blob: 890c7ef709d5f3cc83873a1492cbdcebad6c0926 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __LINUX_SEQLOCK_H
2#define __LINUX_SEQLOCK_H
3/*
4 * Reader/writer consistent mechanism without starving writers. This type of
Robert P. J. Dayd08df602007-02-17 19:07:33 +01005 * lock for data where the reader wants a consistent set of information
Waiman Long1370e972013-09-12 10:55:34 -04006 * and is willing to retry if the information changes. There are two types
7 * of readers:
8 * 1. Sequence readers which never block a writer but they may have to retry
9 * if a writer is in progress by detecting change in sequence number.
10 * Writers do not wait for a sequence reader.
11 * 2. Locking readers which will wait if a writer or another locking reader
12 * is in progress. A locking reader in progress will also block a writer
13 * from going forward. Unlike the regular rwlock, the read lock here is
14 * exclusive so that only one locking reader can get it.
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 *
Waiman Long1370e972013-09-12 10:55:34 -040016 * This is not as cache friendly as brlock. Also, this may not work well
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 * for data that contains pointers, because any writer could
18 * invalidate a pointer that a reader was following.
19 *
Waiman Long1370e972013-09-12 10:55:34 -040020 * Expected non-blocking reader usage:
Linus Torvalds1da177e2005-04-16 15:20:36 -070021 * do {
22 * seq = read_seqbegin(&foo);
23 * ...
24 * } while (read_seqretry(&foo, seq));
25 *
26 *
27 * On non-SMP the spin locks disappear but the writer still needs
28 * to increment the sequence variables because an interrupt routine could
29 * change the state of the data.
30 *
31 * Based on x86_64 vsyscall gettimeofday
32 * by Keith Owens and Andrea Arcangeli
33 */
34
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include <linux/spinlock.h>
36#include <linux/preempt.h>
John Stultz1ca7d672013-10-07 15:51:59 -070037#include <linux/lockdep.h>
Peter Zijlstra7fc26322015-05-27 11:09:36 +093038#include <linux/compiler.h>
David Howells56a21052011-06-11 12:29:58 +010039#include <asm/processor.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040
Linus Torvalds1da177e2005-04-16 15:20:36 -070041/*
42 * Version using sequence counter only.
43 * This can be used when code has its own mutex protecting the
44 * updating starting before the write_seqcountbeqin() and ending
45 * after the write_seqcount_end().
46 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070047typedef struct seqcount {
48 unsigned sequence;
John Stultz1ca7d672013-10-07 15:51:59 -070049#ifdef CONFIG_DEBUG_LOCK_ALLOC
50 struct lockdep_map dep_map;
51#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070052} seqcount_t;
53
John Stultz1ca7d672013-10-07 15:51:59 -070054static inline void __seqcount_init(seqcount_t *s, const char *name,
55 struct lock_class_key *key)
56{
57 /*
58 * Make sure we are not reinitializing a held lock:
59 */
60 lockdep_init_map(&s->dep_map, name, key, 0);
61 s->sequence = 0;
62}
63
64#ifdef CONFIG_DEBUG_LOCK_ALLOC
65# define SEQCOUNT_DEP_MAP_INIT(lockname) \
66 .dep_map = { .name = #lockname } \
67
68# define seqcount_init(s) \
69 do { \
70 static struct lock_class_key __key; \
71 __seqcount_init((s), #s, &__key); \
72 } while (0)
73
74static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75{
76 seqcount_t *l = (seqcount_t *)s;
77 unsigned long flags;
78
79 local_irq_save(flags);
80 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81 seqcount_release(&l->dep_map, 1, _RET_IP_);
82 local_irq_restore(flags);
83}
84
85#else
86# define SEQCOUNT_DEP_MAP_INIT(lockname)
87# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88# define seqcount_lockdep_reader_access(x)
89#endif
90
91#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
Linus Torvalds1da177e2005-04-16 15:20:36 -070093
Nick Piggin3c22cd52011-01-07 17:49:51 +110094/**
95 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96 * @s: pointer to seqcount_t
97 * Returns: count to be passed to read_seqcount_retry
98 *
99 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101 * provided before actually loading any of the variables that are to be
102 * protected in this critical section.
103 *
104 * Use carefully, only in critical code, and comment how the barrier is
105 * provided.
106 */
107static inline unsigned __read_seqcount_begin(const seqcount_t *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108{
Ingo Molnar88a411c2008-04-03 09:06:13 +0200109 unsigned ret;
110
111repeat:
Davidlohr Bueso4d3199e2015-02-22 19:31:41 -0800112 ret = READ_ONCE(s->sequence);
Ingo Molnar88a411c2008-04-03 09:06:13 +0200113 if (unlikely(ret & 1)) {
114 cpu_relax();
115 goto repeat;
116 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117 return ret;
118}
119
Nick Piggin3c22cd52011-01-07 17:49:51 +1100120/**
Thomas Gleixner0ea5a522014-07-16 21:05:20 +0000121 * raw_read_seqcount - Read the raw seqcount
122 * @s: pointer to seqcount_t
123 * Returns: count to be passed to read_seqcount_retry
124 *
125 * raw_read_seqcount opens a read critical section of the given
126 * seqcount without any lockdep checking and without checking or
127 * masking the LSB. Calling code is responsible for handling that.
128 */
129static inline unsigned raw_read_seqcount(const seqcount_t *s)
130{
Davidlohr Bueso4d3199e2015-02-22 19:31:41 -0800131 unsigned ret = READ_ONCE(s->sequence);
Thomas Gleixner0ea5a522014-07-16 21:05:20 +0000132 smp_rmb();
133 return ret;
134}
135
136/**
John Stultz0c3351d2014-01-02 15:11:13 -0800137 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
John Stultz1ca7d672013-10-07 15:51:59 -0700138 * @s: pointer to seqcount_t
139 * Returns: count to be passed to read_seqcount_retry
140 *
John Stultz0c3351d2014-01-02 15:11:13 -0800141 * raw_read_seqcount_begin opens a read critical section of the given
John Stultz1ca7d672013-10-07 15:51:59 -0700142 * seqcount, but without any lockdep checking. Validity of the critical
143 * section is tested by checking read_seqcount_retry function.
144 */
John Stultz0c3351d2014-01-02 15:11:13 -0800145static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
John Stultz1ca7d672013-10-07 15:51:59 -0700146{
147 unsigned ret = __read_seqcount_begin(s);
148 smp_rmb();
149 return ret;
150}
151
152/**
Nick Piggin3c22cd52011-01-07 17:49:51 +1100153 * read_seqcount_begin - begin a seq-read critical section
154 * @s: pointer to seqcount_t
155 * Returns: count to be passed to read_seqcount_retry
156 *
157 * read_seqcount_begin opens a read critical section of the given seqcount.
158 * Validity of the critical section is tested by checking read_seqcount_retry
159 * function.
160 */
161static inline unsigned read_seqcount_begin(const seqcount_t *s)
162{
John Stultz1ca7d672013-10-07 15:51:59 -0700163 seqcount_lockdep_reader_access(s);
John Stultz0c3351d2014-01-02 15:11:13 -0800164 return raw_read_seqcount_begin(s);
Nick Piggin3c22cd52011-01-07 17:49:51 +1100165}
166
167/**
Linus Torvalds4f988f12012-05-04 15:13:54 -0700168 * raw_seqcount_begin - begin a seq-read critical section
169 * @s: pointer to seqcount_t
170 * Returns: count to be passed to read_seqcount_retry
171 *
172 * raw_seqcount_begin opens a read critical section of the given seqcount.
173 * Validity of the critical section is tested by checking read_seqcount_retry
174 * function.
175 *
176 * Unlike read_seqcount_begin(), this function will not wait for the count
177 * to stabilize. If a writer is active when we begin, we will fail the
178 * read_seqcount_retry() instead of stabilizing at the beginning of the
179 * critical section.
180 */
181static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182{
Davidlohr Bueso4d3199e2015-02-22 19:31:41 -0800183 unsigned ret = READ_ONCE(s->sequence);
Linus Torvalds4f988f12012-05-04 15:13:54 -0700184 smp_rmb();
185 return ret & ~1;
186}
187
188/**
Nick Piggin3c22cd52011-01-07 17:49:51 +1100189 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190 * @s: pointer to seqcount_t
191 * @start: count, from read_seqcount_begin
192 * Returns: 1 if retry is required, else 0
193 *
194 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196 * provided before actually loading any of the variables that are to be
197 * protected in this critical section.
198 *
199 * Use carefully, only in critical code, and comment how the barrier is
200 * provided.
201 */
202static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203{
204 return unlikely(s->sequence != start);
205}
206
207/**
208 * read_seqcount_retry - end a seq-read critical section
209 * @s: pointer to seqcount_t
210 * @start: count, from read_seqcount_begin
211 * Returns: 1 if retry is required, else 0
212 *
213 * read_seqcount_retry closes a read critical section of the given seqcount.
214 * If the critical section was invalid, it must be ignored (and typically
215 * retried).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216 */
Ingo Molnar88a411c2008-04-03 09:06:13 +0200217static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218{
219 smp_rmb();
Nick Piggin3c22cd52011-01-07 17:49:51 +1100220 return __read_seqcount_retry(s, start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700221}
222
223
John Stultz0c3351d2014-01-02 15:11:13 -0800224
225static inline void raw_write_seqcount_begin(seqcount_t *s)
226{
227 s->sequence++;
228 smp_wmb();
229}
230
231static inline void raw_write_seqcount_end(seqcount_t *s)
232{
233 smp_wmb();
234 s->sequence++;
235}
236
Peter Zijlstra7fc26322015-05-27 11:09:36 +0930237static inline int raw_read_seqcount_latch(seqcount_t *s)
238{
239 return lockless_dereference(s->sequence);
240}
241
Peter Zijlstra6695b922015-05-27 11:09:36 +0930242/**
Mathieu Desnoyers9b0fd802014-07-16 21:05:21 +0000243 * raw_write_seqcount_latch - redirect readers to even/odd copy
244 * @s: pointer to seqcount_t
Peter Zijlstra6695b922015-05-27 11:09:36 +0930245 *
246 * The latch technique is a multiversion concurrency control method that allows
247 * queries during non-atomic modifications. If you can guarantee queries never
248 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
249 * -- you most likely do not need this.
250 *
251 * Where the traditional RCU/lockless data structures rely on atomic
252 * modifications to ensure queries observe either the old or the new state the
253 * latch allows the same for non-atomic updates. The trade-off is doubling the
254 * cost of storage; we have to maintain two copies of the entire data
255 * structure.
256 *
257 * Very simply put: we first modify one copy and then the other. This ensures
258 * there is always one copy in a stable state, ready to give us an answer.
259 *
260 * The basic form is a data structure like:
261 *
262 * struct latch_struct {
263 * seqcount_t seq;
264 * struct data_struct data[2];
265 * };
266 *
267 * Where a modification, which is assumed to be externally serialized, does the
268 * following:
269 *
270 * void latch_modify(struct latch_struct *latch, ...)
271 * {
272 * smp_wmb(); <- Ensure that the last data[1] update is visible
273 * latch->seq++;
274 * smp_wmb(); <- Ensure that the seqcount update is visible
275 *
276 * modify(latch->data[0], ...);
277 *
278 * smp_wmb(); <- Ensure that the data[0] update is visible
279 * latch->seq++;
280 * smp_wmb(); <- Ensure that the seqcount update is visible
281 *
282 * modify(latch->data[1], ...);
283 * }
284 *
285 * The query will have a form like:
286 *
287 * struct entry *latch_query(struct latch_struct *latch, ...)
288 * {
289 * struct entry *entry;
290 * unsigned seq, idx;
291 *
292 * do {
Peter Zijlstra7fc26322015-05-27 11:09:36 +0930293 * seq = lockless_dereference(latch->seq);
Peter Zijlstra6695b922015-05-27 11:09:36 +0930294 *
295 * idx = seq & 0x01;
296 * entry = data_query(latch->data[idx], ...);
297 *
298 * smp_rmb();
299 * } while (seq != latch->seq);
300 *
301 * return entry;
302 * }
303 *
304 * So during the modification, queries are first redirected to data[1]. Then we
305 * modify data[0]. When that is complete, we redirect queries back to data[0]
306 * and we can modify data[1].
307 *
308 * NOTE: The non-requirement for atomic modifications does _NOT_ include
309 * the publishing of new entries in the case where data is a dynamic
310 * data structure.
311 *
312 * An iteration might start in data[0] and get suspended long enough
313 * to miss an entire modification sequence, once it resumes it might
314 * observe the new entry.
315 *
316 * NOTE: When data is a dynamic data structure; one should use regular RCU
317 * patterns to manage the lifetimes of the objects within.
Mathieu Desnoyers9b0fd802014-07-16 21:05:21 +0000318 */
319static inline void raw_write_seqcount_latch(seqcount_t *s)
320{
321 smp_wmb(); /* prior stores before incrementing "sequence" */
322 s->sequence++;
323 smp_wmb(); /* increment "sequence" before following stores */
324}
325
326/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700327 * Sequence counter only version assumes that callers are using their
328 * own mutexing.
329 */
John Stultz1ca7d672013-10-07 15:51:59 -0700330static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700331{
John Stultz0c3351d2014-01-02 15:11:13 -0800332 raw_write_seqcount_begin(s);
John Stultz1ca7d672013-10-07 15:51:59 -0700333 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
334}
335
336static inline void write_seqcount_begin(seqcount_t *s)
337{
338 write_seqcount_begin_nested(s, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700339}
340
341static inline void write_seqcount_end(seqcount_t *s)
342{
John Stultz1ca7d672013-10-07 15:51:59 -0700343 seqcount_release(&s->dep_map, 1, _RET_IP_);
John Stultz0c3351d2014-01-02 15:11:13 -0800344 raw_write_seqcount_end(s);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345}
346
Nick Piggin3c22cd52011-01-07 17:49:51 +1100347/**
348 * write_seqcount_barrier - invalidate in-progress read-side seq operations
349 * @s: pointer to seqcount_t
350 *
351 * After write_seqcount_barrier, no read-side seq operations will complete
352 * successfully and see data older than this.
353 */
354static inline void write_seqcount_barrier(seqcount_t *s)
355{
356 smp_wmb();
357 s->sequence+=2;
358}
359
Thomas Gleixner6617fec2011-07-16 18:40:26 +0200360typedef struct {
361 struct seqcount seqcount;
362 spinlock_t lock;
363} seqlock_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
Thomas Gleixner6617fec2011-07-16 18:40:26 +0200365/*
366 * These macros triggered gcc-3.x compile-time problems. We think these are
367 * OK now. Be cautious.
368 */
369#define __SEQLOCK_UNLOCKED(lockname) \
370 { \
John Stultz1ca7d672013-10-07 15:51:59 -0700371 .seqcount = SEQCNT_ZERO(lockname), \
Thomas Gleixner6617fec2011-07-16 18:40:26 +0200372 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
373 }
374
375#define seqlock_init(x) \
376 do { \
377 seqcount_init(&(x)->seqcount); \
378 spin_lock_init(&(x)->lock); \
379 } while (0)
380
381#define DEFINE_SEQLOCK(x) \
382 seqlock_t x = __SEQLOCK_UNLOCKED(x)
383
384/*
385 * Read side functions for starting and finalizing a read side section.
386 */
387static inline unsigned read_seqbegin(const seqlock_t *sl)
388{
389 return read_seqcount_begin(&sl->seqcount);
390}
391
392static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
393{
394 return read_seqcount_retry(&sl->seqcount, start);
395}
396
397/*
398 * Lock out other writers and update the count.
399 * Acts like a normal spin_lock/unlock.
400 * Don't need preempt_disable() because that is in the spin_lock already.
401 */
402static inline void write_seqlock(seqlock_t *sl)
403{
404 spin_lock(&sl->lock);
405 write_seqcount_begin(&sl->seqcount);
406}
407
408static inline void write_sequnlock(seqlock_t *sl)
409{
410 write_seqcount_end(&sl->seqcount);
411 spin_unlock(&sl->lock);
412}
413
414static inline void write_seqlock_bh(seqlock_t *sl)
415{
416 spin_lock_bh(&sl->lock);
417 write_seqcount_begin(&sl->seqcount);
418}
419
420static inline void write_sequnlock_bh(seqlock_t *sl)
421{
422 write_seqcount_end(&sl->seqcount);
423 spin_unlock_bh(&sl->lock);
424}
425
426static inline void write_seqlock_irq(seqlock_t *sl)
427{
428 spin_lock_irq(&sl->lock);
429 write_seqcount_begin(&sl->seqcount);
430}
431
432static inline void write_sequnlock_irq(seqlock_t *sl)
433{
434 write_seqcount_end(&sl->seqcount);
435 spin_unlock_irq(&sl->lock);
436}
437
438static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
439{
440 unsigned long flags;
441
442 spin_lock_irqsave(&sl->lock, flags);
443 write_seqcount_begin(&sl->seqcount);
444 return flags;
445}
446
447#define write_seqlock_irqsave(lock, flags) \
448 do { flags = __write_seqlock_irqsave(lock); } while (0)
449
450static inline void
451write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
452{
453 write_seqcount_end(&sl->seqcount);
454 spin_unlock_irqrestore(&sl->lock, flags);
455}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456
Waiman Long1370e972013-09-12 10:55:34 -0400457/*
458 * A locking reader exclusively locks out other writers and locking readers,
459 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
460 * Don't need preempt_disable() because that is in the spin_lock already.
461 */
462static inline void read_seqlock_excl(seqlock_t *sl)
463{
464 spin_lock(&sl->lock);
465}
466
467static inline void read_sequnlock_excl(seqlock_t *sl)
468{
469 spin_unlock(&sl->lock);
470}
471
Al Viro2bc74fe2013-10-25 16:39:14 -0400472/**
473 * read_seqbegin_or_lock - begin a sequence number check or locking block
474 * @lock: sequence lock
475 * @seq : sequence number to be checked
476 *
477 * First try it once optimistically without taking the lock. If that fails,
478 * take the lock. The sequence number is also used as a marker for deciding
479 * whether to be a reader (even) or writer (odd).
480 * N.B. seq must be initialized to an even number to begin with.
481 */
482static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
483{
484 if (!(*seq & 1)) /* Even */
485 *seq = read_seqbegin(lock);
486 else /* Odd */
487 read_seqlock_excl(lock);
488}
489
490static inline int need_seqretry(seqlock_t *lock, int seq)
491{
492 return !(seq & 1) && read_seqretry(lock, seq);
493}
494
495static inline void done_seqretry(seqlock_t *lock, int seq)
496{
497 if (seq & 1)
498 read_sequnlock_excl(lock);
499}
500
Waiman Long1370e972013-09-12 10:55:34 -0400501static inline void read_seqlock_excl_bh(seqlock_t *sl)
502{
503 spin_lock_bh(&sl->lock);
504}
505
506static inline void read_sequnlock_excl_bh(seqlock_t *sl)
507{
508 spin_unlock_bh(&sl->lock);
509}
510
511static inline void read_seqlock_excl_irq(seqlock_t *sl)
512{
513 spin_lock_irq(&sl->lock);
514}
515
516static inline void read_sequnlock_excl_irq(seqlock_t *sl)
517{
518 spin_unlock_irq(&sl->lock);
519}
520
521static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
522{
523 unsigned long flags;
524
525 spin_lock_irqsave(&sl->lock, flags);
526 return flags;
527}
528
529#define read_seqlock_excl_irqsave(lock, flags) \
530 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
531
532static inline void
533read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
534{
535 spin_unlock_irqrestore(&sl->lock, flags);
536}
537
Rik van Rielef8ac062014-09-12 09:12:14 -0400538static inline unsigned long
539read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
540{
541 unsigned long flags = 0;
542
543 if (!(*seq & 1)) /* Even */
544 *seq = read_seqbegin(lock);
545 else /* Odd */
546 read_seqlock_excl_irqsave(lock, flags);
547
548 return flags;
549}
550
551static inline void
552done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
553{
554 if (seq & 1)
555 read_sequnlock_excl_irqrestore(lock, flags);
556}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557#endif /* __LINUX_SEQLOCK_H */