blob: 40d6db1ca4a88fb33caa1acda35fdf248441d9f4 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050019#include <linux/mm.h>
Christoffer Dall749cf76c2013-01-20 18:28:06 -050020#include <linux/kvm_host.h>
Christoffer Dall11382452013-01-20 18:28:10 -050021#include <linux/uaccess.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050022#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
Marc Zyngier80346992014-01-14 18:00:55 +000026#include <asm/kvm_mmu.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050027#include <asm/cacheflush.h>
28#include <asm/cputype.h>
29#include <trace/events/kvm.h>
Rusty Russell4fe21e42013-01-20 18:28:11 -050030#include <asm/vfp.h>
31#include "../vfp/vfpinstr.h"
Christoffer Dall749cf76c2013-01-20 18:28:06 -050032
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050033#include "trace.h"
34#include "coproc.h"
35
36
37/******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
40
Christoffer Dallc27581e2013-01-20 18:28:10 -050041/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42static u32 cache_levels;
43
44/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
45#define CSSELR_MAX 12
46
Victor Kamensky73891f72014-06-12 09:30:06 -070047/*
48 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
49 * of cp15 registers can be viewed either as couple of two u32 registers
50 * or one u64 register. Current u64 register encoding is that least
51 * significant u32 word is followed by most significant u32 word.
52 */
53static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
54 const struct coproc_reg *r,
55 u64 val)
56{
Marc Zyngierfb32a522016-01-03 11:26:01 +000057 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
58 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
Victor Kamensky73891f72014-06-12 09:30:06 -070059}
60
61static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
62 const struct coproc_reg *r)
63{
64 u64 val;
65
Marc Zyngierfb32a522016-01-03 11:26:01 +000066 val = vcpu_cp15(vcpu, r->reg + 1);
Victor Kamensky73891f72014-06-12 09:30:06 -070067 val = val << 32;
Marc Zyngierfb32a522016-01-03 11:26:01 +000068 val = val | vcpu_cp15(vcpu, r->reg);
Victor Kamensky73891f72014-06-12 09:30:06 -070069 return val;
70}
71
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050072int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
73{
74 kvm_inject_undefined(vcpu);
75 return 1;
76}
77
78int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
79{
80 /*
81 * We can get here, if the host has been built without VFPv3 support,
82 * but the guest attempted a floating point operation.
83 */
84 kvm_inject_undefined(vcpu);
85 return 1;
86}
87
88int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
89{
90 kvm_inject_undefined(vcpu);
91 return 1;
92}
93
94int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
95{
96 kvm_inject_undefined(vcpu);
97 return 1;
98}
99
Jonathan Austine8c2d992013-09-26 16:49:28 +0100100static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
101{
102 /*
Marc Zyngier2d1d8412013-10-18 18:19:04 +0100103 * Compute guest MPIDR. We build a virtual cluster out of the
104 * vcpu_id, but we read the 'U' bit from the underlying
105 * hardware directly.
Jonathan Austine8c2d992013-09-26 16:49:28 +0100106 */
Marc Zyngierfb32a522016-01-03 11:26:01 +0000107 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
Marc Zyngier2d1d8412013-10-18 18:19:04 +0100108 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
109 (vcpu->vcpu_id & 3));
Jonathan Austine8c2d992013-09-26 16:49:28 +0100110}
111
112/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
113static bool access_actlr(struct kvm_vcpu *vcpu,
114 const struct coproc_params *p,
115 const struct coproc_reg *r)
116{
117 if (p->is_write)
118 return ignore_write(vcpu, p);
119
Marc Zyngierfb32a522016-01-03 11:26:01 +0000120 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100121 return true;
122}
123
124/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
125static bool access_cbar(struct kvm_vcpu *vcpu,
126 const struct coproc_params *p,
127 const struct coproc_reg *r)
128{
129 if (p->is_write)
130 return write_to_read_only(vcpu, p);
131 return read_zero(vcpu, p);
132}
133
134/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
135static bool access_l2ctlr(struct kvm_vcpu *vcpu,
136 const struct coproc_params *p,
137 const struct coproc_reg *r)
138{
139 if (p->is_write)
140 return ignore_write(vcpu, p);
141
Marc Zyngierfb32a522016-01-03 11:26:01 +0000142 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100143 return true;
144}
145
146static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
147{
148 u32 l2ctlr, ncores;
149
150 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
151 l2ctlr &= ~(3 << 24);
152 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
Marc Zyngier9cbb6d92013-10-18 18:19:05 +0100153 /* How many cores in the current cluster and the next ones */
154 ncores -= (vcpu->vcpu_id & ~3);
155 /* Cap it to the maximum number of cores in a single cluster */
156 ncores = min(ncores, 3U);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100157 l2ctlr |= (ncores & 3) << 24;
158
Marc Zyngierfb32a522016-01-03 11:26:01 +0000159 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
Jonathan Austine8c2d992013-09-26 16:49:28 +0100160}
161
162static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
163{
164 u32 actlr;
165
166 /* ACTLR contains SMP bit: make sure you create all cpus first! */
167 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
168 /* Make the SMP bit consistent with the guest configuration */
169 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
170 actlr |= 1U << 6;
171 else
172 actlr &= ~(1U << 6);
173
Marc Zyngierfb32a522016-01-03 11:26:01 +0000174 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
Jonathan Austine8c2d992013-09-26 16:49:28 +0100175}
176
177/*
178 * TRM entries: A7:4.3.50, A15:4.3.49
179 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
180 */
181static bool access_l2ectlr(struct kvm_vcpu *vcpu,
182 const struct coproc_params *p,
183 const struct coproc_reg *r)
184{
185 if (p->is_write)
186 return ignore_write(vcpu, p);
187
188 *vcpu_reg(vcpu, p->Rt1) = 0;
189 return true;
190}
191
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000192/*
193 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
194 */
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500195static bool access_dcsw(struct kvm_vcpu *vcpu,
196 const struct coproc_params *p,
197 const struct coproc_reg *r)
198{
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500199 if (!p->is_write)
200 return read_from_write_only(vcpu, p);
201
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000202 kvm_set_way_flush(vcpu);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500203 return true;
204}
205
206/*
Marc Zyngier80346992014-01-14 18:00:55 +0000207 * Generic accessor for VM registers. Only called as long as HCR_TVM
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000208 * is set. If the guest enables the MMU, we stop trapping the VM
209 * sys_regs and leave it in complete control of the caches.
210 *
211 * Used by the cpu-specific code.
Marc Zyngier80346992014-01-14 18:00:55 +0000212 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000213bool access_vm_reg(struct kvm_vcpu *vcpu,
214 const struct coproc_params *p,
215 const struct coproc_reg *r)
Marc Zyngier80346992014-01-14 18:00:55 +0000216{
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000217 bool was_enabled = vcpu_has_cache_enabled(vcpu);
218
Marc Zyngier80346992014-01-14 18:00:55 +0000219 BUG_ON(!p->is_write);
220
Marc Zyngierfb32a522016-01-03 11:26:01 +0000221 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
Marc Zyngier80346992014-01-14 18:00:55 +0000222 if (p->is_64bit)
Marc Zyngierfb32a522016-01-03 11:26:01 +0000223 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
Marc Zyngier80346992014-01-14 18:00:55 +0000224
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000225 kvm_toggle_cache(vcpu, was_enabled);
Marc Zyngier80346992014-01-14 18:00:55 +0000226 return true;
227}
228
229/*
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500230 * We could trap ID_DFR0 and tell the guest we don't support performance
231 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
232 * NAKed, so it will read the PMCR anyway.
233 *
234 * Therefore we tell the guest we have 0 counters. Unfortunately, we
235 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
236 * all PM registers, which doesn't crash the guest kernel at least.
237 */
238static bool pm_fake(struct kvm_vcpu *vcpu,
239 const struct coproc_params *p,
240 const struct coproc_reg *r)
241{
242 if (p->is_write)
243 return ignore_write(vcpu, p);
244 else
245 return read_zero(vcpu, p);
246}
247
248#define access_pmcr pm_fake
249#define access_pmcntenset pm_fake
250#define access_pmcntenclr pm_fake
251#define access_pmovsr pm_fake
252#define access_pmselr pm_fake
253#define access_pmceid0 pm_fake
254#define access_pmceid1 pm_fake
255#define access_pmccntr pm_fake
256#define access_pmxevtyper pm_fake
257#define access_pmxevcntr pm_fake
258#define access_pmuserenr pm_fake
259#define access_pmintenset pm_fake
260#define access_pmintenclr pm_fake
261
262/* Architected CP15 registers.
Christoffer Dall240e99c2013-08-05 18:08:41 -0700263 * CRn denotes the primary register number, but is copied to the CRm in the
264 * user space API for 64-bit register access in line with the terminology used
265 * in the ARM ARM.
266 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
267 * registers preceding 32-bit ones.
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500268 */
269static const struct coproc_reg cp15_regs[] = {
Jonathan Austine8c2d992013-09-26 16:49:28 +0100270 /* MPIDR: we use VMPIDR for guest access. */
271 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
272 NULL, reset_mpidr, c0_MPIDR },
273
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500274 /* CSSELR: swapped by interrupt.S. */
275 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
276 NULL, reset_unknown, c0_CSSELR },
277
Jonathan Austine8c2d992013-09-26 16:49:28 +0100278 /* ACTLR: trapped by HCR.TAC bit. */
279 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
280 access_actlr, reset_actlr, c1_ACTLR },
281
282 /* CPACR: swapped by interrupt.S. */
283 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
284 NULL, reset_val, c1_CPACR, 0x00000000 },
285
Marc Zyngier80346992014-01-14 18:00:55 +0000286 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
287 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
288 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
289 access_vm_reg, reset_unknown, c2_TTBR0 },
290 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
291 access_vm_reg, reset_unknown, c2_TTBR1 },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500292 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000293 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
294 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
295
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500296
297 /* DACR: swapped by interrupt.S. */
298 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000299 access_vm_reg, reset_unknown, c3_DACR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500300
301 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
302 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000303 access_vm_reg, reset_unknown, c5_DFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500304 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000305 access_vm_reg, reset_unknown, c5_IFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500306 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000307 access_vm_reg, reset_unknown, c5_ADFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500308 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000309 access_vm_reg, reset_unknown, c5_AIFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500310
311 /* DFAR/IFAR: swapped by interrupt.S. */
312 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000313 access_vm_reg, reset_unknown, c6_DFAR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500314 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000315 access_vm_reg, reset_unknown, c6_IFAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100316
317 /* PAR swapped by interrupt.S */
Christoffer Dall240e99c2013-08-05 18:08:41 -0700318 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100319
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500320 /*
321 * DC{C,I,CI}SW operations:
322 */
323 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
324 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
325 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
326 /*
Jonathan Austine8c2d992013-09-26 16:49:28 +0100327 * L2CTLR access (guest wants to know #CPUs).
328 */
329 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
330 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
331 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
332
333 /*
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500334 * Dummy performance monitor implementation.
335 */
336 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
337 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
338 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
339 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
340 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
341 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
342 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
343 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
344 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
345 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
346 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
347 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
348 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
349
350 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
351 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000352 access_vm_reg, reset_unknown, c10_PRRR},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500353 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000354 access_vm_reg, reset_unknown, c10_NMRR},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500355
Marc Zyngieraf208142014-01-22 10:20:09 +0000356 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
357 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
358 access_vm_reg, reset_unknown, c10_AMAIR0},
359 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
360 access_vm_reg, reset_unknown, c10_AMAIR1},
361
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500362 /* VBAR: swapped by interrupt.S. */
363 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
364 NULL, reset_val, c12_VBAR, 0x00000000 },
365
366 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
367 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000368 access_vm_reg, reset_val, c13_CID, 0x00000000 },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500369 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
370 NULL, reset_unknown, c13_TID_URW },
371 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
372 NULL, reset_unknown, c13_TID_URO },
373 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
374 NULL, reset_unknown, c13_TID_PRIV },
Marc Zyngierc7e3ba62013-01-23 13:21:59 -0500375
376 /* CNTKCTL: swapped by interrupt.S. */
377 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
378 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
Jonathan Austine8c2d992013-09-26 16:49:28 +0100379
380 /* The Configuration Base Address Register. */
381 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500382};
383
Marc Zyngierb613f592016-01-21 15:34:35 +0000384static int check_reg_table(const struct coproc_reg *table, unsigned int n)
385{
386 unsigned int i;
387
388 for (i = 1; i < n; i++) {
389 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
390 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
391 return 1;
392 }
393 }
394
395 return 0;
396}
397
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500398/* Target specific emulation tables */
399static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
400
401void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
402{
Marc Zyngierb613f592016-01-21 15:34:35 +0000403 BUG_ON(check_reg_table(table->table, table->num));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500404 target_tables[table->target] = table;
405}
406
407/* Get specific register table for this target. */
408static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
409{
410 struct kvm_coproc_target_table *table;
411
412 table = target_tables[target];
413 *num = table->num;
414 return table->table;
415}
416
417static const struct coproc_reg *find_reg(const struct coproc_params *params,
418 const struct coproc_reg table[],
419 unsigned int num)
420{
421 unsigned int i;
422
423 for (i = 0; i < num; i++) {
424 const struct coproc_reg *r = &table[i];
425
426 if (params->is_64bit != r->is_64)
427 continue;
428 if (params->CRn != r->CRn)
429 continue;
430 if (params->CRm != r->CRm)
431 continue;
432 if (params->Op1 != r->Op1)
433 continue;
434 if (params->Op2 != r->Op2)
435 continue;
436
437 return r;
438 }
439 return NULL;
440}
441
442static int emulate_cp15(struct kvm_vcpu *vcpu,
443 const struct coproc_params *params)
444{
445 size_t num;
446 const struct coproc_reg *table, *r;
447
448 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
449 params->CRm, params->Op2, params->is_write);
450
451 table = get_target_table(vcpu->arch.target, &num);
452
453 /* Search target-specific then generic table. */
454 r = find_reg(params, table, num);
455 if (!r)
456 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
457
458 if (likely(r)) {
459 /* If we don't have an accessor, we should never get here! */
460 BUG_ON(!r->access);
461
462 if (likely(r->access(vcpu, params, r))) {
463 /* Skip instruction, since it was emulated */
Marc Zyngier23b415d2012-09-18 12:07:06 +0100464 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500465 return 1;
466 }
467 /* If access function fails, it should complain. */
468 } else {
Marc Zyngierdb730d82012-10-03 11:17:02 +0100469 kvm_err("Unsupported guest CP15 access at: %08lx\n",
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500470 *vcpu_pc(vcpu));
471 print_cp_instr(params);
472 }
473 kvm_inject_undefined(vcpu);
474 return 1;
475}
476
477/**
478 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
479 * @vcpu: The VCPU pointer
480 * @run: The kvm_run struct
481 */
482int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
483{
484 struct coproc_params params;
485
Marc Zyngier46c214d2014-01-21 18:56:26 +0000486 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
Marc Zyngier7393b592012-09-17 19:27:09 +0100487 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
488 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500489 params.is_64bit = true;
490
Marc Zyngier7393b592012-09-17 19:27:09 +0100491 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500492 params.Op2 = 0;
Marc Zyngier7393b592012-09-17 19:27:09 +0100493 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
Marc Zyngier46c214d2014-01-21 18:56:26 +0000494 params.CRm = 0;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500495
496 return emulate_cp15(vcpu, &params);
497}
498
499static void reset_coproc_regs(struct kvm_vcpu *vcpu,
500 const struct coproc_reg *table, size_t num)
501{
502 unsigned long i;
503
504 for (i = 0; i < num; i++)
505 if (table[i].reset)
506 table[i].reset(vcpu, &table[i]);
507}
508
509/**
510 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
511 * @vcpu: The VCPU pointer
512 * @run: The kvm_run struct
513 */
514int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
515{
516 struct coproc_params params;
517
Marc Zyngier7393b592012-09-17 19:27:09 +0100518 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
519 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
520 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500521 params.is_64bit = false;
522
Marc Zyngier7393b592012-09-17 19:27:09 +0100523 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
524 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
525 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500526 params.Rt2 = 0;
527
528 return emulate_cp15(vcpu, &params);
529}
530
Christoffer Dall11382452013-01-20 18:28:10 -0500531/******************************************************************************
532 * Userspace API
533 *****************************************************************************/
534
535static bool index_to_params(u64 id, struct coproc_params *params)
536{
537 switch (id & KVM_REG_SIZE_MASK) {
538 case KVM_REG_SIZE_U32:
539 /* Any unused index bits means it's not valid. */
540 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
541 | KVM_REG_ARM_COPROC_MASK
542 | KVM_REG_ARM_32_CRN_MASK
543 | KVM_REG_ARM_CRM_MASK
544 | KVM_REG_ARM_OPC1_MASK
545 | KVM_REG_ARM_32_OPC2_MASK))
546 return false;
547
548 params->is_64bit = false;
549 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
550 >> KVM_REG_ARM_32_CRN_SHIFT);
551 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
552 >> KVM_REG_ARM_CRM_SHIFT);
553 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
554 >> KVM_REG_ARM_OPC1_SHIFT);
555 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
556 >> KVM_REG_ARM_32_OPC2_SHIFT);
557 return true;
558 case KVM_REG_SIZE_U64:
559 /* Any unused index bits means it's not valid. */
560 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
561 | KVM_REG_ARM_COPROC_MASK
562 | KVM_REG_ARM_CRM_MASK
563 | KVM_REG_ARM_OPC1_MASK))
564 return false;
565 params->is_64bit = true;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700566 /* CRm to CRn: see cp15_to_index for details */
567 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
Christoffer Dall11382452013-01-20 18:28:10 -0500568 >> KVM_REG_ARM_CRM_SHIFT);
569 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
570 >> KVM_REG_ARM_OPC1_SHIFT);
571 params->Op2 = 0;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700572 params->CRm = 0;
Christoffer Dall11382452013-01-20 18:28:10 -0500573 return true;
574 default:
575 return false;
576 }
577}
578
579/* Decode an index value, and find the cp15 coproc_reg entry. */
580static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
581 u64 id)
582{
583 size_t num;
584 const struct coproc_reg *table, *r;
585 struct coproc_params params;
586
587 /* We only do cp15 for now. */
588 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
589 return NULL;
590
591 if (!index_to_params(id, &params))
592 return NULL;
593
594 table = get_target_table(vcpu->arch.target, &num);
595 r = find_reg(&params, table, num);
596 if (!r)
597 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
598
599 /* Not saved in the cp15 array? */
600 if (r && !r->reg)
601 r = NULL;
602
603 return r;
604}
605
606/*
607 * These are the invariant cp15 registers: we let the guest see the host
608 * versions of these, so they're part of the guest state.
609 *
610 * A future CPU may provide a mechanism to present different values to
611 * the guest, or a future kvm may trap them.
612 */
613/* Unfortunately, there's no register-argument for mrc, so generate. */
614#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
615 static void get_##name(struct kvm_vcpu *v, \
616 const struct coproc_reg *r) \
617 { \
618 u32 val; \
619 \
620 asm volatile("mrc p15, " __stringify(op1) \
621 ", %0, c" __stringify(crn) \
622 ", c" __stringify(crm) \
623 ", " __stringify(op2) "\n" : "=r" (val)); \
624 ((struct coproc_reg *)r)->val = val; \
625 }
626
627FUNCTION_FOR32(0, 0, 0, 0, MIDR)
628FUNCTION_FOR32(0, 0, 0, 1, CTR)
629FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
630FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
631FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
632FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
633FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
634FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
635FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
636FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
637FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
638FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
639FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
640FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
641FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
642FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
643FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
644FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
645FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
646FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
647FUNCTION_FOR32(0, 0, 1, 7, AIDR)
648
649/* ->val is filled in by kvm_invariant_coproc_table_init() */
650static struct coproc_reg invariant_cp15[] = {
651 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
652 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
653 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
654 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
655 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
656
Marc Zyngier504bfce2016-01-21 15:37:03 +0000657 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
658 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
659
Christoffer Dall11382452013-01-20 18:28:10 -0500660 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
661 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
662 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
663 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
664 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
665 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
666 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
667 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
668
669 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
670 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
671 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
672 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
673 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
674 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
Christoffer Dall11382452013-01-20 18:28:10 -0500675};
676
Victor Kamensky73891f72014-06-12 09:30:06 -0700677/*
678 * Reads a register value from a userspace address to a kernel
679 * variable. Make sure that register size matches sizeof(*__val).
680 */
Christoffer Dall11382452013-01-20 18:28:10 -0500681static int reg_from_user(void *val, const void __user *uaddr, u64 id)
682{
Christoffer Dall11382452013-01-20 18:28:10 -0500683 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
684 return -EFAULT;
685 return 0;
686}
687
Victor Kamensky73891f72014-06-12 09:30:06 -0700688/*
689 * Writes a register value to a userspace address from a kernel variable.
690 * Make sure that register size matches sizeof(*__val).
691 */
Christoffer Dall11382452013-01-20 18:28:10 -0500692static int reg_to_user(void __user *uaddr, const void *val, u64 id)
693{
Christoffer Dall11382452013-01-20 18:28:10 -0500694 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
695 return -EFAULT;
696 return 0;
697}
698
699static int get_invariant_cp15(u64 id, void __user *uaddr)
700{
701 struct coproc_params params;
702 const struct coproc_reg *r;
Victor Kamensky73891f72014-06-12 09:30:06 -0700703 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -0500704
705 if (!index_to_params(id, &params))
706 return -ENOENT;
707
708 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
709 if (!r)
710 return -ENOENT;
711
Victor Kamensky73891f72014-06-12 09:30:06 -0700712 ret = -ENOENT;
713 if (KVM_REG_SIZE(id) == 4) {
714 u32 val = r->val;
715
716 ret = reg_to_user(uaddr, &val, id);
717 } else if (KVM_REG_SIZE(id) == 8) {
718 ret = reg_to_user(uaddr, &r->val, id);
719 }
720 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -0500721}
722
723static int set_invariant_cp15(u64 id, void __user *uaddr)
724{
725 struct coproc_params params;
726 const struct coproc_reg *r;
727 int err;
Victor Kamensky73891f72014-06-12 09:30:06 -0700728 u64 val;
Christoffer Dall11382452013-01-20 18:28:10 -0500729
730 if (!index_to_params(id, &params))
731 return -ENOENT;
732 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
733 if (!r)
734 return -ENOENT;
735
Victor Kamensky73891f72014-06-12 09:30:06 -0700736 err = -ENOENT;
737 if (KVM_REG_SIZE(id) == 4) {
738 u32 val32;
739
740 err = reg_from_user(&val32, uaddr, id);
741 if (!err)
742 val = val32;
743 } else if (KVM_REG_SIZE(id) == 8) {
744 err = reg_from_user(&val, uaddr, id);
745 }
Christoffer Dall11382452013-01-20 18:28:10 -0500746 if (err)
747 return err;
748
749 /* This is what we mean by invariant: you can't change it. */
750 if (r->val != val)
751 return -EINVAL;
752
753 return 0;
754}
755
Christoffer Dallc27581e2013-01-20 18:28:10 -0500756static bool is_valid_cache(u32 val)
757{
758 u32 level, ctype;
759
760 if (val >= CSSELR_MAX)
Will Deacon18d45762014-08-26 15:13:22 +0100761 return false;
Christoffer Dallc27581e2013-01-20 18:28:10 -0500762
763 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
764 level = (val >> 1);
765 ctype = (cache_levels >> (level * 3)) & 7;
766
767 switch (ctype) {
768 case 0: /* No cache */
769 return false;
770 case 1: /* Instruction cache only */
771 return (val & 1);
772 case 2: /* Data cache only */
773 case 4: /* Unified cache */
774 return !(val & 1);
775 case 3: /* Separate instruction and data caches */
776 return true;
777 default: /* Reserved: we can't know instruction or data. */
778 return false;
779 }
780}
781
782/* Which cache CCSIDR represents depends on CSSELR value. */
783static u32 get_ccsidr(u32 csselr)
784{
785 u32 ccsidr;
786
787 /* Make sure noone else changes CSSELR during this! */
788 local_irq_disable();
789 /* Put value into CSSELR */
790 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
791 isb();
792 /* Read result out of CCSIDR */
793 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
794 local_irq_enable();
795
796 return ccsidr;
797}
798
799static int demux_c15_get(u64 id, void __user *uaddr)
800{
801 u32 val;
802 u32 __user *uval = uaddr;
803
804 /* Fail if we have unknown bits set. */
805 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
806 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
807 return -ENOENT;
808
809 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
810 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
811 if (KVM_REG_SIZE(id) != 4)
812 return -ENOENT;
813 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
814 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
815 if (!is_valid_cache(val))
816 return -ENOENT;
817
818 return put_user(get_ccsidr(val), uval);
819 default:
820 return -ENOENT;
821 }
822}
823
824static int demux_c15_set(u64 id, void __user *uaddr)
825{
826 u32 val, newval;
827 u32 __user *uval = uaddr;
828
829 /* Fail if we have unknown bits set. */
830 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
831 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
832 return -ENOENT;
833
834 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
835 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
836 if (KVM_REG_SIZE(id) != 4)
837 return -ENOENT;
838 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
839 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
840 if (!is_valid_cache(val))
841 return -ENOENT;
842
843 if (get_user(newval, uval))
844 return -EFAULT;
845
846 /* This is also invariant: you can't change it. */
847 if (newval != get_ccsidr(val))
848 return -EINVAL;
849 return 0;
850 default:
851 return -ENOENT;
852 }
853}
854
Rusty Russell4fe21e42013-01-20 18:28:11 -0500855#ifdef CONFIG_VFPv3
856static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
857 KVM_REG_ARM_VFP_FPSCR,
858 KVM_REG_ARM_VFP_FPINST,
859 KVM_REG_ARM_VFP_FPINST2,
860 KVM_REG_ARM_VFP_MVFR0,
861 KVM_REG_ARM_VFP_MVFR1,
862 KVM_REG_ARM_VFP_FPSID };
863
864static unsigned int num_fp_regs(void)
865{
866 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
867 return 32;
868 else
869 return 16;
870}
871
872static unsigned int num_vfp_regs(void)
873{
874 /* Normal FP regs + control regs. */
875 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
876}
877
878static int copy_vfp_regids(u64 __user *uindices)
879{
880 unsigned int i;
881 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
882 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
883
884 for (i = 0; i < num_fp_regs(); i++) {
885 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
886 uindices))
887 return -EFAULT;
888 uindices++;
889 }
890
891 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
892 if (put_user(u32reg | vfp_sysregs[i], uindices))
893 return -EFAULT;
894 uindices++;
895 }
896
897 return num_vfp_regs();
898}
899
900static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
901{
902 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
903 u32 val;
904
905 /* Fail if we have unknown bits set. */
906 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
907 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
908 return -ENOENT;
909
910 if (vfpid < num_fp_regs()) {
911 if (KVM_REG_SIZE(id) != 8)
912 return -ENOENT;
Marc Zyngier0ca55652016-01-03 11:01:49 +0000913 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
Rusty Russell4fe21e42013-01-20 18:28:11 -0500914 id);
915 }
916
917 /* FP control registers are all 32 bit. */
918 if (KVM_REG_SIZE(id) != 4)
919 return -ENOENT;
920
921 switch (vfpid) {
922 case KVM_REG_ARM_VFP_FPEXC:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000923 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500924 case KVM_REG_ARM_VFP_FPSCR:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000925 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500926 case KVM_REG_ARM_VFP_FPINST:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000927 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500928 case KVM_REG_ARM_VFP_FPINST2:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000929 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500930 case KVM_REG_ARM_VFP_MVFR0:
931 val = fmrx(MVFR0);
932 return reg_to_user(uaddr, &val, id);
933 case KVM_REG_ARM_VFP_MVFR1:
934 val = fmrx(MVFR1);
935 return reg_to_user(uaddr, &val, id);
936 case KVM_REG_ARM_VFP_FPSID:
937 val = fmrx(FPSID);
938 return reg_to_user(uaddr, &val, id);
939 default:
940 return -ENOENT;
941 }
942}
943
944static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
945{
946 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
947 u32 val;
948
949 /* Fail if we have unknown bits set. */
950 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
951 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
952 return -ENOENT;
953
954 if (vfpid < num_fp_regs()) {
955 if (KVM_REG_SIZE(id) != 8)
956 return -ENOENT;
Marc Zyngier0ca55652016-01-03 11:01:49 +0000957 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
Rusty Russell4fe21e42013-01-20 18:28:11 -0500958 uaddr, id);
959 }
960
961 /* FP control registers are all 32 bit. */
962 if (KVM_REG_SIZE(id) != 4)
963 return -ENOENT;
964
965 switch (vfpid) {
966 case KVM_REG_ARM_VFP_FPEXC:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000967 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500968 case KVM_REG_ARM_VFP_FPSCR:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000969 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500970 case KVM_REG_ARM_VFP_FPINST:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000971 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500972 case KVM_REG_ARM_VFP_FPINST2:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000973 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500974 /* These are invariant. */
975 case KVM_REG_ARM_VFP_MVFR0:
976 if (reg_from_user(&val, uaddr, id))
977 return -EFAULT;
978 if (val != fmrx(MVFR0))
979 return -EINVAL;
980 return 0;
981 case KVM_REG_ARM_VFP_MVFR1:
982 if (reg_from_user(&val, uaddr, id))
983 return -EFAULT;
984 if (val != fmrx(MVFR1))
985 return -EINVAL;
986 return 0;
987 case KVM_REG_ARM_VFP_FPSID:
988 if (reg_from_user(&val, uaddr, id))
989 return -EFAULT;
990 if (val != fmrx(FPSID))
991 return -EINVAL;
992 return 0;
993 default:
994 return -ENOENT;
995 }
996}
997#else /* !CONFIG_VFPv3 */
998static unsigned int num_vfp_regs(void)
999{
1000 return 0;
1001}
1002
1003static int copy_vfp_regids(u64 __user *uindices)
1004{
1005 return 0;
1006}
1007
1008static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1009{
1010 return -ENOENT;
1011}
1012
1013static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1014{
1015 return -ENOENT;
1016}
1017#endif /* !CONFIG_VFPv3 */
1018
Christoffer Dall11382452013-01-20 18:28:10 -05001019int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1020{
1021 const struct coproc_reg *r;
1022 void __user *uaddr = (void __user *)(long)reg->addr;
Victor Kamensky73891f72014-06-12 09:30:06 -07001023 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001024
Christoffer Dallc27581e2013-01-20 18:28:10 -05001025 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1026 return demux_c15_get(reg->id, uaddr);
1027
Rusty Russell4fe21e42013-01-20 18:28:11 -05001028 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1029 return vfp_get_reg(vcpu, reg->id, uaddr);
1030
Christoffer Dall11382452013-01-20 18:28:10 -05001031 r = index_to_coproc_reg(vcpu, reg->id);
1032 if (!r)
1033 return get_invariant_cp15(reg->id, uaddr);
1034
Victor Kamensky73891f72014-06-12 09:30:06 -07001035 ret = -ENOENT;
1036 if (KVM_REG_SIZE(reg->id) == 8) {
1037 u64 val;
1038
1039 val = vcpu_cp15_reg64_get(vcpu, r);
1040 ret = reg_to_user(uaddr, &val, reg->id);
1041 } else if (KVM_REG_SIZE(reg->id) == 4) {
Marc Zyngierfb32a522016-01-03 11:26:01 +00001042 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
Victor Kamensky73891f72014-06-12 09:30:06 -07001043 }
1044
1045 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001046}
1047
1048int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1049{
1050 const struct coproc_reg *r;
1051 void __user *uaddr = (void __user *)(long)reg->addr;
Victor Kamensky73891f72014-06-12 09:30:06 -07001052 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001053
Christoffer Dallc27581e2013-01-20 18:28:10 -05001054 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1055 return demux_c15_set(reg->id, uaddr);
1056
Rusty Russell4fe21e42013-01-20 18:28:11 -05001057 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1058 return vfp_set_reg(vcpu, reg->id, uaddr);
1059
Christoffer Dall11382452013-01-20 18:28:10 -05001060 r = index_to_coproc_reg(vcpu, reg->id);
1061 if (!r)
1062 return set_invariant_cp15(reg->id, uaddr);
1063
Victor Kamensky73891f72014-06-12 09:30:06 -07001064 ret = -ENOENT;
1065 if (KVM_REG_SIZE(reg->id) == 8) {
1066 u64 val;
1067
1068 ret = reg_from_user(&val, uaddr, reg->id);
1069 if (!ret)
1070 vcpu_cp15_reg64_set(vcpu, r, val);
1071 } else if (KVM_REG_SIZE(reg->id) == 4) {
Marc Zyngierfb32a522016-01-03 11:26:01 +00001072 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
Victor Kamensky73891f72014-06-12 09:30:06 -07001073 }
1074
1075 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001076}
1077
Christoffer Dallc27581e2013-01-20 18:28:10 -05001078static unsigned int num_demux_regs(void)
1079{
1080 unsigned int i, count = 0;
1081
1082 for (i = 0; i < CSSELR_MAX; i++)
1083 if (is_valid_cache(i))
1084 count++;
1085
1086 return count;
1087}
1088
1089static int write_demux_regids(u64 __user *uindices)
1090{
1091 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1092 unsigned int i;
1093
1094 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1095 for (i = 0; i < CSSELR_MAX; i++) {
1096 if (!is_valid_cache(i))
1097 continue;
1098 if (put_user(val | i, uindices))
1099 return -EFAULT;
1100 uindices++;
1101 }
1102 return 0;
1103}
1104
Christoffer Dall11382452013-01-20 18:28:10 -05001105static u64 cp15_to_index(const struct coproc_reg *reg)
1106{
1107 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1108 if (reg->is_64) {
1109 val |= KVM_REG_SIZE_U64;
1110 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
Christoffer Dall240e99c2013-08-05 18:08:41 -07001111 /*
1112 * CRn always denotes the primary coproc. reg. nr. for the
1113 * in-kernel representation, but the user space API uses the
1114 * CRm for the encoding, because it is modelled after the
1115 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1116 * B3-1445
1117 */
1118 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
Christoffer Dall11382452013-01-20 18:28:10 -05001119 } else {
1120 val |= KVM_REG_SIZE_U32;
1121 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1122 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1123 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1124 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1125 }
1126 return val;
1127}
1128
1129static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1130{
1131 if (!*uind)
1132 return true;
1133
1134 if (put_user(cp15_to_index(reg), *uind))
1135 return false;
1136
1137 (*uind)++;
1138 return true;
1139}
1140
1141/* Assumed ordered tables, see kvm_coproc_table_init. */
1142static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1143{
1144 const struct coproc_reg *i1, *i2, *end1, *end2;
1145 unsigned int total = 0;
1146 size_t num;
1147
1148 /* We check for duplicates here, to allow arch-specific overrides. */
1149 i1 = get_target_table(vcpu->arch.target, &num);
1150 end1 = i1 + num;
1151 i2 = cp15_regs;
1152 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1153
1154 BUG_ON(i1 == end1 || i2 == end2);
1155
1156 /* Walk carefully, as both tables may refer to the same register. */
1157 while (i1 || i2) {
1158 int cmp = cmp_reg(i1, i2);
1159 /* target-specific overrides generic entry. */
1160 if (cmp <= 0) {
1161 /* Ignore registers we trap but don't save. */
1162 if (i1->reg) {
1163 if (!copy_reg_to_user(i1, &uind))
1164 return -EFAULT;
1165 total++;
1166 }
1167 } else {
1168 /* Ignore registers we trap but don't save. */
1169 if (i2->reg) {
1170 if (!copy_reg_to_user(i2, &uind))
1171 return -EFAULT;
1172 total++;
1173 }
1174 }
1175
1176 if (cmp <= 0 && ++i1 == end1)
1177 i1 = NULL;
1178 if (cmp >= 0 && ++i2 == end2)
1179 i2 = NULL;
1180 }
1181 return total;
1182}
1183
1184unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1185{
1186 return ARRAY_SIZE(invariant_cp15)
Christoffer Dallc27581e2013-01-20 18:28:10 -05001187 + num_demux_regs()
Rusty Russell4fe21e42013-01-20 18:28:11 -05001188 + num_vfp_regs()
Christoffer Dall11382452013-01-20 18:28:10 -05001189 + walk_cp15(vcpu, (u64 __user *)NULL);
1190}
1191
1192int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1193{
1194 unsigned int i;
1195 int err;
1196
1197 /* Then give them all the invariant registers' indices. */
1198 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1199 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1200 return -EFAULT;
1201 uindices++;
1202 }
1203
1204 err = walk_cp15(vcpu, uindices);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001205 if (err < 0)
1206 return err;
1207 uindices += err;
1208
Rusty Russell4fe21e42013-01-20 18:28:11 -05001209 err = copy_vfp_regids(uindices);
1210 if (err < 0)
1211 return err;
1212 uindices += err;
1213
Christoffer Dallc27581e2013-01-20 18:28:10 -05001214 return write_demux_regids(uindices);
Christoffer Dall11382452013-01-20 18:28:10 -05001215}
1216
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001217void kvm_coproc_table_init(void)
1218{
1219 unsigned int i;
1220
1221 /* Make sure tables are unique and in order. */
Marc Zyngierb613f592016-01-21 15:34:35 +00001222 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1223 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
Christoffer Dall11382452013-01-20 18:28:10 -05001224
1225 /* We abuse the reset function to overwrite the table itself. */
1226 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1227 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001228
1229 /*
1230 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1231 *
1232 * If software reads the Cache Type fields from Ctype1
1233 * upwards, once it has seen a value of 0b000, no caches
1234 * exist at further-out levels of the hierarchy. So, for
1235 * example, if Ctype3 is the first Cache Type field with a
1236 * value of 0b000, the values of Ctype4 to Ctype7 must be
1237 * ignored.
1238 */
1239 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1240 for (i = 0; i < 7; i++)
1241 if (((cache_levels >> (i*3)) & 7) == 0)
1242 break;
1243 /* Clear all higher bits. */
1244 cache_levels &= (1 << (i*3))-1;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001245}
1246
1247/**
1248 * kvm_reset_coprocs - sets cp15 registers to reset value
1249 * @vcpu: The VCPU pointer
1250 *
1251 * This function finds the right table above and sets the registers on the
1252 * virtual CPU struct to their architecturally defined reset values.
1253 */
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001254void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1255{
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001256 size_t num;
1257 const struct coproc_reg *table;
1258
1259 /* Catch someone adding a register without putting in reset entry. */
Marc Zyngierfb32a522016-01-03 11:26:01 +00001260 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001261
1262 /* Generic chip reset first (so target could override). */
1263 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1264
1265 table = get_target_table(vcpu->arch.target, &num);
1266 reset_coproc_regs(vcpu, table, num);
1267
1268 for (num = 1; num < NR_CP15_REGS; num++)
Marc Zyngierfb32a522016-01-03 11:26:01 +00001269 if (vcpu_cp15(vcpu, num) == 0x42424242)
1270 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001271}