare.
1950 */
1951 spin_lock_irq(q->queue_lock);
1952 freed_request(q, rw);
1953
1954 /*
1955 * in the very unlikely event that allocation failed and no
1956 * requests for this direction was pending, mark us starved
1957 * so that freeing of a request in the other direction will
1958 * notice us. another possible fix would be to split the
1959 * rq mempool into READ and WRITE
1960 */
1961rq_starved:
1962 if (unlikely(rl->count[rw] == 0))
1963 rl->starved[rw] = 1;
1964
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 goto out;
1966 }
1967
1968 if (ioc_batching(q, ioc))
1969 ioc->nr_batch_requests--;
1970
1971 rq_init(q, rq);
1972 rq->rl = rl;
1973out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001974 return rq;
1975}
1976
1977/*
1978 * No available requests for this queue, unplug the device and wait for some
1979 * requests to become available.
Nick Piggind6344532005-06-28 20:45:14 -07001980 *
1981 * Called with q->queue_lock held, and returns with it unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001982 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001983static struct request *get_request_wait(request_queue_t *q, int rw,
1984 struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001986 struct request *rq;
1987
Nick Piggin450991b2005-06-28 20:45:13 -07001988 rq = get_request(q, rw, bio, GFP_NOIO);
1989 while (!rq) {
1990 DEFINE_WAIT(wait);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 struct request_list *rl = &q->rq;
1992
1993 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1994 TASK_UNINTERRUPTIBLE);
1995
Jens Axboe22e2c502005-06-27 10:55:12 +02001996 rq = get_request(q, rw, bio, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997
1998 if (!rq) {
1999 struct io_context *ioc;
2000
Nick Piggind6344532005-06-28 20:45:14 -07002001 __generic_unplug_device(q);
2002 spin_unlock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 io_schedule();
2004
2005 /*
2006 * After sleeping, we become a "batching" process and
2007 * will be able to allocate at least one request, and
2008 * up to a big batch of them for a small period time.
2009 * See ioc_batching, ioc_set_batching
2010 */
Nick Pigginfb3cc432005-06-28 20:45:15 -07002011 ioc = current_io_context(GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012 ioc_set_batching(q, ioc);
Nick Piggind6344532005-06-28 20:45:14 -07002013
2014 spin_lock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 }
2016 finish_wait(&rl->wait[rw], &wait);
Nick Piggin450991b2005-06-28 20:45:13 -07002017 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018
2019 return rq;
2020}
2021
2022struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2023{
2024 struct request *rq;
2025
2026 BUG_ON(rw != READ && rw != WRITE);
2027
Nick Piggind6344532005-06-28 20:45:14 -07002028 spin_lock_irq(q->queue_lock);
2029 if (gfp_mask & __GFP_WAIT) {
Jens Axboe22e2c502005-06-27 10:55:12 +02002030 rq = get_request_wait(q, rw, NULL);
Nick Piggind6344532005-06-28 20:45:14 -07002031 } else {
Jens Axboe22e2c502005-06-27 10:55:12 +02002032 rq = get_request(q, rw, NULL, gfp_mask);
Nick Piggind6344532005-06-28 20:45:14 -07002033 if (!rq)
2034 spin_unlock_irq(q->queue_lock);
2035 }
2036 /* q->queue_lock is unlocked at this point */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002037
2038 return rq;
2039}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040EXPORT_SYMBOL(blk_get_request);
2041
2042/**
2043 * blk_requeue_request - put a request back on queue
2044 * @q: request queue where request should be inserted
2045 * @rq: request to be inserted
2046 *
2047 * Description:
2048 * Drivers often keep queueing requests until the hardware cannot accept
2049 * more, when that condition happens we need to put the request back
2050 * on the queue. Must be called with queue lock held.
2051 */
2052void blk_requeue_request(request_queue_t *q, struct request *rq)
2053{
2054 if (blk_rq_tagged(rq))
2055 blk_queue_end_tag(q, rq);
2056
2057 elv_requeue_request(q, rq);
2058}
2059
2060EXPORT_SYMBOL(blk_requeue_request);
2061
2062/**
2063 * blk_insert_request - insert a special request in to a request queue
2064 * @q: request queue where request should be inserted
2065 * @rq: request to be inserted
2066 * @at_head: insert request at head or tail of queue
2067 * @data: private data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 *
2069 * Description:
2070 * Many block devices need to execute commands asynchronously, so they don't
2071 * block the whole kernel from preemption during request execution. This is
2072 * accomplished normally by inserting aritficial requests tagged as
2073 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2074 * scheduled for actual execution by the request queue.
2075 *
2076 * We have the option of inserting the head or the tail of the queue.
2077 * Typically we use the tail for new ioctls and so forth. We use the head
2078 * of the queue for things like a QUEUE_FULL message from a device, or a
2079 * host that is unable to accept a particular command.
2080 */
2081void blk_insert_request(request_queue_t *q, struct request *rq,
Tejun Heo 867d1192005-04-24 02:06:05 -05002082 int at_head, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083{
Tejun Heo 867d1192005-04-24 02:06:05 -05002084 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002085 unsigned long flags;
2086
2087 /*
2088 * tell I/O scheduler that this isn't a regular read/write (ie it
2089 * must not attempt merges on this) and that it acts as a soft
2090 * barrier
2091 */
2092 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2093
2094 rq->special = data;
2095
2096 spin_lock_irqsave(q->queue_lock, flags);
2097
2098 /*
2099 * If command is tagged, release the tag
2100 */
Tejun Heo 867d1192005-04-24 02:06:05 -05002101 if (blk_rq_tagged(rq))
2102 blk_queue_end_tag(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103
Tejun Heo 867d1192005-04-24 02:06:05 -05002104 drive_stat_acct(rq, rq->nr_sectors, 1);
2105 __elv_add_request(q, rq, where, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 if (blk_queue_plugged(q))
2108 __generic_unplug_device(q);
2109 else
2110 q->request_fn(q);
2111 spin_unlock_irqrestore(q->queue_lock, flags);
2112}
2113
2114EXPORT_SYMBOL(blk_insert_request);
2115
2116/**
2117 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2118 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002119 * @rq: request structure to fill
Linus Torvalds1da177e2005-04-16 15:20:36 -07002120 * @ubuf: the user buffer
2121 * @len: length of user data
2122 *
2123 * Description:
2124 * Data will be mapped directly for zero copy io, if possible. Otherwise
2125 * a kernel bounce buffer is used.
2126 *
2127 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2128 * still in process context.
2129 *
2130 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2131 * before being submitted to the device, as pages mapped may be out of
2132 * reach. It's the callers responsibility to make sure this happens. The
2133 * original bio must be passed back in to blk_rq_unmap_user() for proper
2134 * unmapping.
2135 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002136int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2137 unsigned int len)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002138{
2139 unsigned long uaddr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140 struct bio *bio;
Jens Axboedd1cab92005-06-20 14:06:01 +02002141 int reading;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142
2143 if (len > (q->max_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002144 return -EINVAL;
2145 if (!len || !ubuf)
2146 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147
Jens Axboedd1cab92005-06-20 14:06:01 +02002148 reading = rq_data_dir(rq) == READ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149
2150 /*
2151 * if alignment requirement is satisfied, map in user pages for
2152 * direct dma. else, set up kernel bounce buffers
2153 */
2154 uaddr = (unsigned long) ubuf;
2155 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
Jens Axboedd1cab92005-06-20 14:06:01 +02002156 bio = bio_map_user(q, NULL, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 else
Jens Axboedd1cab92005-06-20 14:06:01 +02002158 bio = bio_copy_user(q, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159
2160 if (!IS_ERR(bio)) {
2161 rq->bio = rq->biotail = bio;
2162 blk_rq_bio_prep(q, rq, bio);
2163
2164 rq->buffer = rq->data = NULL;
2165 rq->data_len = len;
Jens Axboedd1cab92005-06-20 14:06:01 +02002166 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 }
2168
2169 /*
2170 * bio is the err-ptr
2171 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002172 return PTR_ERR(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173}
2174
2175EXPORT_SYMBOL(blk_rq_map_user);
2176
2177/**
James Bottomley f1970ba2005-06-20 14:06:52 +02002178 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2179 * @q: request queue where request should be inserted
2180 * @rq: request to map data to
2181 * @iov: pointer to the iovec
2182 * @iov_count: number of elements in the iovec
2183 *
2184 * Description:
2185 * Data will be mapped directly for zero copy io, if possible. Otherwise
2186 * a kernel bounce buffer is used.
2187 *
2188 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2189 * still in process context.
2190 *
2191 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2192 * before being submitted to the device, as pages mapped may be out of
2193 * reach. It's the callers responsibility to make sure this happens. The
2194 * original bio must be passed back in to blk_rq_unmap_user() for proper
2195 * unmapping.
2196 */
2197int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2198 struct sg_iovec *iov, int iov_count)
2199{
2200 struct bio *bio;
2201
2202 if (!iov || iov_count <= 0)
2203 return -EINVAL;
2204
2205 /* we don't allow misaligned data like bio_map_user() does. If the
2206 * user is using sg, they're expected to know the alignment constraints
2207 * and respect them accordingly */
2208 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2209 if (IS_ERR(bio))
2210 return PTR_ERR(bio);
2211
2212 rq->bio = rq->biotail = bio;
2213 blk_rq_bio_prep(q, rq, bio);
2214 rq->buffer = rq->data = NULL;
2215 rq->data_len = bio->bi_size;
2216 return 0;
2217}
2218
2219EXPORT_SYMBOL(blk_rq_map_user_iov);
2220
2221/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222 * blk_rq_unmap_user - unmap a request with user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002223 * @bio: bio to be unmapped
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 * @ulen: length of user buffer
2225 *
2226 * Description:
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002227 * Unmap a bio previously mapped by blk_rq_map_user().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002229int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230{
2231 int ret = 0;
2232
2233 if (bio) {
2234 if (bio_flagged(bio, BIO_USER_MAPPED))
2235 bio_unmap_user(bio);
2236 else
2237 ret = bio_uncopy_user(bio);
2238 }
2239
Jens Axboedd1cab92005-06-20 14:06:01 +02002240 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002241}
2242
2243EXPORT_SYMBOL(blk_rq_unmap_user);
2244
2245/**
Mike Christie df46b9a2005-06-20 14:04:44 +02002246 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2247 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002248 * @rq: request to fill
Mike Christie df46b9a2005-06-20 14:04:44 +02002249 * @kbuf: the kernel buffer
2250 * @len: length of user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002251 * @gfp_mask: memory allocation flags
Mike Christie df46b9a2005-06-20 14:04:44 +02002252 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002253int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2254 unsigned int len, unsigned int gfp_mask)
Mike Christie df46b9a2005-06-20 14:04:44 +02002255{
Mike Christie df46b9a2005-06-20 14:04:44 +02002256 struct bio *bio;
2257
2258 if (len > (q->max_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002259 return -EINVAL;
2260 if (!len || !kbuf)
2261 return -EINVAL;
Mike Christie df46b9a2005-06-20 14:04:44 +02002262
2263 bio = bio_map_kern(q, kbuf, len, gfp_mask);
Jens Axboedd1cab92005-06-20 14:06:01 +02002264 if (IS_ERR(bio))
2265 return PTR_ERR(bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002266
Jens Axboedd1cab92005-06-20 14:06:01 +02002267 if (rq_data_dir(rq) == WRITE)
2268 bio->bi_rw |= (1 << BIO_RW);
Mike Christie df46b9a2005-06-20 14:04:44 +02002269
Jens Axboedd1cab92005-06-20 14:06:01 +02002270 rq->bio = rq->biotail = bio;
2271 blk_rq_bio_prep(q, rq, bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002272
Jens Axboedd1cab92005-06-20 14:06:01 +02002273 rq->buffer = rq->data = NULL;
2274 rq->data_len = len;
2275 return 0;
Mike Christie df46b9a2005-06-20 14:04:44 +02002276}
2277
2278EXPORT_SYMBOL(blk_rq_map_kern);
2279
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002280/**
2281 * blk_execute_rq_nowait - insert a request into queue for execution
2282 * @q: queue to insert the request in
2283 * @bd_disk: matching gendisk
2284 * @rq: request to insert
2285 * @at_head: insert request at head or tail of queue
2286 * @done: I/O completion handler
2287 *
2288 * Description:
2289 * Insert a fully prepared request at the back of the io scheduler queue
2290 * for execution. Don't wait for completion.
2291 */
James Bottomley f1970ba2005-06-20 14:06:52 +02002292void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2293 struct request *rq, int at_head,
2294 void (*done)(struct request *))
2295{
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2297
2298 rq->rq_disk = bd_disk;
2299 rq->flags |= REQ_NOMERGE;
2300 rq->end_io = done;
2301 elv_add_request(q, rq, where, 1);
2302 generic_unplug_device(q);
2303}
2304
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305/**
2306 * blk_execute_rq - insert a request into queue for execution
2307 * @q: queue to insert the request in
2308 * @bd_disk: matching gendisk
2309 * @rq: request to insert
James Bottomley 994ca9a2005-06-20 14:11:09 +02002310 * @at_head: insert request at head or tail of queue
Linus Torvalds1da177e2005-04-16 15:20:36 -07002311 *
2312 * Description:
2313 * Insert a fully prepared request at the back of the io scheduler queue
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002314 * for execution and wait for completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 */
2316int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
James Bottomley 994ca9a2005-06-20 14:11:09 +02002317 struct request *rq, int at_head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318{
2319 DECLARE_COMPLETION(wait);
2320 char sense[SCSI_SENSE_BUFFERSIZE];
2321 int err = 0;
2322
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 /*
2324 * we need an extra reference to the request, so we can look at
2325 * it after io completion
2326 */
2327 rq->ref_count++;
2328
2329 if (!rq->sense) {
2330 memset(sense, 0, sizeof(sense));
2331 rq->sense = sense;
2332 rq->sense_len = 0;
2333 }
2334
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 rq->waiting = &wait;
James Bottomley 994ca9a2005-06-20 14:11:09 +02002336 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 wait_for_completion(&wait);
2338 rq->waiting = NULL;
2339
2340 if (rq->errors)
2341 err = -EIO;
2342
2343 return err;
2344}
2345
2346EXPORT_SYMBOL(blk_execute_rq);
2347
2348/**
2349 * blkdev_issue_flush - queue a flush
2350 * @bdev: blockdev to issue flush for
2351 * @error_sector: error sector
2352 *
2353 * Description:
2354 * Issue a flush for the block device in question. Caller can supply
2355 * room for storing the error offset in case of a flush error, if they
2356 * wish to. Caller must run wait_for_completion() on its own.
2357 */
2358int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2359{
2360 request_queue_t *q;
2361
2362 if (bdev->bd_disk == NULL)
2363 return -ENXIO;
2364
2365 q = bdev_get_queue(bdev);
2366 if (!q)
2367 return -ENXIO;
2368 if (!q->issue_flush_fn)
2369 return -EOPNOTSUPP;
2370
2371 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2372}
2373
2374EXPORT_SYMBOL(blkdev_issue_flush);
2375
Adrian Bunk93d17d32005-06-25 14:59:10 -07002376static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377{
2378 int rw = rq_data_dir(rq);
2379
2380 if (!blk_fs_request(rq) || !rq->rq_disk)
2381 return;
2382
2383 if (rw == READ) {
2384 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2385 if (!new_io)
2386 __disk_stat_inc(rq->rq_disk, read_merges);
2387 } else if (rw == WRITE) {
2388 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2389 if (!new_io)
2390 __disk_stat_inc(rq->rq_disk, write_merges);
2391 }
2392 if (new_io) {
2393 disk_round_stats(rq->rq_disk);
2394 rq->rq_disk->in_flight++;
2395 }
2396}
2397
2398/*
2399 * add-request adds a request to the linked list.
2400 * queue lock is held and interrupts disabled, as we muck with the
2401 * request queue list.
2402 */
2403static inline void add_request(request_queue_t * q, struct request * req)
2404{
2405 drive_stat_acct(req, req->nr_sectors, 1);
2406
2407 if (q->activity_fn)
2408 q->activity_fn(q->activity_data, rq_data_dir(req));
2409
2410 /*
2411 * elevator indicated where it wants this request to be
2412 * inserted at elevator_merge time
2413 */
2414 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2415}
2416
2417/*
2418 * disk_round_stats() - Round off the performance stats on a struct
2419 * disk_stats.
2420 *
2421 * The average IO queue length and utilisation statistics are maintained
2422 * by observing the current state of the queue length and the amount of
2423 * time it has been in this state for.
2424 *
2425 * Normally, that accounting is done on IO completion, but that can result
2426 * in more than a second's worth of IO being accounted for within any one
2427 * second, leading to >100% utilisation. To deal with that, we call this
2428 * function to do a round-off before returning the results when reading
2429 * /proc/diskstats. This accounts immediately for all queue usage up to
2430 * the current jiffies and restarts the counters again.
2431 */
2432void disk_round_stats(struct gendisk *disk)
2433{
2434 unsigned long now = jiffies;
2435
Chen, Kenneth Wb2982642005-10-13 21:49:29 +02002436 if (now == disk->stamp)
2437 return;
2438
Chen, Kenneth W20e5c812005-10-13 21:48:42 +02002439 if (disk->in_flight) {
2440 __disk_stat_add(disk, time_in_queue,
2441 disk->in_flight * (now - disk->stamp));
2442 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2443 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444 disk->stamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445}
2446
2447/*
2448 * queue lock must be held
2449 */
2450static void __blk_put_request(request_queue_t *q, struct request *req)
2451{
2452 struct request_list *rl = req->rl;
2453
2454 if (unlikely(!q))
2455 return;
2456 if (unlikely(--req->ref_count))
2457 return;
2458
2459 req->rq_status = RQ_INACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460 req->rl = NULL;
2461
2462 /*
2463 * Request may not have originated from ll_rw_blk. if not,
2464 * it didn't come out of our reserved rq pools
2465 */
2466 if (rl) {
2467 int rw = rq_data_dir(req);
2468
2469 elv_completed_request(q, req);
2470
2471 BUG_ON(!list_empty(&req->queuelist));
2472
2473 blk_free_request(q, req);
2474 freed_request(q, rw);
2475 }
2476}
2477
2478void blk_put_request(struct request *req)
2479{
2480 /*
2481 * if req->rl isn't set, this request didnt originate from the
2482 * block layer, so it's safe to just disregard it
2483 */
2484 if (req->rl) {
2485 unsigned long flags;
2486 request_queue_t *q = req->q;
2487
2488 spin_lock_irqsave(q->queue_lock, flags);
2489 __blk_put_request(q, req);
2490 spin_unlock_irqrestore(q->queue_lock, flags);
2491 }
2492}
2493
2494EXPORT_SYMBOL(blk_put_request);
2495
2496/**
2497 * blk_end_sync_rq - executes a completion event on a request
2498 * @rq: request to complete
2499 */
2500void blk_end_sync_rq(struct request *rq)
2501{
2502 struct completion *waiting = rq->waiting;
2503
2504 rq->waiting = NULL;
2505 __blk_put_request(rq->q, rq);
2506
2507 /*
2508 * complete last, if this is a stack request the process (and thus
2509 * the rq pointer) could be invalid right after this complete()
2510 */
2511 complete(waiting);
2512}
2513EXPORT_SYMBOL(blk_end_sync_rq);
2514
2515/**
2516 * blk_congestion_wait - wait for a queue to become uncongested
2517 * @rw: READ or WRITE
2518 * @timeout: timeout in jiffies
2519 *
2520 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2521 * If no queues are congested then just wait for the next request to be
2522 * returned.
2523 */
2524long blk_congestion_wait(int rw, long timeout)
2525{
2526 long ret;
2527 DEFINE_WAIT(wait);
2528 wait_queue_head_t *wqh = &congestion_wqh[rw];
2529
2530 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2531 ret = io_schedule_timeout(timeout);
2532 finish_wait(wqh, &wait);
2533 return ret;
2534}
2535
2536EXPORT_SYMBOL(blk_congestion_wait);
2537
2538/*
2539 * Has to be called with the request spinlock acquired
2540 */
2541static int attempt_merge(request_queue_t *q, struct request *req,
2542 struct request *next)
2543{
2544 if (!rq_mergeable(req) || !rq_mergeable(next))
2545 return 0;
2546
2547 /*
2548 * not contigious
2549 */
2550 if (req->sector + req->nr_sectors != next->sector)
2551 return 0;
2552
2553 if (rq_data_dir(req) != rq_data_dir(next)
2554 || req->rq_disk != next->rq_disk
2555 || next->waiting || next->special)
2556 return 0;
2557
2558 /*
2559 * If we are allowed to merge, then append bio list
2560 * from next to rq and release next. merge_requests_fn
2561 * will have updated segment counts, update sector
2562 * counts here.
2563 */
2564 if (!q->merge_requests_fn(q, req, next))
2565 return 0;
2566
2567 /*
2568 * At this point we have either done a back merge
2569 * or front merge. We need the smaller start_time of
2570 * the merged requests to be the current request
2571 * for accounting purposes.
2572 */
2573 if (time_after(req->start_time, next->start_time))
2574 req->start_time = next->start_time;
2575
2576 req->biotail->bi_next = next->bio;
2577 req->biotail = next->biotail;
2578
2579 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2580
2581 elv_merge_requests(q, req, next);
2582
2583 if (req->rq_disk) {
2584 disk_round_stats(req->rq_disk);
2585 req->rq_disk->in_flight--;
2586 }
2587
Jens Axboe22e2c502005-06-27 10:55:12 +02002588 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2589
Linus Torvalds1da177e2005-04-16 15:20:36 -07002590 __blk_put_request(q, next);
2591 return 1;
2592}
2593
2594static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2595{
2596 struct request *next = elv_latter_request(q, rq);
2597
2598 if (next)
2599 return attempt_merge(q, rq, next);
2600
2601 return 0;
2602}
2603
2604static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2605{
2606 struct request *prev = elv_former_request(q, rq);
2607
2608 if (prev)
2609 return attempt_merge(q, prev, rq);
2610
2611 return 0;
2612}
2613
2614/**
2615 * blk_attempt_remerge - attempt to remerge active head with next request
2616 * @q: The &request_queue_t belonging to the device
2617 * @rq: The head request (usually)
2618 *
2619 * Description:
2620 * For head-active devices, the queue can easily be unplugged so quickly
2621 * that proper merging is not done on the front request. This may hurt
2622 * performance greatly for some devices. The block layer cannot safely
2623 * do merging on that first request for these queues, but the driver can
2624 * call this function and make it happen any way. Only the driver knows
2625 * when it is safe to do so.
2626 **/
2627void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2628{
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(q->queue_lock, flags);
2632 attempt_back_merge(q, rq);
2633 spin_unlock_irqrestore(q->queue_lock, flags);
2634}
2635
2636EXPORT_SYMBOL(blk_attempt_remerge);
2637
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638static int __make_request(request_queue_t *q, struct bio *bio)
2639{
Nick Piggin450991b2005-06-28 20:45:13 -07002640 struct request *req;
Jens Axboe4a534f92005-04-16 15:25:40 -07002641 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
Jens Axboe22e2c502005-06-27 10:55:12 +02002642 unsigned short prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002643 sector_t sector;
2644
2645 sector = bio->bi_sector;
2646 nr_sectors = bio_sectors(bio);
2647 cur_nr_sectors = bio_cur_sectors(bio);
Jens Axboe22e2c502005-06-27 10:55:12 +02002648 prio = bio_prio(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649
2650 rw = bio_data_dir(bio);
Jens Axboe4a534f92005-04-16 15:25:40 -07002651 sync = bio_sync(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652
2653 /*
2654 * low level driver can indicate that it wants pages above a
2655 * certain limit bounced to low memory (ie for highmem, or even
2656 * ISA dma in theory)
2657 */
2658 blk_queue_bounce(q, &bio);
2659
2660 spin_lock_prefetch(q->queue_lock);
2661
2662 barrier = bio_barrier(bio);
Nick Pigginfde6ad22005-06-23 00:08:53 -07002663 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 err = -EOPNOTSUPP;
2665 goto end_io;
2666 }
2667
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668 spin_lock_irq(q->queue_lock);
2669
Nick Piggin450991b2005-06-28 20:45:13 -07002670 if (unlikely(barrier) || elv_queue_empty(q))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671 goto get_rq;
2672
2673 el_ret = elv_merge(q, &req, bio);
2674 switch (el_ret) {
2675 case ELEVATOR_BACK_MERGE:
2676 BUG_ON(!rq_mergeable(req));
2677
2678 if (!q->back_merge_fn(q, req, bio))
2679 break;
2680
2681 req->biotail->bi_next = bio;
2682 req->biotail = bio;
2683 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002684 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 drive_stat_acct(req, nr_sectors, 0);
2686 if (!attempt_back_merge(q, req))
2687 elv_merged_request(q, req);
2688 goto out;
2689
2690 case ELEVATOR_FRONT_MERGE:
2691 BUG_ON(!rq_mergeable(req));
2692
2693 if (!q->front_merge_fn(q, req, bio))
2694 break;
2695
2696 bio->bi_next = req->bio;
2697 req->bio = bio;
2698
2699 /*
2700 * may not be valid. if the low level driver said
2701 * it didn't need a bounce buffer then it better
2702 * not touch req->buffer either...
2703 */
2704 req->buffer = bio_data(bio);
2705 req->current_nr_sectors = cur_nr_sectors;
2706 req->hard_cur_sectors = cur_nr_sectors;
2707 req->sector = req->hard_sector = sector;
2708 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002709 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 drive_stat_acct(req, nr_sectors, 0);
2711 if (!attempt_front_merge(q, req))
2712 elv_merged_request(q, req);
2713 goto out;
2714
Nick Piggin450991b2005-06-28 20:45:13 -07002715 /* ELV_NO_MERGE: elevator says don't/can't merge. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 default:
Nick Piggin450991b2005-06-28 20:45:13 -07002717 ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 }
2719
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720get_rq:
Nick Piggin450991b2005-06-28 20:45:13 -07002721 /*
2722 * Grab a free request. This is might sleep but can not fail.
Nick Piggind6344532005-06-28 20:45:14 -07002723 * Returns with the queue unlocked.
Nick Piggin450991b2005-06-28 20:45:13 -07002724 */
Nick Piggin450991b2005-06-28 20:45:13 -07002725 req = get_request_wait(q, rw, bio);
Nick Piggind6344532005-06-28 20:45:14 -07002726
Nick Piggin450991b2005-06-28 20:45:13 -07002727 /*
2728 * After dropping the lock and possibly sleeping here, our request
2729 * may now be mergeable after it had proven unmergeable (above).
2730 * We don't worry about that case for efficiency. It won't happen
2731 * often, and the elevators are able to handle it.
2732 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733
2734 req->flags |= REQ_CMD;
2735
2736 /*
2737 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2738 */
2739 if (bio_rw_ahead(bio) || bio_failfast(bio))
2740 req->flags |= REQ_FAILFAST;
2741
2742 /*
2743 * REQ_BARRIER implies no merging, but lets make it explicit
2744 */
Nick Pigginfde6ad22005-06-23 00:08:53 -07002745 if (unlikely(barrier))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2747
2748 req->errors = 0;
2749 req->hard_sector = req->sector = sector;
2750 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2751 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2752 req->nr_phys_segments = bio_phys_segments(q, bio);
2753 req->nr_hw_segments = bio_hw_segments(q, bio);
2754 req->buffer = bio_data(bio); /* see ->buffer comment above */
2755 req->waiting = NULL;
2756 req->bio = req->biotail = bio;
Jens Axboe22e2c502005-06-27 10:55:12 +02002757 req->ioprio = prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758 req->rq_disk = bio->bi_bdev->bd_disk;
2759 req->start_time = jiffies;
2760
Nick Piggin450991b2005-06-28 20:45:13 -07002761 spin_lock_irq(q->queue_lock);
2762 if (elv_queue_empty(q))
2763 blk_plug_device(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764 add_request(q, req);
2765out:
Jens Axboe4a534f92005-04-16 15:25:40 -07002766 if (sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767 __generic_unplug_device(q);
2768
2769 spin_unlock_irq(q->queue_lock);
2770 return 0;
2771
2772end_io:
2773 bio_endio(bio, nr_sectors << 9, err);
2774 return 0;
2775}
2776
2777/*
2778 * If bio->bi_dev is a partition, remap the location
2779 */
2780static inline void blk_partition_remap(struct bio *bio)
2781{
2782 struct block_device *bdev = bio->bi_bdev;
2783
2784 if (bdev != bdev->bd_contains) {
2785 struct hd_struct *p = bdev->bd_part;
2786
Jens Axboe22e2c502005-06-27 10:55:12 +02002787 switch (bio_data_dir(bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788 case READ:
2789 p->read_sectors += bio_sectors(bio);
2790 p->reads++;
2791 break;
2792 case WRITE:
2793 p->write_sectors += bio_sectors(bio);
2794 p->writes++;
2795 break;
2796 }
2797 bio->bi_sector += p->start_sect;
2798 bio->bi_bdev = bdev->bd_contains;
2799 }
2800}
2801
2802void blk_finish_queue_drain(request_queue_t *q)
2803{
2804 struct request_list *rl = &q->rq;
2805 struct request *rq;
Jens Axboe22e2c502005-06-27 10:55:12 +02002806 int requeued = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002807
2808 spin_lock_irq(q->queue_lock);
2809 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2810
2811 while (!list_empty(&q->drain_list)) {
2812 rq = list_entry_rq(q->drain_list.next);
2813
2814 list_del_init(&rq->queuelist);
Jens Axboe22e2c502005-06-27 10:55:12 +02002815 elv_requeue_request(q, rq);
2816 requeued++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817 }
2818
Jens Axboe22e2c502005-06-27 10:55:12 +02002819 if (requeued)
2820 q->request_fn(q);
2821
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 spin_unlock_irq(q->queue_lock);
2823
2824 wake_up(&rl->wait[0]);
2825 wake_up(&rl->wait[1]);
2826 wake_up(&rl->drain);
2827}
2828
2829static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2830{
2831 int wait = rl->count[READ] + rl->count[WRITE];
2832
2833 if (dispatch)
2834 wait += !list_empty(&q->queue_head);
2835
2836 return wait;
2837}
2838
2839/*
2840 * We rely on the fact that only requests allocated through blk_alloc_request()
2841 * have io scheduler private data structures associated with them. Any other
2842 * type of request (allocated on stack or through kmalloc()) should not go
2843 * to the io scheduler core, but be attached to the queue head instead.
2844 */
2845void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2846{
2847 struct request_list *rl = &q->rq;
2848 DEFINE_WAIT(wait);
2849
2850 spin_lock_irq(q->queue_lock);
2851 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2852
2853 while (wait_drain(q, rl, wait_dispatch)) {
2854 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2855
2856 if (wait_drain(q, rl, wait_dispatch)) {
2857 __generic_unplug_device(q);
2858 spin_unlock_irq(q->queue_lock);
2859 io_schedule();
2860 spin_lock_irq(q->queue_lock);
2861 }
2862
2863 finish_wait(&rl->drain, &wait);
2864 }
2865
2866 spin_unlock_irq(q->queue_lock);
2867}
2868
2869/*
2870 * block waiting for the io scheduler being started again.
2871 */
2872static inline void block_wait_queue_running(request_queue_t *q)
2873{
2874 DEFINE_WAIT(wait);
2875
Nick Pigginfde6ad22005-06-23 00:08:53 -07002876 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877 struct request_list *rl = &q->rq;
2878
2879 prepare_to_wait_exclusive(&rl->drain, &wait,
2880 TASK_UNINTERRUPTIBLE);
2881
2882 /*
2883 * re-check the condition. avoids using prepare_to_wait()
2884 * in the fast path (queue is running)
2885 */
2886 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2887 io_schedule();
2888
2889 finish_wait(&rl->drain, &wait);
2890 }
2891}
2892
2893static void handle_bad_sector(struct bio *bio)
2894{
2895 char b[BDEVNAME_SIZE];
2896
2897 printk(KERN_INFO "attempt to access beyond end of device\n");
2898 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2899 bdevname(bio->bi_bdev, b),
2900 bio->bi_rw,
2901 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2902 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2903
2904 set_bit(BIO_EOF, &bio->bi_flags);
2905}
2906
2907/**
2908 * generic_make_request: hand a buffer to its device driver for I/O
2909 * @bio: The bio describing the location in memory and on the device.
2910 *
2911 * generic_make_request() is used to make I/O requests of block
2912 * devices. It is passed a &struct bio, which describes the I/O that needs
2913 * to be done.
2914 *
2915 * generic_make_request() does not return any status. The
2916 * success/failure status of the request, along with notification of
2917 * completion, is delivered asynchronously through the bio->bi_end_io
2918 * function described (one day) else where.
2919 *
2920 * The caller of generic_make_request must make sure that bi_io_vec
2921 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2922 * set to describe the device address, and the
2923 * bi_end_io and optionally bi_private are set to describe how
2924 * completion notification should be signaled.
2925 *
2926 * generic_make_request and the drivers it calls may use bi_next if this
2927 * bio happens to be merged with someone else, and may change bi_dev and
2928 * bi_sector for remaps as it sees fit. So the values of these fields
2929 * should NOT be depended on after the call to generic_make_request.
2930 */
2931void generic_make_request(struct bio *bio)
2932{
2933 request_queue_t *q;
2934 sector_t maxsector;
2935 int ret, nr_sectors = bio_sectors(bio);
2936
2937 might_sleep();
2938 /* Test device or partition size, when known. */
2939 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2940 if (maxsector) {
2941 sector_t sector = bio->bi_sector;
2942
2943 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2944 /*
2945 * This may well happen - the kernel calls bread()
2946 * without checking the size of the device, e.g., when
2947 * mounting a device.
2948 */
2949 handle_bad_sector(bio);
2950 goto end_io;
2951 }
2952 }
2953
2954 /*
2955 * Resolve the mapping until finished. (drivers are
2956 * still free to implement/resolve their own stacking
2957 * by explicitly returning 0)
2958 *
2959 * NOTE: we don't repeat the blk_size check for each new device.
2960 * Stacking drivers are expected to know what they are doing.
2961 */
2962 do {
2963 char b[BDEVNAME_SIZE];
2964
2965 q = bdev_get_queue(bio->bi_bdev);
2966 if (!q) {
2967 printk(KERN_ERR
2968 "generic_make_request: Trying to access "
2969 "nonexistent block-device %s (%Lu)\n",
2970 bdevname(bio->bi_bdev, b),
2971 (long long) bio->bi_sector);
2972end_io:
2973 bio_endio(bio, bio->bi_size, -EIO);
2974 break;
2975 }
2976
2977 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2978 printk("bio too big device %s (%u > %u)\n",
2979 bdevname(bio->bi_bdev, b),
2980 bio_sectors(bio),
2981 q->max_hw_sectors);
2982 goto end_io;
2983 }
2984
Nick Pigginfde6ad22005-06-23 00:08:53 -07002985 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986 goto end_io;
2987
2988 block_wait_queue_running(q);
2989
2990 /*
2991 * If this device has partitions, remap block n
2992 * of partition p to block n+start(p) of the disk.
2993 */
2994 blk_partition_remap(bio);
2995
2996 ret = q->make_request_fn(q, bio);
2997 } while (ret);
2998}
2999
3000EXPORT_SYMBOL(generic_make_request);
3001
3002/**
3003 * submit_bio: submit a bio to the block device layer for I/O
3004 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3005 * @bio: The &struct bio which describes the I/O
3006 *
3007 * submit_bio() is very similar in purpose to generic_make_request(), and
3008 * uses that function to do most of the work. Both are fairly rough
3009 * interfaces, @bio must be presetup and ready for I/O.
3010 *
3011 */
3012void submit_bio(int rw, struct bio *bio)
3013{
3014 int count = bio_sectors(bio);
3015
3016 BIO_BUG_ON(!bio->bi_size);
3017 BIO_BUG_ON(!bio->bi_io_vec);
Jens Axboe22e2c502005-06-27 10:55:12 +02003018 bio->bi_rw |= rw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019 if (rw & WRITE)
3020 mod_page_state(pgpgout, count);
3021 else
3022 mod_page_state(pgpgin, count);
3023
3024 if (unlikely(block_dump)) {
3025 char b[BDEVNAME_SIZE];
3026 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3027 current->comm, current->pid,
3028 (rw & WRITE) ? "WRITE" : "READ",
3029 (unsigned long long)bio->bi_sector,
3030 bdevname(bio->bi_bdev,b));
3031 }
3032
3033 generic_make_request(bio);
3034}
3035
3036EXPORT_SYMBOL(submit_bio);
3037
Adrian Bunk93d17d32005-06-25 14:59:10 -07003038static void blk_recalc_rq_segments(struct request *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003039{
3040 struct bio *bio, *prevbio = NULL;
3041 int nr_phys_segs, nr_hw_segs;
3042 unsigned int phys_size, hw_size;
3043 request_queue_t *q = rq->q;
3044
3045 if (!rq->bio)
3046 return;
3047
3048 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3049 rq_for_each_bio(bio, rq) {
3050 /* Force bio hw/phys segs to be recalculated. */
3051 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3052
3053 nr_phys_segs += bio_phys_segments(q, bio);
3054 nr_hw_segs += bio_hw_segments(q, bio);
3055 if (prevbio) {
3056 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3057 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3058
3059 if (blk_phys_contig_segment(q, prevbio, bio) &&
3060 pseg <= q->max_segment_size) {
3061 nr_phys_segs--;
3062 phys_size += prevbio->bi_size + bio->bi_size;
3063 } else
3064 phys_size = 0;
3065
3066 if (blk_hw_contig_segment(q, prevbio, bio) &&
3067 hseg <= q->max_segment_size) {
3068 nr_hw_segs--;
3069 hw_size += prevbio->bi_size + bio->bi_size;
3070 } else
3071 hw_size = 0;
3072 }
3073 prevbio = bio;
3074 }
3075
3076 rq->nr_phys_segments = nr_phys_segs;
3077 rq->nr_hw_segments = nr_hw_segs;
3078}
3079
Adrian Bunk93d17d32005-06-25 14:59:10 -07003080static void blk_recalc_rq_sectors(struct request *rq, int nsect)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003081{
3082 if (blk_fs_request(rq)) {
3083 rq->hard_sector += nsect;
3084 rq->hard_nr_sectors -= nsect;
3085
3086 /*
3087 * Move the I/O submission pointers ahead if required.
3088 */
3089 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3090 (rq->sector <= rq->hard_sector)) {
3091 rq->sector = rq->hard_sector;
3092 rq->nr_sectors = rq->hard_nr_sectors;
3093 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3094 rq->current_nr_sectors = rq->hard_cur_sectors;
3095 rq->buffer = bio_data(rq->bio);
3096 }
3097
3098 /*
3099 * if total number of sectors is less than the first segment
3100 * size, something has gone terribly wrong
3101 */
3102 if (rq->nr_sectors < rq->current_nr_sectors) {
3103 printk("blk: request botched\n");
3104 rq->nr_sectors = rq->current_nr_sectors;
3105 }
3106 }
3107}
3108
3109static int __end_that_request_first(struct request *req, int uptodate,
3110 int nr_bytes)
3111{
3112 int total_bytes, bio_nbytes, error, next_idx = 0;
3113 struct bio *bio;
3114
3115 /*
3116 * extend uptodate bool to allow < 0 value to be direct io error
3117 */
3118 error = 0;
3119 if (end_io_error(uptodate))
3120 error = !uptodate ? -EIO : uptodate;
3121
3122 /*
3123 * for a REQ_BLOCK_PC request, we want to carry any eventual
3124 * sense key with us all the way through
3125 */
3126 if (!blk_pc_request(req))
3127 req->errors = 0;
3128
3129 if (!uptodate) {
3130 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3131 printk("end_request: I/O error, dev %s, sector %llu\n",
3132 req->rq_disk ? req->rq_disk->disk_name : "?",
3133 (unsigned long long)req->sector);
3134 }
3135
3136 total_bytes = bio_nbytes = 0;
3137 while ((bio = req->bio) != NULL) {
3138 int nbytes;
3139
3140 if (nr_bytes >= bio->bi_size) {
3141 req->bio = bio->bi_next;
3142 nbytes = bio->bi_size;
3143 bio_endio(bio, nbytes, error);
3144 next_idx = 0;
3145 bio_nbytes = 0;
3146 } else {
3147 int idx = bio->bi_idx + next_idx;
3148
3149 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3150 blk_dump_rq_flags(req, "__end_that");
3151 printk("%s: bio idx %d >= vcnt %d\n",
3152 __FUNCTION__,
3153 bio->bi_idx, bio->bi_vcnt);
3154 break;
3155 }
3156
3157 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3158 BIO_BUG_ON(nbytes > bio->bi_size);
3159
3160 /*
3161 * not a complete bvec done
3162 */
3163 if (unlikely(nbytes > nr_bytes)) {
3164 bio_nbytes += nr_bytes;
3165 total_bytes += nr_bytes;
3166 break;
3167 }
3168
3169 /*
3170 * advance to the next vector
3171 */
3172 next_idx++;
3173 bio_nbytes += nbytes;
3174 }
3175
3176 total_bytes += nbytes;
3177 nr_bytes -= nbytes;
3178
3179 if ((bio = req->bio)) {
3180 /*
3181 * end more in this run, or just return 'not-done'
3182 */
3183 if (unlikely(nr_bytes <= 0))
3184 break;
3185 }
3186 }
3187
3188 /*
3189 * completely done
3190 */
3191 if (!req->bio)
3192 return 0;
3193
3194 /*
3195 * if the request wasn't completed, update state
3196 */
3197 if (bio_nbytes) {
3198 bio_endio(bio, bio_nbytes, error);
3199 bio->bi_idx += next_idx;
3200 bio_iovec(bio)->bv_offset += nr_bytes;
3201 bio_iovec(bio)->bv_len -= nr_bytes;
3202 }
3203
3204 blk_recalc_rq_sectors(req, total_bytes >> 9);
3205 blk_recalc_rq_segments(req);
3206 return 1;
3207}
3208
3209/**
3210 * end_that_request_first - end I/O on a request
3211 * @req: the request being processed
3212 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3213 * @nr_sectors: number of sectors to end I/O on
3214 *
3215 * Description:
3216 * Ends I/O on a number of sectors attached to @req, and sets it up
3217 * for the next range of segments (if any) in the cluster.
3218 *
3219 * Return:
3220 * 0 - we are done with this request, call end_that_request_last()
3221 * 1 - still buffers pending for this request
3222 **/
3223int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3224{
3225 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3226}
3227
3228EXPORT_SYMBOL(end_that_request_first);
3229
3230/**
3231 * end_that_request_chunk - end I/O on a request
3232 * @req: the request being processed
3233 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3234 * @nr_bytes: number of bytes to complete
3235 *
3236 * Description:
3237 * Ends I/O on a number of bytes attached to @req, and sets it up
3238 * for the next range of segments (if any). Like end_that_request_first(),
3239 * but deals with bytes instead of sectors.
3240 *
3241 * Return:
3242 * 0 - we are done with this request, call end_that_request_last()
3243 * 1 - still buffers pending for this request
3244 **/
3245int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3246{
3247 return __end_that_request_first(req, uptodate, nr_bytes);
3248}
3249
3250EXPORT_SYMBOL(end_that_request_chunk);
3251
3252/*
3253 * queue lock must be held
3254 */
3255void end_that_request_last(struct request *req)
3256{
3257 struct gendisk *disk = req->rq_disk;
3258
3259 if (unlikely(laptop_mode) && blk_fs_request(req))
3260 laptop_io_completion();
3261
3262 if (disk && blk_fs_request(req)) {
3263 unsigned long duration = jiffies - req->start_time;
3264 switch (rq_data_dir(req)) {
3265 case WRITE:
3266 __disk_stat_inc(disk, writes);
3267 __disk_stat_add(disk, write_ticks, duration);
3268 break;
3269 case READ:
3270 __disk_stat_inc(disk, reads);
3271 __disk_stat_add(disk, read_ticks, duration);
3272 break;
3273 }
3274 disk_round_stats(disk);
3275 disk->in_flight--;
3276 }
3277 if (req->end_io)
3278 req->end_io(req);
3279 else
3280 __blk_put_request(req->q, req);
3281}
3282
3283EXPORT_SYMBOL(end_that_request_last);
3284
3285void end_request(struct request *req, int uptodate)
3286{
3287 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3288 add_disk_randomness(req->rq_disk);
3289 blkdev_dequeue_request(req);
3290 end_that_request_last(req);
3291 }
3292}
3293
3294EXPORT_SYMBOL(end_request);
3295
3296void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3297{
3298 /* first three bits are identical in rq->flags and bio->bi_rw */
3299 rq->flags |= (bio->bi_rw & 7);
3300
3301 rq->nr_phys_segments = bio_phys_segments(q, bio);
3302 rq->nr_hw_segments = bio_hw_segments(q, bio);
3303 rq->current_nr_sectors = bio_cur_sectors(bio);
3304 rq->hard_cur_sectors = rq->current_nr_sectors;
3305 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3306 rq->buffer = bio_data(bio);
3307
3308 rq->bio = rq->biotail = bio;
3309}
3310
3311EXPORT_SYMBOL(blk_rq_bio_prep);
3312
3313int kblockd_schedule_work(struct work_struct *work)
3314{
3315 return queue_work(kblockd_workqueue, work);
3316}
3317
3318EXPORT_SYMBOL(kblockd_schedule_work);
3319
3320void kblockd_flush(void)
3321{
3322 flush_workqueue(kblockd_workqueue);
3323}
3324EXPORT_SYMBOL(kblockd_flush);
3325
3326int __init blk_dev_init(void)
3327{
3328 kblockd_workqueue = create_workqueue("kblockd");
3329 if (!kblockd_workqueue)
3330 panic("Failed to create kblockd\n");
3331
3332 request_cachep = kmem_cache_create("blkdev_requests",
3333 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3334
3335 requestq_cachep = kmem_cache_create("blkdev_queue",
3336 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3337
3338 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3339 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3340
3341 blk_max_low_pfn = max_low_pfn;
3342 blk_max_pfn = max_pfn;
3343
3344 return 0;
3345}
3346
3347/*
3348 * IO Context helper functions
3349 */
3350void put_io_context(struct io_context *ioc)
3351{
3352 if (ioc == NULL)
3353 return;
3354
3355 BUG_ON(atomic_read(&ioc->refcount) == 0);
3356
3357 if (atomic_dec_and_test(&ioc->refcount)) {
3358 if (ioc->aic && ioc->aic->dtor)
3359 ioc->aic->dtor(ioc->aic);
3360 if (ioc->cic && ioc->cic->dtor)
3361 ioc->cic->dtor(ioc->cic);
3362
3363 kmem_cache_free(iocontext_cachep, ioc);
3364 }
3365}
3366EXPORT_SYMBOL(put_io_context);
3367
3368/* Called by the exitting task */
3369void exit_io_context(void)
3370{
3371 unsigned long flags;
3372 struct io_context *ioc;
3373
3374 local_irq_save(flags);
Jens Axboe22e2c502005-06-27 10:55:12 +02003375 task_lock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003376 ioc = current->io_context;
3377 current->io_context = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +02003378 ioc->task = NULL;
3379 task_unlock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380 local_irq_restore(flags);
3381
3382 if (ioc->aic && ioc->aic->exit)
3383 ioc->aic->exit(ioc->aic);
3384 if (ioc->cic && ioc->cic->exit)
3385 ioc->cic->exit(ioc->cic);
3386
3387 put_io_context(ioc);
3388}
3389
3390/*
3391 * If the current task has no IO context then create one and initialise it.
Nick Pigginfb3cc432005-06-28 20:45:15 -07003392 * Otherwise, return its existing IO context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393 *
Nick Pigginfb3cc432005-06-28 20:45:15 -07003394 * This returned IO context doesn't have a specifically elevated refcount,
3395 * but since the current task itself holds a reference, the context can be
3396 * used in general code, so long as it stays within `current` context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003397 */
Nick Pigginfb3cc432005-06-28 20:45:15 -07003398struct io_context *current_io_context(int gfp_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399{
3400 struct task_struct *tsk = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401 struct io_context *ret;
3402
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403 ret = tsk->io_context;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003404 if (likely(ret))
3405 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003406
3407 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3408 if (ret) {
3409 atomic_set(&ret->refcount, 1);
Jens Axboe22e2c502005-06-27 10:55:12 +02003410 ret->task = current;
3411 ret->set_ioprio = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003412 ret->last_waited = jiffies; /* doesn't matter... */
3413 ret->nr_batch_requests = 0; /* because this is 0 */
3414 ret->aic = NULL;
3415 ret->cic = NULL;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003416 tsk->io_context = ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003417 }
3418
3419 return ret;
3420}
Nick Pigginfb3cc432005-06-28 20:45:15 -07003421EXPORT_SYMBOL(current_io_context);
3422
3423/*
3424 * If the current task has no IO context then create one and initialise it.
3425 * If it does have a context, take a ref on it.
3426 *
3427 * This is always called in the context of the task which submitted the I/O.
3428 */
3429struct io_context *get_io_context(int gfp_flags)
3430{
3431 struct io_context *ret;
3432 ret = current_io_context(gfp_flags);
3433 if (likely(ret))
3434 atomic_inc(&ret->refcount);
3435 return ret;
3436}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003437EXPORT_SYMBOL(get_io_context);
3438
3439void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3440{
3441 struct io_context *src = *psrc;
3442 struct io_context *dst = *pdst;
3443
3444 if (src) {
3445 BUG_ON(atomic_read(&src->refcount) == 0);
3446 atomic_inc(&src->refcount);
3447 put_io_context(dst);
3448 *pdst = src;
3449 }
3450}
3451EXPORT_SYMBOL(copy_io_context);
3452
3453void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3454{
3455 struct io_context *temp;
3456 temp = *ioc1;
3457 *ioc1 = *ioc2;
3458 *ioc2 = temp;
3459}
3460EXPORT_SYMBOL(swap_io_context);
3461
3462/*
3463 * sysfs parts below
3464 */
3465struct queue_sysfs_entry {
3466 struct attribute attr;
3467 ssize_t (*show)(struct request_queue *, char *);
3468 ssize_t (*store)(struct request_queue *, const char *, size_t);
3469};
3470
3471static ssize_t
3472queue_var_show(unsigned int var, char *page)
3473{
3474 return sprintf(page, "%d\n", var);
3475}
3476
3477static ssize_t
3478queue_var_store(unsigned long *var, const char *page, size_t count)
3479{
3480 char *p = (char *) page;
3481
3482 *var = simple_strtoul(p, &p, 10);
3483 return count;
3484}
3485
3486static ssize_t queue_requests_show(struct request_queue *q, char *page)
3487{
3488 return queue_var_show(q->nr_requests, (page));
3489}
3490
3491static ssize_t
3492queue_requests_store(struct request_queue *q, const char *page, size_t count)
3493{
3494 struct request_list *rl = &q->rq;
3495
3496 int ret = queue_var_store(&q->nr_requests, page, count);
3497 if (q->nr_requests < BLKDEV_MIN_RQ)
3498 q->nr_requests = BLKDEV_MIN_RQ;
3499 blk_queue_congestion_threshold(q);
3500
3501 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3502 set_queue_congested(q, READ);
3503 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3504 clear_queue_congested(q, READ);
3505
3506 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3507 set_queue_congested(q, WRITE);
3508 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3509 clear_queue_congested(q, WRITE);
3510
3511 if (rl->count[READ] >= q->nr_requests) {
3512 blk_set_queue_full(q, READ);
3513 } else if (rl->count[READ]+1 <= q->nr_requests) {
3514 blk_clear_queue_full(q, READ);
3515 wake_up(&rl->wait[READ]);
3516 }
3517
3518 if (rl->count[WRITE] >= q->nr_requests) {
3519 blk_set_queue_full(q, WRITE);
3520 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3521 blk_clear_queue_full(q, WRITE);
3522 wake_up(&rl->wait[WRITE]);
3523 }
3524 return ret;
3525}
3526
3527static ssize_t queue_ra_show(struct request_queue *q, char *page)
3528{
3529 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3530
3531 return queue_var_show(ra_kb, (page));
3532}
3533
3534static ssize_t
3535queue_ra_store(struct request_queue *q, const char *page, size_t count)
3536{
3537 unsigned long ra_kb;
3538 ssize_t ret = queue_var_store(&ra_kb, page, count);
3539
3540 spin_lock_irq(q->queue_lock);
3541 if (ra_kb > (q->max_sectors >> 1))
3542 ra_kb = (q->max_sectors >> 1);
3543
3544 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3545 spin_unlock_irq(q->queue_lock);
3546
3547 return ret;
3548}
3549
3550static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3551{
3552 int max_sectors_kb = q->max_sectors >> 1;
3553
3554 return queue_var_show(max_sectors_kb, (page));
3555}
3556
3557static ssize_t
3558queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3559{
3560 unsigned long max_sectors_kb,
3561 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3562 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3563 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3564 int ra_kb;
3565
3566 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3567 return -EINVAL;
3568 /*
3569 * Take the queue lock to update the readahead and max_sectors
3570 * values synchronously:
3571 */
3572 spin_lock_irq(q->queue_lock);
3573 /*
3574 * Trim readahead window as well, if necessary:
3575 */
3576 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3577 if (ra_kb > max_sectors_kb)
3578 q->backing_dev_info.ra_pages =
3579 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3580
3581 q->max_sectors = max_sectors_kb << 1;
3582 spin_unlock_irq(q->queue_lock);
3583
3584 return ret;
3585}
3586
3587static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3588{
3589 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3590
3591 return queue_var_show(max_hw_sectors_kb, (page));
3592}
3593
3594
3595static struct queue_sysfs_entry queue_requests_entry = {
3596 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3597 .show = queue_requests_show,
3598 .store = queue_requests_store,
3599};
3600
3601static struct queue_sysfs_entry queue_ra_entry = {
3602 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3603 .show = queue_ra_show,
3604 .store = queue_ra_store,
3605};
3606
3607static struct queue_sysfs_entry queue_max_sectors_entry = {
3608 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3609 .show = queue_max_sectors_show,
3610 .store = queue_max_sectors_store,
3611};
3612
3613static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3614 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3615 .show = queue_max_hw_sectors_show,
3616};
3617
3618static struct queue_sysfs_entry queue_iosched_entry = {
3619 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3620 .show = elv_iosched_show,
3621 .store = elv_iosched_store,
3622};
3623
3624static struct attribute *default_attrs[] = {
3625 &queue_requests_entry.attr,
3626 &queue_ra_entry.attr,
3627 &queue_max_hw_sectors_entry.attr,
3628 &queue_max_sectors_entry.attr,
3629 &queue_iosched_entry.attr,
3630 NULL,
3631};
3632
3633#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3634
3635static ssize_t
3636queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3637{
3638 struct queue_sysfs_entry *entry = to_queue(attr);
3639 struct request_queue *q;
3640
3641 q = container_of(kobj, struct request_queue, kobj);
3642 if (!entry->show)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003643 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003644
3645 return entry->show(q, page);
3646}
3647
3648static ssize_t
3649queue_attr_store(struct kobject *kobj, struct attribute *attr,
3650 const char *page, size_t length)
3651{
3652 struct queue_sysfs_entry *entry = to_queue(attr);
3653 struct request_queue *q;
3654
3655 q = container_of(kobj, struct request_queue, kobj);
3656 if (!entry->store)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003657 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003658
3659 return entry->store(q, page, length);
3660}
3661
3662static struct sysfs_ops queue_sysfs_ops = {
3663 .show = queue_attr_show,
3664 .store = queue_attr_store,
3665};
3666
Adrian Bunk93d17d32005-06-25 14:59:10 -07003667static struct kobj_type queue_ktype = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 .sysfs_ops = &queue_sysfs_ops,
3669 .default_attrs = default_attrs,
3670};
3671
3672int blk_register_queue(struct gendisk *disk)
3673{
3674 int ret;
3675
3676 request_queue_t *q = disk->queue;
3677
3678 if (!q || !q->request_fn)
3679 return -ENXIO;
3680
3681 q->kobj.parent = kobject_get(&disk->kobj);
3682 if (!q->kobj.parent)
3683 return -EBUSY;
3684
3685 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3686 q->kobj.ktype = &queue_ktype;
3687
3688 ret = kobject_register(&q->kobj);
3689 if (ret < 0)
3690 return ret;
3691
3692 ret = elv_register_queue(q);
3693 if (ret) {
3694 kobject_unregister(&q->kobj);
3695 return ret;
3696 }
3697
3698 return 0;
3699}
3700
3701void blk_unregister_queue(struct gendisk *disk)
3702{
3703 request_queue_t *q = disk->queue;
3704
3705 if (q && q->request_fn) {
3706 elv_unregister_queue(q);
3707
3708 kobject_unregister(&q->kobj);
3709 kobject_put(&disk->kobj);
3710 }
3711}