blob: 2298909f24c633da17559f65dc3e0ede2e677b88 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Yoshinori Satod2a5f492015-05-11 02:20:06 +09002#ifndef _H8300_USER_H
3#define _H8300_USER_H
4
5#include <asm/page.h>
6
7/* Core file format: The core file is written in such a way that gdb
8 can understand it and provide useful information to the user (under
9 linux we use the 'trad-core' bfd). There are quite a number of
10 obstacles to being able to view the contents of the floating point
11 registers, and until these are solved you will not be able to view the
12 contents of them. Actually, you can read in the core file and look at
13 the contents of the user struct to find out what the floating point
14 registers contain.
15 The actual file contents are as follows:
16 UPAGE: 1 page consisting of a user struct that tells gdb what is present
17 in the file. Directly after this is a copy of the task_struct, which
18 is currently not used by gdb, but it may come in useful at some point.
19 All of the registers are stored as part of the upage. The upage should
20 always be only one page.
21 DATA: The data area is stored. We use current->end_text to
22 current->brk to pick up all of the user variables, plus any memory
23 that may have been malloced. No attempt is made to determine if a page
24 is demand-zero or if a page is totally unused, we just cover the entire
25 range. All of the addresses are rounded in such a way that an integral
26 number of pages is written.
27 STACK: We need the stack information in order to get a meaningful
28 backtrace. We need to write the data from (esp) to
29 current->start_stack, so we round each of these off in order to be able
30 to write an integer number of pages.
31 The minimum core file size is 3 pages, or 12288 bytes.
32*/
33
34/* This is the old layout of "struct pt_regs" as of Linux 1.x, and
35 is still the layout used by user (the new pt_regs doesn't have
36 all registers). */
37struct user_regs_struct {
38 long er1, er2, er3, er4, er5, er6;
39 long er0;
40 long usp;
41 long orig_er0;
42 long ccr;
43 long pc;
44};
45
46/* When the kernel dumps core, it starts by dumping the user struct -
47 this will be used by gdb to figure out where the data and stack segments
48 are within the file, and what virtual addresses to use. */
49struct user {
50/* We start with the registers, to mimic the way that "memory" is returned
51 from the ptrace(3,...) function. */
52 struct user_regs_struct regs; /* Where the registers are actually stored */
53/* ptrace does not yet supply these. Someday.... */
54/* The rest of this junk is to help gdb figure out what goes where */
55 unsigned long int u_tsize; /* Text segment size (pages). */
56 unsigned long int u_dsize; /* Data segment size (pages). */
57 unsigned long int u_ssize; /* Stack segment size (pages). */
58 unsigned long start_code; /* Starting virtual address of text. */
59 unsigned long start_stack; /* Starting virtual address of stack area.
60 This is actually the bottom of the stack,
61 the top of the stack is always found in the
62 esp register. */
63 long int signal; /* Signal that caused the core dump. */
64 int reserved; /* No longer used */
65 unsigned long u_ar0; /* Used by gdb to help find the values for */
66 /* the registers. */
67 unsigned long magic; /* To uniquely identify a core file */
68 char u_comm[32]; /* User command that was responsible */
69};
70#define NBPG PAGE_SIZE
71#define UPAGES 1
72#define HOST_TEXT_START_ADDR (u.start_code)
73#define HOST_STACK_END_ADDR (u.start_stack + u.u_ssize * NBPG)
74
75#endif