Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of version 2 of the GNU General Public License as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it would be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | * |
| 12 | * Further, this software is distributed without any warranty that it is |
| 13 | * free of the rightful claim of any third person regarding infringement |
| 14 | * or the like. Any license provided herein, whether implied or |
| 15 | * otherwise, applies only to this software file. Patent licenses, if |
| 16 | * any, provided herein do not apply to combinations of this program with |
| 17 | * other software, or any other product whatsoever. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along |
| 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 22 | * |
| 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| 24 | * Mountain View, CA 94043, or: |
| 25 | * |
| 26 | * http://www.sgi.com |
| 27 | * |
| 28 | * For further information regarding this notice, see: |
| 29 | * |
| 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| 31 | */ |
| 32 | |
| 33 | #include "xfs.h" |
| 34 | #include "xfs_macros.h" |
| 35 | #include "xfs_types.h" |
| 36 | #include "xfs_inum.h" |
| 37 | #include "xfs_log.h" |
| 38 | #include "xfs_trans.h" |
| 39 | #include "xfs_trans_priv.h" |
| 40 | #include "xfs_sb.h" |
| 41 | #include "xfs_ag.h" |
| 42 | #include "xfs_dir.h" |
| 43 | #include "xfs_dir2.h" |
| 44 | #include "xfs_dmapi.h" |
| 45 | #include "xfs_mount.h" |
| 46 | #include "xfs_alloc_btree.h" |
| 47 | #include "xfs_bmap_btree.h" |
| 48 | #include "xfs_ialloc_btree.h" |
| 49 | #include "xfs_btree.h" |
| 50 | #include "xfs_imap.h" |
| 51 | #include "xfs_alloc.h" |
| 52 | #include "xfs_ialloc.h" |
| 53 | #include "xfs_attr_sf.h" |
| 54 | #include "xfs_dir_sf.h" |
| 55 | #include "xfs_dir2_sf.h" |
| 56 | #include "xfs_dinode.h" |
| 57 | #include "xfs_inode_item.h" |
| 58 | #include "xfs_inode.h" |
| 59 | #include "xfs_bmap.h" |
| 60 | #include "xfs_buf_item.h" |
| 61 | #include "xfs_rw.h" |
| 62 | #include "xfs_error.h" |
| 63 | #include "xfs_bit.h" |
| 64 | #include "xfs_utils.h" |
| 65 | #include "xfs_dir2_trace.h" |
| 66 | #include "xfs_quota.h" |
| 67 | #include "xfs_mac.h" |
| 68 | #include "xfs_acl.h" |
| 69 | |
| 70 | |
| 71 | kmem_zone_t *xfs_ifork_zone; |
| 72 | kmem_zone_t *xfs_inode_zone; |
| 73 | kmem_zone_t *xfs_chashlist_zone; |
| 74 | |
| 75 | /* |
| 76 | * Used in xfs_itruncate(). This is the maximum number of extents |
| 77 | * freed from a file in a single transaction. |
| 78 | */ |
| 79 | #define XFS_ITRUNC_MAX_EXTENTS 2 |
| 80 | |
| 81 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); |
| 82 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); |
| 83 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); |
| 84 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); |
| 85 | |
| 86 | |
| 87 | #ifdef DEBUG |
| 88 | /* |
| 89 | * Make sure that the extents in the given memory buffer |
| 90 | * are valid. |
| 91 | */ |
| 92 | STATIC void |
| 93 | xfs_validate_extents( |
| 94 | xfs_bmbt_rec_t *ep, |
| 95 | int nrecs, |
| 96 | int disk, |
| 97 | xfs_exntfmt_t fmt) |
| 98 | { |
| 99 | xfs_bmbt_irec_t irec; |
| 100 | xfs_bmbt_rec_t rec; |
| 101 | int i; |
| 102 | |
| 103 | for (i = 0; i < nrecs; i++) { |
| 104 | rec.l0 = get_unaligned((__uint64_t*)&ep->l0); |
| 105 | rec.l1 = get_unaligned((__uint64_t*)&ep->l1); |
| 106 | if (disk) |
| 107 | xfs_bmbt_disk_get_all(&rec, &irec); |
| 108 | else |
| 109 | xfs_bmbt_get_all(&rec, &irec); |
| 110 | if (fmt == XFS_EXTFMT_NOSTATE) |
| 111 | ASSERT(irec.br_state == XFS_EXT_NORM); |
| 112 | ep++; |
| 113 | } |
| 114 | } |
| 115 | #else /* DEBUG */ |
| 116 | #define xfs_validate_extents(ep, nrecs, disk, fmt) |
| 117 | #endif /* DEBUG */ |
| 118 | |
| 119 | /* |
| 120 | * Check that none of the inode's in the buffer have a next |
| 121 | * unlinked field of 0. |
| 122 | */ |
| 123 | #if defined(DEBUG) |
| 124 | void |
| 125 | xfs_inobp_check( |
| 126 | xfs_mount_t *mp, |
| 127 | xfs_buf_t *bp) |
| 128 | { |
| 129 | int i; |
| 130 | int j; |
| 131 | xfs_dinode_t *dip; |
| 132 | |
| 133 | j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; |
| 134 | |
| 135 | for (i = 0; i < j; i++) { |
| 136 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, |
| 137 | i * mp->m_sb.sb_inodesize); |
| 138 | if (!dip->di_next_unlinked) { |
| 139 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 140 | "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", |
| 141 | bp); |
| 142 | ASSERT(dip->di_next_unlinked); |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | #endif |
| 147 | |
| 148 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 149 | * This routine is called to map an inode number within a file |
| 150 | * system to the buffer containing the on-disk version of the |
| 151 | * inode. It returns a pointer to the buffer containing the |
| 152 | * on-disk inode in the bpp parameter, and in the dip parameter |
| 153 | * it returns a pointer to the on-disk inode within that buffer. |
| 154 | * |
| 155 | * If a non-zero error is returned, then the contents of bpp and |
| 156 | * dipp are undefined. |
| 157 | * |
| 158 | * Use xfs_imap() to determine the size and location of the |
| 159 | * buffer to read from disk. |
| 160 | */ |
Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame^] | 161 | STATIC int |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 | xfs_inotobp( |
| 163 | xfs_mount_t *mp, |
| 164 | xfs_trans_t *tp, |
| 165 | xfs_ino_t ino, |
| 166 | xfs_dinode_t **dipp, |
| 167 | xfs_buf_t **bpp, |
| 168 | int *offset) |
| 169 | { |
| 170 | int di_ok; |
| 171 | xfs_imap_t imap; |
| 172 | xfs_buf_t *bp; |
| 173 | int error; |
| 174 | xfs_dinode_t *dip; |
| 175 | |
| 176 | /* |
| 177 | * Call the space managment code to find the location of the |
| 178 | * inode on disk. |
| 179 | */ |
| 180 | imap.im_blkno = 0; |
| 181 | error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); |
| 182 | if (error != 0) { |
| 183 | cmn_err(CE_WARN, |
| 184 | "xfs_inotobp: xfs_imap() returned an " |
| 185 | "error %d on %s. Returning error.", error, mp->m_fsname); |
| 186 | return error; |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * If the inode number maps to a block outside the bounds of the |
| 191 | * file system then return NULL rather than calling read_buf |
| 192 | * and panicing when we get an error from the driver. |
| 193 | */ |
| 194 | if ((imap.im_blkno + imap.im_len) > |
| 195 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { |
| 196 | cmn_err(CE_WARN, |
| 197 | "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " |
| 198 | "of the file system %s. Returning EINVAL.", |
| 199 | imap.im_blkno, imap.im_len,mp->m_fsname); |
| 200 | return XFS_ERROR(EINVAL); |
| 201 | } |
| 202 | |
| 203 | /* |
| 204 | * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will |
| 205 | * default to just a read_buf() call. |
| 206 | */ |
| 207 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, |
| 208 | (int)imap.im_len, XFS_BUF_LOCK, &bp); |
| 209 | |
| 210 | if (error) { |
| 211 | cmn_err(CE_WARN, |
| 212 | "xfs_inotobp: xfs_trans_read_buf() returned an " |
| 213 | "error %d on %s. Returning error.", error, mp->m_fsname); |
| 214 | return error; |
| 215 | } |
| 216 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); |
| 217 | di_ok = |
| 218 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && |
| 219 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); |
| 220 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, |
| 221 | XFS_RANDOM_ITOBP_INOTOBP))) { |
| 222 | XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); |
| 223 | xfs_trans_brelse(tp, bp); |
| 224 | cmn_err(CE_WARN, |
| 225 | "xfs_inotobp: XFS_TEST_ERROR() returned an " |
| 226 | "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); |
| 227 | return XFS_ERROR(EFSCORRUPTED); |
| 228 | } |
| 229 | |
| 230 | xfs_inobp_check(mp, bp); |
| 231 | |
| 232 | /* |
| 233 | * Set *dipp to point to the on-disk inode in the buffer. |
| 234 | */ |
| 235 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
| 236 | *bpp = bp; |
| 237 | *offset = imap.im_boffset; |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | |
| 242 | /* |
| 243 | * This routine is called to map an inode to the buffer containing |
| 244 | * the on-disk version of the inode. It returns a pointer to the |
| 245 | * buffer containing the on-disk inode in the bpp parameter, and in |
| 246 | * the dip parameter it returns a pointer to the on-disk inode within |
| 247 | * that buffer. |
| 248 | * |
| 249 | * If a non-zero error is returned, then the contents of bpp and |
| 250 | * dipp are undefined. |
| 251 | * |
| 252 | * If the inode is new and has not yet been initialized, use xfs_imap() |
| 253 | * to determine the size and location of the buffer to read from disk. |
| 254 | * If the inode has already been mapped to its buffer and read in once, |
| 255 | * then use the mapping information stored in the inode rather than |
| 256 | * calling xfs_imap(). This allows us to avoid the overhead of looking |
| 257 | * at the inode btree for small block file systems (see xfs_dilocate()). |
| 258 | * We can tell whether the inode has been mapped in before by comparing |
| 259 | * its disk block address to 0. Only uninitialized inodes will have |
| 260 | * 0 for the disk block address. |
| 261 | */ |
| 262 | int |
| 263 | xfs_itobp( |
| 264 | xfs_mount_t *mp, |
| 265 | xfs_trans_t *tp, |
| 266 | xfs_inode_t *ip, |
| 267 | xfs_dinode_t **dipp, |
| 268 | xfs_buf_t **bpp, |
| 269 | xfs_daddr_t bno) |
| 270 | { |
| 271 | xfs_buf_t *bp; |
| 272 | int error; |
| 273 | xfs_imap_t imap; |
| 274 | #ifdef __KERNEL__ |
| 275 | int i; |
| 276 | int ni; |
| 277 | #endif |
| 278 | |
| 279 | if (ip->i_blkno == (xfs_daddr_t)0) { |
| 280 | /* |
| 281 | * Call the space management code to find the location of the |
| 282 | * inode on disk. |
| 283 | */ |
| 284 | imap.im_blkno = bno; |
| 285 | error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); |
| 286 | if (error != 0) { |
| 287 | return error; |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * If the inode number maps to a block outside the bounds |
| 292 | * of the file system then return NULL rather than calling |
| 293 | * read_buf and panicing when we get an error from the |
| 294 | * driver. |
| 295 | */ |
| 296 | if ((imap.im_blkno + imap.im_len) > |
| 297 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { |
| 298 | #ifdef DEBUG |
| 299 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " |
| 300 | "(imap.im_blkno (0x%llx) " |
| 301 | "+ imap.im_len (0x%llx)) > " |
| 302 | " XFS_FSB_TO_BB(mp, " |
| 303 | "mp->m_sb.sb_dblocks) (0x%llx)", |
| 304 | (unsigned long long) imap.im_blkno, |
| 305 | (unsigned long long) imap.im_len, |
| 306 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); |
| 307 | #endif /* DEBUG */ |
| 308 | return XFS_ERROR(EINVAL); |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Fill in the fields in the inode that will be used to |
| 313 | * map the inode to its buffer from now on. |
| 314 | */ |
| 315 | ip->i_blkno = imap.im_blkno; |
| 316 | ip->i_len = imap.im_len; |
| 317 | ip->i_boffset = imap.im_boffset; |
| 318 | } else { |
| 319 | /* |
| 320 | * We've already mapped the inode once, so just use the |
| 321 | * mapping that we saved the first time. |
| 322 | */ |
| 323 | imap.im_blkno = ip->i_blkno; |
| 324 | imap.im_len = ip->i_len; |
| 325 | imap.im_boffset = ip->i_boffset; |
| 326 | } |
| 327 | ASSERT(bno == 0 || bno == imap.im_blkno); |
| 328 | |
| 329 | /* |
| 330 | * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will |
| 331 | * default to just a read_buf() call. |
| 332 | */ |
| 333 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, |
| 334 | (int)imap.im_len, XFS_BUF_LOCK, &bp); |
| 335 | |
| 336 | if (error) { |
| 337 | #ifdef DEBUG |
| 338 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " |
| 339 | "xfs_trans_read_buf() returned error %d, " |
| 340 | "imap.im_blkno 0x%llx, imap.im_len 0x%llx", |
| 341 | error, (unsigned long long) imap.im_blkno, |
| 342 | (unsigned long long) imap.im_len); |
| 343 | #endif /* DEBUG */ |
| 344 | return error; |
| 345 | } |
| 346 | #ifdef __KERNEL__ |
| 347 | /* |
| 348 | * Validate the magic number and version of every inode in the buffer |
| 349 | * (if DEBUG kernel) or the first inode in the buffer, otherwise. |
| 350 | */ |
| 351 | #ifdef DEBUG |
| 352 | ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; |
| 353 | #else |
| 354 | ni = 1; |
| 355 | #endif |
| 356 | for (i = 0; i < ni; i++) { |
| 357 | int di_ok; |
| 358 | xfs_dinode_t *dip; |
| 359 | |
| 360 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, |
| 361 | (i << mp->m_sb.sb_inodelog)); |
| 362 | di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && |
| 363 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); |
| 364 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, |
| 365 | XFS_RANDOM_ITOBP_INOTOBP))) { |
| 366 | #ifdef DEBUG |
| 367 | prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", |
| 368 | mp->m_ddev_targp, |
| 369 | (unsigned long long)imap.im_blkno, i, |
| 370 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); |
| 371 | #endif |
| 372 | XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, |
| 373 | mp, dip); |
| 374 | xfs_trans_brelse(tp, bp); |
| 375 | return XFS_ERROR(EFSCORRUPTED); |
| 376 | } |
| 377 | } |
| 378 | #endif /* __KERNEL__ */ |
| 379 | |
| 380 | xfs_inobp_check(mp, bp); |
| 381 | |
| 382 | /* |
| 383 | * Mark the buffer as an inode buffer now that it looks good |
| 384 | */ |
| 385 | XFS_BUF_SET_VTYPE(bp, B_FS_INO); |
| 386 | |
| 387 | /* |
| 388 | * Set *dipp to point to the on-disk inode in the buffer. |
| 389 | */ |
| 390 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
| 391 | *bpp = bp; |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Move inode type and inode format specific information from the |
| 397 | * on-disk inode to the in-core inode. For fifos, devs, and sockets |
| 398 | * this means set if_rdev to the proper value. For files, directories, |
| 399 | * and symlinks this means to bring in the in-line data or extent |
| 400 | * pointers. For a file in B-tree format, only the root is immediately |
| 401 | * brought in-core. The rest will be in-lined in if_extents when it |
| 402 | * is first referenced (see xfs_iread_extents()). |
| 403 | */ |
| 404 | STATIC int |
| 405 | xfs_iformat( |
| 406 | xfs_inode_t *ip, |
| 407 | xfs_dinode_t *dip) |
| 408 | { |
| 409 | xfs_attr_shortform_t *atp; |
| 410 | int size; |
| 411 | int error; |
| 412 | xfs_fsize_t di_size; |
| 413 | ip->i_df.if_ext_max = |
| 414 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| 415 | error = 0; |
| 416 | |
| 417 | if (unlikely( |
| 418 | INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + |
| 419 | INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > |
| 420 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { |
| 421 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 422 | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." |
| 423 | " Unmount and run xfs_repair.", |
| 424 | (unsigned long long)ip->i_ino, |
| 425 | (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) |
| 426 | + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), |
| 427 | (unsigned long long) |
| 428 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); |
| 429 | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, |
| 430 | ip->i_mount, dip); |
| 431 | return XFS_ERROR(EFSCORRUPTED); |
| 432 | } |
| 433 | |
| 434 | if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { |
| 435 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 436 | "corrupt dinode %Lu, forkoff = 0x%x." |
| 437 | " Unmount and run xfs_repair.", |
| 438 | (unsigned long long)ip->i_ino, |
| 439 | (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); |
| 440 | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, |
| 441 | ip->i_mount, dip); |
| 442 | return XFS_ERROR(EFSCORRUPTED); |
| 443 | } |
| 444 | |
| 445 | switch (ip->i_d.di_mode & S_IFMT) { |
| 446 | case S_IFIFO: |
| 447 | case S_IFCHR: |
| 448 | case S_IFBLK: |
| 449 | case S_IFSOCK: |
| 450 | if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { |
| 451 | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, |
| 452 | ip->i_mount, dip); |
| 453 | return XFS_ERROR(EFSCORRUPTED); |
| 454 | } |
| 455 | ip->i_d.di_size = 0; |
| 456 | ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); |
| 457 | break; |
| 458 | |
| 459 | case S_IFREG: |
| 460 | case S_IFLNK: |
| 461 | case S_IFDIR: |
| 462 | switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { |
| 463 | case XFS_DINODE_FMT_LOCAL: |
| 464 | /* |
| 465 | * no local regular files yet |
| 466 | */ |
| 467 | if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { |
| 468 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 469 | "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", |
| 470 | (unsigned long long) ip->i_ino); |
| 471 | XFS_CORRUPTION_ERROR("xfs_iformat(4)", |
| 472 | XFS_ERRLEVEL_LOW, |
| 473 | ip->i_mount, dip); |
| 474 | return XFS_ERROR(EFSCORRUPTED); |
| 475 | } |
| 476 | |
| 477 | di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); |
| 478 | if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { |
| 479 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 480 | "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", |
| 481 | (unsigned long long) ip->i_ino, |
| 482 | (long long) di_size); |
| 483 | XFS_CORRUPTION_ERROR("xfs_iformat(5)", |
| 484 | XFS_ERRLEVEL_LOW, |
| 485 | ip->i_mount, dip); |
| 486 | return XFS_ERROR(EFSCORRUPTED); |
| 487 | } |
| 488 | |
| 489 | size = (int)di_size; |
| 490 | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); |
| 491 | break; |
| 492 | case XFS_DINODE_FMT_EXTENTS: |
| 493 | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); |
| 494 | break; |
| 495 | case XFS_DINODE_FMT_BTREE: |
| 496 | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); |
| 497 | break; |
| 498 | default: |
| 499 | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, |
| 500 | ip->i_mount); |
| 501 | return XFS_ERROR(EFSCORRUPTED); |
| 502 | } |
| 503 | break; |
| 504 | |
| 505 | default: |
| 506 | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); |
| 507 | return XFS_ERROR(EFSCORRUPTED); |
| 508 | } |
| 509 | if (error) { |
| 510 | return error; |
| 511 | } |
| 512 | if (!XFS_DFORK_Q(dip)) |
| 513 | return 0; |
| 514 | ASSERT(ip->i_afp == NULL); |
| 515 | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); |
| 516 | ip->i_afp->if_ext_max = |
| 517 | XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| 518 | switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { |
| 519 | case XFS_DINODE_FMT_LOCAL: |
| 520 | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); |
| 521 | size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); |
| 522 | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); |
| 523 | break; |
| 524 | case XFS_DINODE_FMT_EXTENTS: |
| 525 | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); |
| 526 | break; |
| 527 | case XFS_DINODE_FMT_BTREE: |
| 528 | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); |
| 529 | break; |
| 530 | default: |
| 531 | error = XFS_ERROR(EFSCORRUPTED); |
| 532 | break; |
| 533 | } |
| 534 | if (error) { |
| 535 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); |
| 536 | ip->i_afp = NULL; |
| 537 | xfs_idestroy_fork(ip, XFS_DATA_FORK); |
| 538 | } |
| 539 | return error; |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * The file is in-lined in the on-disk inode. |
| 544 | * If it fits into if_inline_data, then copy |
| 545 | * it there, otherwise allocate a buffer for it |
| 546 | * and copy the data there. Either way, set |
| 547 | * if_data to point at the data. |
| 548 | * If we allocate a buffer for the data, make |
| 549 | * sure that its size is a multiple of 4 and |
| 550 | * record the real size in i_real_bytes. |
| 551 | */ |
| 552 | STATIC int |
| 553 | xfs_iformat_local( |
| 554 | xfs_inode_t *ip, |
| 555 | xfs_dinode_t *dip, |
| 556 | int whichfork, |
| 557 | int size) |
| 558 | { |
| 559 | xfs_ifork_t *ifp; |
| 560 | int real_size; |
| 561 | |
| 562 | /* |
| 563 | * If the size is unreasonable, then something |
| 564 | * is wrong and we just bail out rather than crash in |
| 565 | * kmem_alloc() or memcpy() below. |
| 566 | */ |
| 567 | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { |
| 568 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 569 | "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", |
| 570 | (unsigned long long) ip->i_ino, size, |
| 571 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); |
| 572 | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, |
| 573 | ip->i_mount, dip); |
| 574 | return XFS_ERROR(EFSCORRUPTED); |
| 575 | } |
| 576 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 577 | real_size = 0; |
| 578 | if (size == 0) |
| 579 | ifp->if_u1.if_data = NULL; |
| 580 | else if (size <= sizeof(ifp->if_u2.if_inline_data)) |
| 581 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| 582 | else { |
| 583 | real_size = roundup(size, 4); |
| 584 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| 585 | } |
| 586 | ifp->if_bytes = size; |
| 587 | ifp->if_real_bytes = real_size; |
| 588 | if (size) |
| 589 | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); |
| 590 | ifp->if_flags &= ~XFS_IFEXTENTS; |
| 591 | ifp->if_flags |= XFS_IFINLINE; |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * The file consists of a set of extents all |
| 597 | * of which fit into the on-disk inode. |
| 598 | * If there are few enough extents to fit into |
| 599 | * the if_inline_ext, then copy them there. |
| 600 | * Otherwise allocate a buffer for them and copy |
| 601 | * them into it. Either way, set if_extents |
| 602 | * to point at the extents. |
| 603 | */ |
| 604 | STATIC int |
| 605 | xfs_iformat_extents( |
| 606 | xfs_inode_t *ip, |
| 607 | xfs_dinode_t *dip, |
| 608 | int whichfork) |
| 609 | { |
| 610 | xfs_bmbt_rec_t *ep, *dp; |
| 611 | xfs_ifork_t *ifp; |
| 612 | int nex; |
| 613 | int real_size; |
| 614 | int size; |
| 615 | int i; |
| 616 | |
| 617 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 618 | nex = XFS_DFORK_NEXTENTS(dip, whichfork); |
| 619 | size = nex * (uint)sizeof(xfs_bmbt_rec_t); |
| 620 | |
| 621 | /* |
| 622 | * If the number of extents is unreasonable, then something |
| 623 | * is wrong and we just bail out rather than crash in |
| 624 | * kmem_alloc() or memcpy() below. |
| 625 | */ |
| 626 | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { |
| 627 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 628 | "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", |
| 629 | (unsigned long long) ip->i_ino, nex); |
| 630 | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, |
| 631 | ip->i_mount, dip); |
| 632 | return XFS_ERROR(EFSCORRUPTED); |
| 633 | } |
| 634 | |
| 635 | real_size = 0; |
| 636 | if (nex == 0) |
| 637 | ifp->if_u1.if_extents = NULL; |
| 638 | else if (nex <= XFS_INLINE_EXTS) |
| 639 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
| 640 | else { |
| 641 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); |
| 642 | ASSERT(ifp->if_u1.if_extents != NULL); |
| 643 | real_size = size; |
| 644 | } |
| 645 | ifp->if_bytes = size; |
| 646 | ifp->if_real_bytes = real_size; |
| 647 | if (size) { |
| 648 | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); |
| 649 | xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); |
| 650 | ep = ifp->if_u1.if_extents; |
| 651 | for (i = 0; i < nex; i++, ep++, dp++) { |
| 652 | ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), |
| 653 | ARCH_CONVERT); |
| 654 | ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), |
| 655 | ARCH_CONVERT); |
| 656 | } |
| 657 | xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, |
| 658 | whichfork); |
| 659 | if (whichfork != XFS_DATA_FORK || |
| 660 | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) |
| 661 | if (unlikely(xfs_check_nostate_extents( |
| 662 | ifp->if_u1.if_extents, nex))) { |
| 663 | XFS_ERROR_REPORT("xfs_iformat_extents(2)", |
| 664 | XFS_ERRLEVEL_LOW, |
| 665 | ip->i_mount); |
| 666 | return XFS_ERROR(EFSCORRUPTED); |
| 667 | } |
| 668 | } |
| 669 | ifp->if_flags |= XFS_IFEXTENTS; |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * The file has too many extents to fit into |
| 675 | * the inode, so they are in B-tree format. |
| 676 | * Allocate a buffer for the root of the B-tree |
| 677 | * and copy the root into it. The i_extents |
| 678 | * field will remain NULL until all of the |
| 679 | * extents are read in (when they are needed). |
| 680 | */ |
| 681 | STATIC int |
| 682 | xfs_iformat_btree( |
| 683 | xfs_inode_t *ip, |
| 684 | xfs_dinode_t *dip, |
| 685 | int whichfork) |
| 686 | { |
| 687 | xfs_bmdr_block_t *dfp; |
| 688 | xfs_ifork_t *ifp; |
| 689 | /* REFERENCED */ |
| 690 | int nrecs; |
| 691 | int size; |
| 692 | |
| 693 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 694 | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); |
| 695 | size = XFS_BMAP_BROOT_SPACE(dfp); |
| 696 | nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); |
| 697 | |
| 698 | /* |
| 699 | * blow out if -- fork has less extents than can fit in |
| 700 | * fork (fork shouldn't be a btree format), root btree |
| 701 | * block has more records than can fit into the fork, |
| 702 | * or the number of extents is greater than the number of |
| 703 | * blocks. |
| 704 | */ |
| 705 | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max |
| 706 | || XFS_BMDR_SPACE_CALC(nrecs) > |
| 707 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) |
| 708 | || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { |
| 709 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, |
| 710 | "corrupt inode %Lu (btree). Unmount and run xfs_repair.", |
| 711 | (unsigned long long) ip->i_ino); |
| 712 | XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, |
| 713 | ip->i_mount); |
| 714 | return XFS_ERROR(EFSCORRUPTED); |
| 715 | } |
| 716 | |
| 717 | ifp->if_broot_bytes = size; |
| 718 | ifp->if_broot = kmem_alloc(size, KM_SLEEP); |
| 719 | ASSERT(ifp->if_broot != NULL); |
| 720 | /* |
| 721 | * Copy and convert from the on-disk structure |
| 722 | * to the in-memory structure. |
| 723 | */ |
| 724 | xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), |
| 725 | ifp->if_broot, size); |
| 726 | ifp->if_flags &= ~XFS_IFEXTENTS; |
| 727 | ifp->if_flags |= XFS_IFBROOT; |
| 728 | |
| 729 | return 0; |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk |
| 734 | * and native format |
| 735 | * |
| 736 | * buf = on-disk representation |
| 737 | * dip = native representation |
| 738 | * dir = direction - +ve -> disk to native |
| 739 | * -ve -> native to disk |
| 740 | */ |
| 741 | void |
| 742 | xfs_xlate_dinode_core( |
| 743 | xfs_caddr_t buf, |
| 744 | xfs_dinode_core_t *dip, |
| 745 | int dir) |
| 746 | { |
| 747 | xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; |
| 748 | xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; |
| 749 | xfs_arch_t arch = ARCH_CONVERT; |
| 750 | |
| 751 | ASSERT(dir); |
| 752 | |
| 753 | INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); |
| 754 | INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); |
| 755 | INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); |
| 756 | INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); |
| 757 | INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); |
| 758 | INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); |
| 759 | INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); |
| 760 | INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); |
| 761 | INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); |
| 762 | |
| 763 | if (dir > 0) { |
| 764 | memcpy(mem_core->di_pad, buf_core->di_pad, |
| 765 | sizeof(buf_core->di_pad)); |
| 766 | } else { |
| 767 | memcpy(buf_core->di_pad, mem_core->di_pad, |
| 768 | sizeof(buf_core->di_pad)); |
| 769 | } |
| 770 | |
| 771 | INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); |
| 772 | |
| 773 | INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, |
| 774 | dir, arch); |
| 775 | INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, |
| 776 | dir, arch); |
| 777 | INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, |
| 778 | dir, arch); |
| 779 | INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, |
| 780 | dir, arch); |
| 781 | INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, |
| 782 | dir, arch); |
| 783 | INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, |
| 784 | dir, arch); |
| 785 | INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); |
| 786 | INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); |
| 787 | INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); |
| 788 | INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); |
| 789 | INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); |
| 790 | INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); |
| 791 | INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); |
| 792 | INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); |
| 793 | INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); |
| 794 | INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); |
| 795 | INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); |
| 796 | } |
| 797 | |
| 798 | STATIC uint |
| 799 | _xfs_dic2xflags( |
| 800 | xfs_dinode_core_t *dic, |
| 801 | __uint16_t di_flags) |
| 802 | { |
| 803 | uint flags = 0; |
| 804 | |
| 805 | if (di_flags & XFS_DIFLAG_ANY) { |
| 806 | if (di_flags & XFS_DIFLAG_REALTIME) |
| 807 | flags |= XFS_XFLAG_REALTIME; |
| 808 | if (di_flags & XFS_DIFLAG_PREALLOC) |
| 809 | flags |= XFS_XFLAG_PREALLOC; |
| 810 | if (di_flags & XFS_DIFLAG_IMMUTABLE) |
| 811 | flags |= XFS_XFLAG_IMMUTABLE; |
| 812 | if (di_flags & XFS_DIFLAG_APPEND) |
| 813 | flags |= XFS_XFLAG_APPEND; |
| 814 | if (di_flags & XFS_DIFLAG_SYNC) |
| 815 | flags |= XFS_XFLAG_SYNC; |
| 816 | if (di_flags & XFS_DIFLAG_NOATIME) |
| 817 | flags |= XFS_XFLAG_NOATIME; |
| 818 | if (di_flags & XFS_DIFLAG_NODUMP) |
| 819 | flags |= XFS_XFLAG_NODUMP; |
| 820 | if (di_flags & XFS_DIFLAG_RTINHERIT) |
| 821 | flags |= XFS_XFLAG_RTINHERIT; |
| 822 | if (di_flags & XFS_DIFLAG_PROJINHERIT) |
| 823 | flags |= XFS_XFLAG_PROJINHERIT; |
| 824 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
| 825 | flags |= XFS_XFLAG_NOSYMLINKS; |
| 826 | } |
| 827 | |
| 828 | return flags; |
| 829 | } |
| 830 | |
| 831 | uint |
| 832 | xfs_ip2xflags( |
| 833 | xfs_inode_t *ip) |
| 834 | { |
| 835 | xfs_dinode_core_t *dic = &ip->i_d; |
| 836 | |
| 837 | return _xfs_dic2xflags(dic, dic->di_flags) | |
| 838 | (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); |
| 839 | } |
| 840 | |
| 841 | uint |
| 842 | xfs_dic2xflags( |
| 843 | xfs_dinode_core_t *dic) |
| 844 | { |
| 845 | return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | |
| 846 | (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Given a mount structure and an inode number, return a pointer |
| 851 | * to a newly allocated in-core inode coresponding to the given |
| 852 | * inode number. |
| 853 | * |
| 854 | * Initialize the inode's attributes and extent pointers if it |
| 855 | * already has them (it will not if the inode has no links). |
| 856 | */ |
| 857 | int |
| 858 | xfs_iread( |
| 859 | xfs_mount_t *mp, |
| 860 | xfs_trans_t *tp, |
| 861 | xfs_ino_t ino, |
| 862 | xfs_inode_t **ipp, |
| 863 | xfs_daddr_t bno) |
| 864 | { |
| 865 | xfs_buf_t *bp; |
| 866 | xfs_dinode_t *dip; |
| 867 | xfs_inode_t *ip; |
| 868 | int error; |
| 869 | |
| 870 | ASSERT(xfs_inode_zone != NULL); |
| 871 | |
| 872 | ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); |
| 873 | ip->i_ino = ino; |
| 874 | ip->i_mount = mp; |
| 875 | |
| 876 | /* |
| 877 | * Get pointer's to the on-disk inode and the buffer containing it. |
| 878 | * If the inode number refers to a block outside the file system |
| 879 | * then xfs_itobp() will return NULL. In this case we should |
| 880 | * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will |
| 881 | * know that this is a new incore inode. |
| 882 | */ |
| 883 | error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); |
| 884 | |
| 885 | if (error != 0) { |
| 886 | kmem_zone_free(xfs_inode_zone, ip); |
| 887 | return error; |
| 888 | } |
| 889 | |
| 890 | /* |
| 891 | * Initialize inode's trace buffers. |
| 892 | * Do this before xfs_iformat in case it adds entries. |
| 893 | */ |
| 894 | #ifdef XFS_BMAP_TRACE |
| 895 | ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); |
| 896 | #endif |
| 897 | #ifdef XFS_BMBT_TRACE |
| 898 | ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); |
| 899 | #endif |
| 900 | #ifdef XFS_RW_TRACE |
| 901 | ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); |
| 902 | #endif |
| 903 | #ifdef XFS_ILOCK_TRACE |
| 904 | ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); |
| 905 | #endif |
| 906 | #ifdef XFS_DIR2_TRACE |
| 907 | ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); |
| 908 | #endif |
| 909 | |
| 910 | /* |
| 911 | * If we got something that isn't an inode it means someone |
| 912 | * (nfs or dmi) has a stale handle. |
| 913 | */ |
| 914 | if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { |
| 915 | kmem_zone_free(xfs_inode_zone, ip); |
| 916 | xfs_trans_brelse(tp, bp); |
| 917 | #ifdef DEBUG |
| 918 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " |
| 919 | "dip->di_core.di_magic (0x%x) != " |
| 920 | "XFS_DINODE_MAGIC (0x%x)", |
| 921 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT), |
| 922 | XFS_DINODE_MAGIC); |
| 923 | #endif /* DEBUG */ |
| 924 | return XFS_ERROR(EINVAL); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * If the on-disk inode is already linked to a directory |
| 929 | * entry, copy all of the inode into the in-core inode. |
| 930 | * xfs_iformat() handles copying in the inode format |
| 931 | * specific information. |
| 932 | * Otherwise, just get the truly permanent information. |
| 933 | */ |
| 934 | if (dip->di_core.di_mode) { |
| 935 | xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, |
| 936 | &(ip->i_d), 1); |
| 937 | error = xfs_iformat(ip, dip); |
| 938 | if (error) { |
| 939 | kmem_zone_free(xfs_inode_zone, ip); |
| 940 | xfs_trans_brelse(tp, bp); |
| 941 | #ifdef DEBUG |
| 942 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " |
| 943 | "xfs_iformat() returned error %d", |
| 944 | error); |
| 945 | #endif /* DEBUG */ |
| 946 | return error; |
| 947 | } |
| 948 | } else { |
| 949 | ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); |
| 950 | ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); |
| 951 | ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); |
| 952 | ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); |
| 953 | /* |
| 954 | * Make sure to pull in the mode here as well in |
| 955 | * case the inode is released without being used. |
| 956 | * This ensures that xfs_inactive() will see that |
| 957 | * the inode is already free and not try to mess |
| 958 | * with the uninitialized part of it. |
| 959 | */ |
| 960 | ip->i_d.di_mode = 0; |
| 961 | /* |
| 962 | * Initialize the per-fork minima and maxima for a new |
| 963 | * inode here. xfs_iformat will do it for old inodes. |
| 964 | */ |
| 965 | ip->i_df.if_ext_max = |
| 966 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| 967 | } |
| 968 | |
| 969 | INIT_LIST_HEAD(&ip->i_reclaim); |
| 970 | |
| 971 | /* |
| 972 | * The inode format changed when we moved the link count and |
| 973 | * made it 32 bits long. If this is an old format inode, |
| 974 | * convert it in memory to look like a new one. If it gets |
| 975 | * flushed to disk we will convert back before flushing or |
| 976 | * logging it. We zero out the new projid field and the old link |
| 977 | * count field. We'll handle clearing the pad field (the remains |
| 978 | * of the old uuid field) when we actually convert the inode to |
| 979 | * the new format. We don't change the version number so that we |
| 980 | * can distinguish this from a real new format inode. |
| 981 | */ |
| 982 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| 983 | ip->i_d.di_nlink = ip->i_d.di_onlink; |
| 984 | ip->i_d.di_onlink = 0; |
| 985 | ip->i_d.di_projid = 0; |
| 986 | } |
| 987 | |
| 988 | ip->i_delayed_blks = 0; |
| 989 | |
| 990 | /* |
| 991 | * Mark the buffer containing the inode as something to keep |
| 992 | * around for a while. This helps to keep recently accessed |
| 993 | * meta-data in-core longer. |
| 994 | */ |
| 995 | XFS_BUF_SET_REF(bp, XFS_INO_REF); |
| 996 | |
| 997 | /* |
| 998 | * Use xfs_trans_brelse() to release the buffer containing the |
| 999 | * on-disk inode, because it was acquired with xfs_trans_read_buf() |
| 1000 | * in xfs_itobp() above. If tp is NULL, this is just a normal |
| 1001 | * brelse(). If we're within a transaction, then xfs_trans_brelse() |
| 1002 | * will only release the buffer if it is not dirty within the |
| 1003 | * transaction. It will be OK to release the buffer in this case, |
| 1004 | * because inodes on disk are never destroyed and we will be |
| 1005 | * locking the new in-core inode before putting it in the hash |
| 1006 | * table where other processes can find it. Thus we don't have |
| 1007 | * to worry about the inode being changed just because we released |
| 1008 | * the buffer. |
| 1009 | */ |
| 1010 | xfs_trans_brelse(tp, bp); |
| 1011 | *ipp = ip; |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | /* |
| 1016 | * Read in extents from a btree-format inode. |
| 1017 | * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. |
| 1018 | */ |
| 1019 | int |
| 1020 | xfs_iread_extents( |
| 1021 | xfs_trans_t *tp, |
| 1022 | xfs_inode_t *ip, |
| 1023 | int whichfork) |
| 1024 | { |
| 1025 | int error; |
| 1026 | xfs_ifork_t *ifp; |
| 1027 | size_t size; |
| 1028 | |
| 1029 | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { |
| 1030 | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, |
| 1031 | ip->i_mount); |
| 1032 | return XFS_ERROR(EFSCORRUPTED); |
| 1033 | } |
| 1034 | size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); |
| 1035 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 1036 | /* |
| 1037 | * We know that the size is valid (it's checked in iformat_btree) |
| 1038 | */ |
| 1039 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); |
| 1040 | ASSERT(ifp->if_u1.if_extents != NULL); |
| 1041 | ifp->if_lastex = NULLEXTNUM; |
| 1042 | ifp->if_bytes = ifp->if_real_bytes = (int)size; |
| 1043 | ifp->if_flags |= XFS_IFEXTENTS; |
| 1044 | error = xfs_bmap_read_extents(tp, ip, whichfork); |
| 1045 | if (error) { |
| 1046 | kmem_free(ifp->if_u1.if_extents, size); |
| 1047 | ifp->if_u1.if_extents = NULL; |
| 1048 | ifp->if_bytes = ifp->if_real_bytes = 0; |
| 1049 | ifp->if_flags &= ~XFS_IFEXTENTS; |
| 1050 | return error; |
| 1051 | } |
| 1052 | xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, |
| 1053 | XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); |
| 1054 | return 0; |
| 1055 | } |
| 1056 | |
| 1057 | /* |
| 1058 | * Allocate an inode on disk and return a copy of its in-core version. |
| 1059 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev |
| 1060 | * appropriately within the inode. The uid and gid for the inode are |
| 1061 | * set according to the contents of the given cred structure. |
| 1062 | * |
| 1063 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() |
| 1064 | * has a free inode available, call xfs_iget() |
| 1065 | * to obtain the in-core version of the allocated inode. Finally, |
| 1066 | * fill in the inode and log its initial contents. In this case, |
| 1067 | * ialloc_context would be set to NULL and call_again set to false. |
| 1068 | * |
| 1069 | * If xfs_dialloc() does not have an available inode, |
| 1070 | * it will replenish its supply by doing an allocation. Since we can |
| 1071 | * only do one allocation within a transaction without deadlocks, we |
| 1072 | * must commit the current transaction before returning the inode itself. |
| 1073 | * In this case, therefore, we will set call_again to true and return. |
| 1074 | * The caller should then commit the current transaction, start a new |
| 1075 | * transaction, and call xfs_ialloc() again to actually get the inode. |
| 1076 | * |
| 1077 | * To ensure that some other process does not grab the inode that |
| 1078 | * was allocated during the first call to xfs_ialloc(), this routine |
| 1079 | * also returns the [locked] bp pointing to the head of the freelist |
| 1080 | * as ialloc_context. The caller should hold this buffer across |
| 1081 | * the commit and pass it back into this routine on the second call. |
| 1082 | */ |
| 1083 | int |
| 1084 | xfs_ialloc( |
| 1085 | xfs_trans_t *tp, |
| 1086 | xfs_inode_t *pip, |
| 1087 | mode_t mode, |
Nathan Scott | 31b084a | 2005-05-05 13:25:00 -0700 | [diff] [blame] | 1088 | xfs_nlink_t nlink, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1089 | xfs_dev_t rdev, |
| 1090 | cred_t *cr, |
| 1091 | xfs_prid_t prid, |
| 1092 | int okalloc, |
| 1093 | xfs_buf_t **ialloc_context, |
| 1094 | boolean_t *call_again, |
| 1095 | xfs_inode_t **ipp) |
| 1096 | { |
| 1097 | xfs_ino_t ino; |
| 1098 | xfs_inode_t *ip; |
| 1099 | vnode_t *vp; |
| 1100 | uint flags; |
| 1101 | int error; |
| 1102 | |
| 1103 | /* |
| 1104 | * Call the space management code to pick |
| 1105 | * the on-disk inode to be allocated. |
| 1106 | */ |
| 1107 | error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, |
| 1108 | ialloc_context, call_again, &ino); |
| 1109 | if (error != 0) { |
| 1110 | return error; |
| 1111 | } |
| 1112 | if (*call_again || ino == NULLFSINO) { |
| 1113 | *ipp = NULL; |
| 1114 | return 0; |
| 1115 | } |
| 1116 | ASSERT(*ialloc_context == NULL); |
| 1117 | |
| 1118 | /* |
| 1119 | * Get the in-core inode with the lock held exclusively. |
| 1120 | * This is because we're setting fields here we need |
| 1121 | * to prevent others from looking at until we're done. |
| 1122 | */ |
| 1123 | error = xfs_trans_iget(tp->t_mountp, tp, ino, |
| 1124 | IGET_CREATE, XFS_ILOCK_EXCL, &ip); |
| 1125 | if (error != 0) { |
| 1126 | return error; |
| 1127 | } |
| 1128 | ASSERT(ip != NULL); |
| 1129 | |
| 1130 | vp = XFS_ITOV(ip); |
| 1131 | vp->v_type = IFTOVT(mode); |
| 1132 | ip->i_d.di_mode = (__uint16_t)mode; |
| 1133 | ip->i_d.di_onlink = 0; |
| 1134 | ip->i_d.di_nlink = nlink; |
| 1135 | ASSERT(ip->i_d.di_nlink == nlink); |
| 1136 | ip->i_d.di_uid = current_fsuid(cr); |
| 1137 | ip->i_d.di_gid = current_fsgid(cr); |
| 1138 | ip->i_d.di_projid = prid; |
| 1139 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| 1140 | |
| 1141 | /* |
| 1142 | * If the superblock version is up to where we support new format |
| 1143 | * inodes and this is currently an old format inode, then change |
| 1144 | * the inode version number now. This way we only do the conversion |
| 1145 | * here rather than here and in the flush/logging code. |
| 1146 | */ |
| 1147 | if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && |
| 1148 | ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| 1149 | ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| 1150 | /* |
| 1151 | * We've already zeroed the old link count, the projid field, |
| 1152 | * and the pad field. |
| 1153 | */ |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * Project ids won't be stored on disk if we are using a version 1 inode. |
| 1158 | */ |
| 1159 | if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) |
| 1160 | xfs_bump_ino_vers2(tp, ip); |
| 1161 | |
| 1162 | if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { |
| 1163 | ip->i_d.di_gid = pip->i_d.di_gid; |
| 1164 | if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { |
| 1165 | ip->i_d.di_mode |= S_ISGID; |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * If the group ID of the new file does not match the effective group |
| 1171 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| 1172 | * (and only if the irix_sgid_inherit compatibility variable is set). |
| 1173 | */ |
| 1174 | if ((irix_sgid_inherit) && |
| 1175 | (ip->i_d.di_mode & S_ISGID) && |
| 1176 | (!in_group_p((gid_t)ip->i_d.di_gid))) { |
| 1177 | ip->i_d.di_mode &= ~S_ISGID; |
| 1178 | } |
| 1179 | |
| 1180 | ip->i_d.di_size = 0; |
| 1181 | ip->i_d.di_nextents = 0; |
| 1182 | ASSERT(ip->i_d.di_nblocks == 0); |
| 1183 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); |
| 1184 | /* |
| 1185 | * di_gen will have been taken care of in xfs_iread. |
| 1186 | */ |
| 1187 | ip->i_d.di_extsize = 0; |
| 1188 | ip->i_d.di_dmevmask = 0; |
| 1189 | ip->i_d.di_dmstate = 0; |
| 1190 | ip->i_d.di_flags = 0; |
| 1191 | flags = XFS_ILOG_CORE; |
| 1192 | switch (mode & S_IFMT) { |
| 1193 | case S_IFIFO: |
| 1194 | case S_IFCHR: |
| 1195 | case S_IFBLK: |
| 1196 | case S_IFSOCK: |
| 1197 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; |
| 1198 | ip->i_df.if_u2.if_rdev = rdev; |
| 1199 | ip->i_df.if_flags = 0; |
| 1200 | flags |= XFS_ILOG_DEV; |
| 1201 | break; |
| 1202 | case S_IFREG: |
| 1203 | case S_IFDIR: |
| 1204 | if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
| 1205 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { |
| 1206 | if ((mode & S_IFMT) == S_IFDIR) { |
| 1207 | ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT; |
| 1208 | } else { |
| 1209 | ip->i_d.di_flags |= XFS_DIFLAG_REALTIME; |
| 1210 | ip->i_iocore.io_flags |= XFS_IOCORE_RT; |
| 1211 | } |
| 1212 | } |
| 1213 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && |
| 1214 | xfs_inherit_noatime) |
| 1215 | ip->i_d.di_flags |= XFS_DIFLAG_NOATIME; |
| 1216 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
| 1217 | xfs_inherit_nodump) |
| 1218 | ip->i_d.di_flags |= XFS_DIFLAG_NODUMP; |
| 1219 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
| 1220 | xfs_inherit_sync) |
| 1221 | ip->i_d.di_flags |= XFS_DIFLAG_SYNC; |
| 1222 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
| 1223 | xfs_inherit_nosymlinks) |
| 1224 | ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| 1225 | } |
| 1226 | /* FALLTHROUGH */ |
| 1227 | case S_IFLNK: |
| 1228 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 1229 | ip->i_df.if_flags = XFS_IFEXTENTS; |
| 1230 | ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; |
| 1231 | ip->i_df.if_u1.if_extents = NULL; |
| 1232 | break; |
| 1233 | default: |
| 1234 | ASSERT(0); |
| 1235 | } |
| 1236 | /* |
| 1237 | * Attribute fork settings for new inode. |
| 1238 | */ |
| 1239 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 1240 | ip->i_d.di_anextents = 0; |
| 1241 | |
| 1242 | /* |
| 1243 | * Log the new values stuffed into the inode. |
| 1244 | */ |
| 1245 | xfs_trans_log_inode(tp, ip, flags); |
| 1246 | |
| 1247 | /* now that we have a v_type we can set Linux inode ops (& unlock) */ |
| 1248 | VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); |
| 1249 | |
| 1250 | *ipp = ip; |
| 1251 | return 0; |
| 1252 | } |
| 1253 | |
| 1254 | /* |
| 1255 | * Check to make sure that there are no blocks allocated to the |
| 1256 | * file beyond the size of the file. We don't check this for |
| 1257 | * files with fixed size extents or real time extents, but we |
| 1258 | * at least do it for regular files. |
| 1259 | */ |
| 1260 | #ifdef DEBUG |
| 1261 | void |
| 1262 | xfs_isize_check( |
| 1263 | xfs_mount_t *mp, |
| 1264 | xfs_inode_t *ip, |
| 1265 | xfs_fsize_t isize) |
| 1266 | { |
| 1267 | xfs_fileoff_t map_first; |
| 1268 | int nimaps; |
| 1269 | xfs_bmbt_irec_t imaps[2]; |
| 1270 | |
| 1271 | if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) |
| 1272 | return; |
| 1273 | |
| 1274 | if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) |
| 1275 | return; |
| 1276 | |
| 1277 | nimaps = 2; |
| 1278 | map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); |
| 1279 | /* |
| 1280 | * The filesystem could be shutting down, so bmapi may return |
| 1281 | * an error. |
| 1282 | */ |
| 1283 | if (xfs_bmapi(NULL, ip, map_first, |
| 1284 | (XFS_B_TO_FSB(mp, |
| 1285 | (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - |
| 1286 | map_first), |
| 1287 | XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, |
| 1288 | NULL)) |
| 1289 | return; |
| 1290 | ASSERT(nimaps == 1); |
| 1291 | ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); |
| 1292 | } |
| 1293 | #endif /* DEBUG */ |
| 1294 | |
| 1295 | /* |
| 1296 | * Calculate the last possible buffered byte in a file. This must |
| 1297 | * include data that was buffered beyond the EOF by the write code. |
| 1298 | * This also needs to deal with overflowing the xfs_fsize_t type |
| 1299 | * which can happen for sizes near the limit. |
| 1300 | * |
| 1301 | * We also need to take into account any blocks beyond the EOF. It |
| 1302 | * may be the case that they were buffered by a write which failed. |
| 1303 | * In that case the pages will still be in memory, but the inode size |
| 1304 | * will never have been updated. |
| 1305 | */ |
| 1306 | xfs_fsize_t |
| 1307 | xfs_file_last_byte( |
| 1308 | xfs_inode_t *ip) |
| 1309 | { |
| 1310 | xfs_mount_t *mp; |
| 1311 | xfs_fsize_t last_byte; |
| 1312 | xfs_fileoff_t last_block; |
| 1313 | xfs_fileoff_t size_last_block; |
| 1314 | int error; |
| 1315 | |
| 1316 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); |
| 1317 | |
| 1318 | mp = ip->i_mount; |
| 1319 | /* |
| 1320 | * Only check for blocks beyond the EOF if the extents have |
| 1321 | * been read in. This eliminates the need for the inode lock, |
| 1322 | * and it also saves us from looking when it really isn't |
| 1323 | * necessary. |
| 1324 | */ |
| 1325 | if (ip->i_df.if_flags & XFS_IFEXTENTS) { |
| 1326 | error = xfs_bmap_last_offset(NULL, ip, &last_block, |
| 1327 | XFS_DATA_FORK); |
| 1328 | if (error) { |
| 1329 | last_block = 0; |
| 1330 | } |
| 1331 | } else { |
| 1332 | last_block = 0; |
| 1333 | } |
| 1334 | size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); |
| 1335 | last_block = XFS_FILEOFF_MAX(last_block, size_last_block); |
| 1336 | |
| 1337 | last_byte = XFS_FSB_TO_B(mp, last_block); |
| 1338 | if (last_byte < 0) { |
| 1339 | return XFS_MAXIOFFSET(mp); |
| 1340 | } |
| 1341 | last_byte += (1 << mp->m_writeio_log); |
| 1342 | if (last_byte < 0) { |
| 1343 | return XFS_MAXIOFFSET(mp); |
| 1344 | } |
| 1345 | return last_byte; |
| 1346 | } |
| 1347 | |
| 1348 | #if defined(XFS_RW_TRACE) |
| 1349 | STATIC void |
| 1350 | xfs_itrunc_trace( |
| 1351 | int tag, |
| 1352 | xfs_inode_t *ip, |
| 1353 | int flag, |
| 1354 | xfs_fsize_t new_size, |
| 1355 | xfs_off_t toss_start, |
| 1356 | xfs_off_t toss_finish) |
| 1357 | { |
| 1358 | if (ip->i_rwtrace == NULL) { |
| 1359 | return; |
| 1360 | } |
| 1361 | |
| 1362 | ktrace_enter(ip->i_rwtrace, |
| 1363 | (void*)((long)tag), |
| 1364 | (void*)ip, |
| 1365 | (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), |
| 1366 | (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), |
| 1367 | (void*)((long)flag), |
| 1368 | (void*)(unsigned long)((new_size >> 32) & 0xffffffff), |
| 1369 | (void*)(unsigned long)(new_size & 0xffffffff), |
| 1370 | (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), |
| 1371 | (void*)(unsigned long)(toss_start & 0xffffffff), |
| 1372 | (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), |
| 1373 | (void*)(unsigned long)(toss_finish & 0xffffffff), |
| 1374 | (void*)(unsigned long)current_cpu(), |
| 1375 | (void*)0, |
| 1376 | (void*)0, |
| 1377 | (void*)0, |
| 1378 | (void*)0); |
| 1379 | } |
| 1380 | #else |
| 1381 | #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) |
| 1382 | #endif |
| 1383 | |
| 1384 | /* |
| 1385 | * Start the truncation of the file to new_size. The new size |
| 1386 | * must be smaller than the current size. This routine will |
| 1387 | * clear the buffer and page caches of file data in the removed |
| 1388 | * range, and xfs_itruncate_finish() will remove the underlying |
| 1389 | * disk blocks. |
| 1390 | * |
| 1391 | * The inode must have its I/O lock locked EXCLUSIVELY, and it |
| 1392 | * must NOT have the inode lock held at all. This is because we're |
| 1393 | * calling into the buffer/page cache code and we can't hold the |
| 1394 | * inode lock when we do so. |
| 1395 | * |
| 1396 | * The flags parameter can have either the value XFS_ITRUNC_DEFINITE |
| 1397 | * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used |
| 1398 | * in the case that the caller is locking things out of order and |
| 1399 | * may not be able to call xfs_itruncate_finish() with the inode lock |
| 1400 | * held without dropping the I/O lock. If the caller must drop the |
| 1401 | * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() |
| 1402 | * must be called again with all the same restrictions as the initial |
| 1403 | * call. |
| 1404 | */ |
| 1405 | void |
| 1406 | xfs_itruncate_start( |
| 1407 | xfs_inode_t *ip, |
| 1408 | uint flags, |
| 1409 | xfs_fsize_t new_size) |
| 1410 | { |
| 1411 | xfs_fsize_t last_byte; |
| 1412 | xfs_off_t toss_start; |
| 1413 | xfs_mount_t *mp; |
| 1414 | vnode_t *vp; |
| 1415 | |
| 1416 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); |
| 1417 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); |
| 1418 | ASSERT((flags == XFS_ITRUNC_DEFINITE) || |
| 1419 | (flags == XFS_ITRUNC_MAYBE)); |
| 1420 | |
| 1421 | mp = ip->i_mount; |
| 1422 | vp = XFS_ITOV(ip); |
| 1423 | /* |
| 1424 | * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers |
| 1425 | * overlapping the region being removed. We have to use |
| 1426 | * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the |
| 1427 | * caller may not be able to finish the truncate without |
| 1428 | * dropping the inode's I/O lock. Make sure |
| 1429 | * to catch any pages brought in by buffers overlapping |
| 1430 | * the EOF by searching out beyond the isize by our |
| 1431 | * block size. We round new_size up to a block boundary |
| 1432 | * so that we don't toss things on the same block as |
| 1433 | * new_size but before it. |
| 1434 | * |
| 1435 | * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to |
| 1436 | * call remapf() over the same region if the file is mapped. |
| 1437 | * This frees up mapped file references to the pages in the |
| 1438 | * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures |
| 1439 | * that we get the latest mapped changes flushed out. |
| 1440 | */ |
| 1441 | toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| 1442 | toss_start = XFS_FSB_TO_B(mp, toss_start); |
| 1443 | if (toss_start < 0) { |
| 1444 | /* |
| 1445 | * The place to start tossing is beyond our maximum |
| 1446 | * file size, so there is no way that the data extended |
| 1447 | * out there. |
| 1448 | */ |
| 1449 | return; |
| 1450 | } |
| 1451 | last_byte = xfs_file_last_byte(ip); |
| 1452 | xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, |
| 1453 | last_byte); |
| 1454 | if (last_byte > toss_start) { |
| 1455 | if (flags & XFS_ITRUNC_DEFINITE) { |
| 1456 | VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); |
| 1457 | } else { |
| 1458 | VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | #ifdef DEBUG |
| 1463 | if (new_size == 0) { |
| 1464 | ASSERT(VN_CACHED(vp) == 0); |
| 1465 | } |
| 1466 | #endif |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Shrink the file to the given new_size. The new |
| 1471 | * size must be smaller than the current size. |
| 1472 | * This will free up the underlying blocks |
| 1473 | * in the removed range after a call to xfs_itruncate_start() |
| 1474 | * or xfs_atruncate_start(). |
| 1475 | * |
| 1476 | * The transaction passed to this routine must have made |
| 1477 | * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. |
| 1478 | * This routine may commit the given transaction and |
| 1479 | * start new ones, so make sure everything involved in |
| 1480 | * the transaction is tidy before calling here. |
| 1481 | * Some transaction will be returned to the caller to be |
| 1482 | * committed. The incoming transaction must already include |
| 1483 | * the inode, and both inode locks must be held exclusively. |
| 1484 | * The inode must also be "held" within the transaction. On |
| 1485 | * return the inode will be "held" within the returned transaction. |
| 1486 | * This routine does NOT require any disk space to be reserved |
| 1487 | * for it within the transaction. |
| 1488 | * |
| 1489 | * The fork parameter must be either xfs_attr_fork or xfs_data_fork, |
| 1490 | * and it indicates the fork which is to be truncated. For the |
| 1491 | * attribute fork we only support truncation to size 0. |
| 1492 | * |
| 1493 | * We use the sync parameter to indicate whether or not the first |
| 1494 | * transaction we perform might have to be synchronous. For the attr fork, |
| 1495 | * it needs to be so if the unlink of the inode is not yet known to be |
| 1496 | * permanent in the log. This keeps us from freeing and reusing the |
| 1497 | * blocks of the attribute fork before the unlink of the inode becomes |
| 1498 | * permanent. |
| 1499 | * |
| 1500 | * For the data fork, we normally have to run synchronously if we're |
| 1501 | * being called out of the inactive path or we're being called |
| 1502 | * out of the create path where we're truncating an existing file. |
| 1503 | * Either way, the truncate needs to be sync so blocks don't reappear |
| 1504 | * in the file with altered data in case of a crash. wsync filesystems |
| 1505 | * can run the first case async because anything that shrinks the inode |
| 1506 | * has to run sync so by the time we're called here from inactive, the |
| 1507 | * inode size is permanently set to 0. |
| 1508 | * |
| 1509 | * Calls from the truncate path always need to be sync unless we're |
| 1510 | * in a wsync filesystem and the file has already been unlinked. |
| 1511 | * |
| 1512 | * The caller is responsible for correctly setting the sync parameter. |
| 1513 | * It gets too hard for us to guess here which path we're being called |
| 1514 | * out of just based on inode state. |
| 1515 | */ |
| 1516 | int |
| 1517 | xfs_itruncate_finish( |
| 1518 | xfs_trans_t **tp, |
| 1519 | xfs_inode_t *ip, |
| 1520 | xfs_fsize_t new_size, |
| 1521 | int fork, |
| 1522 | int sync) |
| 1523 | { |
| 1524 | xfs_fsblock_t first_block; |
| 1525 | xfs_fileoff_t first_unmap_block; |
| 1526 | xfs_fileoff_t last_block; |
| 1527 | xfs_filblks_t unmap_len=0; |
| 1528 | xfs_mount_t *mp; |
| 1529 | xfs_trans_t *ntp; |
| 1530 | int done; |
| 1531 | int committed; |
| 1532 | xfs_bmap_free_t free_list; |
| 1533 | int error; |
| 1534 | |
| 1535 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); |
| 1536 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); |
| 1537 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); |
| 1538 | ASSERT(*tp != NULL); |
| 1539 | ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 1540 | ASSERT(ip->i_transp == *tp); |
| 1541 | ASSERT(ip->i_itemp != NULL); |
| 1542 | ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); |
| 1543 | |
| 1544 | |
| 1545 | ntp = *tp; |
| 1546 | mp = (ntp)->t_mountp; |
| 1547 | ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); |
| 1548 | |
| 1549 | /* |
| 1550 | * We only support truncating the entire attribute fork. |
| 1551 | */ |
| 1552 | if (fork == XFS_ATTR_FORK) { |
| 1553 | new_size = 0LL; |
| 1554 | } |
| 1555 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| 1556 | xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); |
| 1557 | /* |
| 1558 | * The first thing we do is set the size to new_size permanently |
| 1559 | * on disk. This way we don't have to worry about anyone ever |
| 1560 | * being able to look at the data being freed even in the face |
| 1561 | * of a crash. What we're getting around here is the case where |
| 1562 | * we free a block, it is allocated to another file, it is written |
| 1563 | * to, and then we crash. If the new data gets written to the |
| 1564 | * file but the log buffers containing the free and reallocation |
| 1565 | * don't, then we'd end up with garbage in the blocks being freed. |
| 1566 | * As long as we make the new_size permanent before actually |
| 1567 | * freeing any blocks it doesn't matter if they get writtten to. |
| 1568 | * |
| 1569 | * The callers must signal into us whether or not the size |
| 1570 | * setting here must be synchronous. There are a few cases |
| 1571 | * where it doesn't have to be synchronous. Those cases |
| 1572 | * occur if the file is unlinked and we know the unlink is |
| 1573 | * permanent or if the blocks being truncated are guaranteed |
| 1574 | * to be beyond the inode eof (regardless of the link count) |
| 1575 | * and the eof value is permanent. Both of these cases occur |
| 1576 | * only on wsync-mounted filesystems. In those cases, we're |
| 1577 | * guaranteed that no user will ever see the data in the blocks |
| 1578 | * that are being truncated so the truncate can run async. |
| 1579 | * In the free beyond eof case, the file may wind up with |
| 1580 | * more blocks allocated to it than it needs if we crash |
| 1581 | * and that won't get fixed until the next time the file |
| 1582 | * is re-opened and closed but that's ok as that shouldn't |
| 1583 | * be too many blocks. |
| 1584 | * |
| 1585 | * However, we can't just make all wsync xactions run async |
| 1586 | * because there's one call out of the create path that needs |
| 1587 | * to run sync where it's truncating an existing file to size |
| 1588 | * 0 whose size is > 0. |
| 1589 | * |
| 1590 | * It's probably possible to come up with a test in this |
| 1591 | * routine that would correctly distinguish all the above |
| 1592 | * cases from the values of the function parameters and the |
| 1593 | * inode state but for sanity's sake, I've decided to let the |
| 1594 | * layers above just tell us. It's simpler to correctly figure |
| 1595 | * out in the layer above exactly under what conditions we |
| 1596 | * can run async and I think it's easier for others read and |
| 1597 | * follow the logic in case something has to be changed. |
| 1598 | * cscope is your friend -- rcc. |
| 1599 | * |
| 1600 | * The attribute fork is much simpler. |
| 1601 | * |
| 1602 | * For the attribute fork we allow the caller to tell us whether |
| 1603 | * the unlink of the inode that led to this call is yet permanent |
| 1604 | * in the on disk log. If it is not and we will be freeing extents |
| 1605 | * in this inode then we make the first transaction synchronous |
| 1606 | * to make sure that the unlink is permanent by the time we free |
| 1607 | * the blocks. |
| 1608 | */ |
| 1609 | if (fork == XFS_DATA_FORK) { |
| 1610 | if (ip->i_d.di_nextents > 0) { |
| 1611 | ip->i_d.di_size = new_size; |
| 1612 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| 1613 | } |
| 1614 | } else if (sync) { |
| 1615 | ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); |
| 1616 | if (ip->i_d.di_anextents > 0) |
| 1617 | xfs_trans_set_sync(ntp); |
| 1618 | } |
| 1619 | ASSERT(fork == XFS_DATA_FORK || |
| 1620 | (fork == XFS_ATTR_FORK && |
| 1621 | ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || |
| 1622 | (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); |
| 1623 | |
| 1624 | /* |
| 1625 | * Since it is possible for space to become allocated beyond |
| 1626 | * the end of the file (in a crash where the space is allocated |
| 1627 | * but the inode size is not yet updated), simply remove any |
| 1628 | * blocks which show up between the new EOF and the maximum |
| 1629 | * possible file size. If the first block to be removed is |
| 1630 | * beyond the maximum file size (ie it is the same as last_block), |
| 1631 | * then there is nothing to do. |
| 1632 | */ |
| 1633 | last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); |
| 1634 | ASSERT(first_unmap_block <= last_block); |
| 1635 | done = 0; |
| 1636 | if (last_block == first_unmap_block) { |
| 1637 | done = 1; |
| 1638 | } else { |
| 1639 | unmap_len = last_block - first_unmap_block + 1; |
| 1640 | } |
| 1641 | while (!done) { |
| 1642 | /* |
| 1643 | * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() |
| 1644 | * will tell us whether it freed the entire range or |
| 1645 | * not. If this is a synchronous mount (wsync), |
| 1646 | * then we can tell bunmapi to keep all the |
| 1647 | * transactions asynchronous since the unlink |
| 1648 | * transaction that made this inode inactive has |
| 1649 | * already hit the disk. There's no danger of |
| 1650 | * the freed blocks being reused, there being a |
| 1651 | * crash, and the reused blocks suddenly reappearing |
| 1652 | * in this file with garbage in them once recovery |
| 1653 | * runs. |
| 1654 | */ |
| 1655 | XFS_BMAP_INIT(&free_list, &first_block); |
| 1656 | error = xfs_bunmapi(ntp, ip, first_unmap_block, |
| 1657 | unmap_len, |
| 1658 | XFS_BMAPI_AFLAG(fork) | |
| 1659 | (sync ? 0 : XFS_BMAPI_ASYNC), |
| 1660 | XFS_ITRUNC_MAX_EXTENTS, |
| 1661 | &first_block, &free_list, &done); |
| 1662 | if (error) { |
| 1663 | /* |
| 1664 | * If the bunmapi call encounters an error, |
| 1665 | * return to the caller where the transaction |
| 1666 | * can be properly aborted. We just need to |
| 1667 | * make sure we're not holding any resources |
| 1668 | * that we were not when we came in. |
| 1669 | */ |
| 1670 | xfs_bmap_cancel(&free_list); |
| 1671 | return error; |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * Duplicate the transaction that has the permanent |
| 1676 | * reservation and commit the old transaction. |
| 1677 | */ |
| 1678 | error = xfs_bmap_finish(tp, &free_list, first_block, |
| 1679 | &committed); |
| 1680 | ntp = *tp; |
| 1681 | if (error) { |
| 1682 | /* |
| 1683 | * If the bmap finish call encounters an error, |
| 1684 | * return to the caller where the transaction |
| 1685 | * can be properly aborted. We just need to |
| 1686 | * make sure we're not holding any resources |
| 1687 | * that we were not when we came in. |
| 1688 | * |
| 1689 | * Aborting from this point might lose some |
| 1690 | * blocks in the file system, but oh well. |
| 1691 | */ |
| 1692 | xfs_bmap_cancel(&free_list); |
| 1693 | if (committed) { |
| 1694 | /* |
| 1695 | * If the passed in transaction committed |
| 1696 | * in xfs_bmap_finish(), then we want to |
| 1697 | * add the inode to this one before returning. |
| 1698 | * This keeps things simple for the higher |
| 1699 | * level code, because it always knows that |
| 1700 | * the inode is locked and held in the |
| 1701 | * transaction that returns to it whether |
| 1702 | * errors occur or not. We don't mark the |
| 1703 | * inode dirty so that this transaction can |
| 1704 | * be easily aborted if possible. |
| 1705 | */ |
| 1706 | xfs_trans_ijoin(ntp, ip, |
| 1707 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| 1708 | xfs_trans_ihold(ntp, ip); |
| 1709 | } |
| 1710 | return error; |
| 1711 | } |
| 1712 | |
| 1713 | if (committed) { |
| 1714 | /* |
| 1715 | * The first xact was committed, |
| 1716 | * so add the inode to the new one. |
| 1717 | * Mark it dirty so it will be logged |
| 1718 | * and moved forward in the log as |
| 1719 | * part of every commit. |
| 1720 | */ |
| 1721 | xfs_trans_ijoin(ntp, ip, |
| 1722 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| 1723 | xfs_trans_ihold(ntp, ip); |
| 1724 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| 1725 | } |
| 1726 | ntp = xfs_trans_dup(ntp); |
| 1727 | (void) xfs_trans_commit(*tp, 0, NULL); |
| 1728 | *tp = ntp; |
| 1729 | error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, |
| 1730 | XFS_TRANS_PERM_LOG_RES, |
| 1731 | XFS_ITRUNCATE_LOG_COUNT); |
| 1732 | /* |
| 1733 | * Add the inode being truncated to the next chained |
| 1734 | * transaction. |
| 1735 | */ |
| 1736 | xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| 1737 | xfs_trans_ihold(ntp, ip); |
| 1738 | if (error) |
| 1739 | return (error); |
| 1740 | } |
| 1741 | /* |
| 1742 | * Only update the size in the case of the data fork, but |
| 1743 | * always re-log the inode so that our permanent transaction |
| 1744 | * can keep on rolling it forward in the log. |
| 1745 | */ |
| 1746 | if (fork == XFS_DATA_FORK) { |
| 1747 | xfs_isize_check(mp, ip, new_size); |
| 1748 | ip->i_d.di_size = new_size; |
| 1749 | } |
| 1750 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| 1751 | ASSERT((new_size != 0) || |
| 1752 | (fork == XFS_ATTR_FORK) || |
| 1753 | (ip->i_delayed_blks == 0)); |
| 1754 | ASSERT((new_size != 0) || |
| 1755 | (fork == XFS_ATTR_FORK) || |
| 1756 | (ip->i_d.di_nextents == 0)); |
| 1757 | xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); |
| 1758 | return 0; |
| 1759 | } |
| 1760 | |
| 1761 | |
| 1762 | /* |
| 1763 | * xfs_igrow_start |
| 1764 | * |
| 1765 | * Do the first part of growing a file: zero any data in the last |
| 1766 | * block that is beyond the old EOF. We need to do this before |
| 1767 | * the inode is joined to the transaction to modify the i_size. |
| 1768 | * That way we can drop the inode lock and call into the buffer |
| 1769 | * cache to get the buffer mapping the EOF. |
| 1770 | */ |
| 1771 | int |
| 1772 | xfs_igrow_start( |
| 1773 | xfs_inode_t *ip, |
| 1774 | xfs_fsize_t new_size, |
| 1775 | cred_t *credp) |
| 1776 | { |
| 1777 | xfs_fsize_t isize; |
| 1778 | int error; |
| 1779 | |
| 1780 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); |
| 1781 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); |
| 1782 | ASSERT(new_size > ip->i_d.di_size); |
| 1783 | |
| 1784 | error = 0; |
| 1785 | isize = ip->i_d.di_size; |
| 1786 | /* |
| 1787 | * Zero any pages that may have been created by |
| 1788 | * xfs_write_file() beyond the end of the file |
| 1789 | * and any blocks between the old and new file sizes. |
| 1790 | */ |
| 1791 | error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, |
| 1792 | new_size); |
| 1793 | return error; |
| 1794 | } |
| 1795 | |
| 1796 | /* |
| 1797 | * xfs_igrow_finish |
| 1798 | * |
| 1799 | * This routine is called to extend the size of a file. |
| 1800 | * The inode must have both the iolock and the ilock locked |
| 1801 | * for update and it must be a part of the current transaction. |
| 1802 | * The xfs_igrow_start() function must have been called previously. |
| 1803 | * If the change_flag is not zero, the inode change timestamp will |
| 1804 | * be updated. |
| 1805 | */ |
| 1806 | void |
| 1807 | xfs_igrow_finish( |
| 1808 | xfs_trans_t *tp, |
| 1809 | xfs_inode_t *ip, |
| 1810 | xfs_fsize_t new_size, |
| 1811 | int change_flag) |
| 1812 | { |
| 1813 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); |
| 1814 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); |
| 1815 | ASSERT(ip->i_transp == tp); |
| 1816 | ASSERT(new_size > ip->i_d.di_size); |
| 1817 | |
| 1818 | /* |
| 1819 | * Update the file size. Update the inode change timestamp |
| 1820 | * if change_flag set. |
| 1821 | */ |
| 1822 | ip->i_d.di_size = new_size; |
| 1823 | if (change_flag) |
| 1824 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG); |
| 1825 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1826 | |
| 1827 | } |
| 1828 | |
| 1829 | |
| 1830 | /* |
| 1831 | * This is called when the inode's link count goes to 0. |
| 1832 | * We place the on-disk inode on a list in the AGI. It |
| 1833 | * will be pulled from this list when the inode is freed. |
| 1834 | */ |
| 1835 | int |
| 1836 | xfs_iunlink( |
| 1837 | xfs_trans_t *tp, |
| 1838 | xfs_inode_t *ip) |
| 1839 | { |
| 1840 | xfs_mount_t *mp; |
| 1841 | xfs_agi_t *agi; |
| 1842 | xfs_dinode_t *dip; |
| 1843 | xfs_buf_t *agibp; |
| 1844 | xfs_buf_t *ibp; |
| 1845 | xfs_agnumber_t agno; |
| 1846 | xfs_daddr_t agdaddr; |
| 1847 | xfs_agino_t agino; |
| 1848 | short bucket_index; |
| 1849 | int offset; |
| 1850 | int error; |
| 1851 | int agi_ok; |
| 1852 | |
| 1853 | ASSERT(ip->i_d.di_nlink == 0); |
| 1854 | ASSERT(ip->i_d.di_mode != 0); |
| 1855 | ASSERT(ip->i_transp == tp); |
| 1856 | |
| 1857 | mp = tp->t_mountp; |
| 1858 | |
| 1859 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| 1860 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); |
| 1861 | |
| 1862 | /* |
| 1863 | * Get the agi buffer first. It ensures lock ordering |
| 1864 | * on the list. |
| 1865 | */ |
| 1866 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, |
| 1867 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); |
| 1868 | if (error) { |
| 1869 | return error; |
| 1870 | } |
| 1871 | /* |
| 1872 | * Validate the magic number of the agi block. |
| 1873 | */ |
| 1874 | agi = XFS_BUF_TO_AGI(agibp); |
| 1875 | agi_ok = |
| 1876 | INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && |
| 1877 | XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); |
| 1878 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, |
| 1879 | XFS_RANDOM_IUNLINK))) { |
| 1880 | XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); |
| 1881 | xfs_trans_brelse(tp, agibp); |
| 1882 | return XFS_ERROR(EFSCORRUPTED); |
| 1883 | } |
| 1884 | /* |
| 1885 | * Get the index into the agi hash table for the |
| 1886 | * list this inode will go on. |
| 1887 | */ |
| 1888 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 1889 | ASSERT(agino != 0); |
| 1890 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 1891 | ASSERT(agi->agi_unlinked[bucket_index]); |
| 1892 | ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); |
| 1893 | |
| 1894 | if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { |
| 1895 | /* |
| 1896 | * There is already another inode in the bucket we need |
| 1897 | * to add ourselves to. Add us at the front of the list. |
| 1898 | * Here we put the head pointer into our next pointer, |
| 1899 | * and then we fall through to point the head at us. |
| 1900 | */ |
| 1901 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); |
| 1902 | if (error) { |
| 1903 | return error; |
| 1904 | } |
| 1905 | ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); |
| 1906 | ASSERT(dip->di_next_unlinked); |
| 1907 | /* both on-disk, don't endian flip twice */ |
| 1908 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; |
| 1909 | offset = ip->i_boffset + |
| 1910 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 1911 | xfs_trans_inode_buf(tp, ibp); |
| 1912 | xfs_trans_log_buf(tp, ibp, offset, |
| 1913 | (offset + sizeof(xfs_agino_t) - 1)); |
| 1914 | xfs_inobp_check(mp, ibp); |
| 1915 | } |
| 1916 | |
| 1917 | /* |
| 1918 | * Point the bucket head pointer at the inode being inserted. |
| 1919 | */ |
| 1920 | ASSERT(agino != 0); |
| 1921 | INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); |
| 1922 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 1923 | (sizeof(xfs_agino_t) * bucket_index); |
| 1924 | xfs_trans_log_buf(tp, agibp, offset, |
| 1925 | (offset + sizeof(xfs_agino_t) - 1)); |
| 1926 | return 0; |
| 1927 | } |
| 1928 | |
| 1929 | /* |
| 1930 | * Pull the on-disk inode from the AGI unlinked list. |
| 1931 | */ |
| 1932 | STATIC int |
| 1933 | xfs_iunlink_remove( |
| 1934 | xfs_trans_t *tp, |
| 1935 | xfs_inode_t *ip) |
| 1936 | { |
| 1937 | xfs_ino_t next_ino; |
| 1938 | xfs_mount_t *mp; |
| 1939 | xfs_agi_t *agi; |
| 1940 | xfs_dinode_t *dip; |
| 1941 | xfs_buf_t *agibp; |
| 1942 | xfs_buf_t *ibp; |
| 1943 | xfs_agnumber_t agno; |
| 1944 | xfs_daddr_t agdaddr; |
| 1945 | xfs_agino_t agino; |
| 1946 | xfs_agino_t next_agino; |
| 1947 | xfs_buf_t *last_ibp; |
| 1948 | xfs_dinode_t *last_dip; |
| 1949 | short bucket_index; |
| 1950 | int offset, last_offset; |
| 1951 | int error; |
| 1952 | int agi_ok; |
| 1953 | |
| 1954 | /* |
| 1955 | * First pull the on-disk inode from the AGI unlinked list. |
| 1956 | */ |
| 1957 | mp = tp->t_mountp; |
| 1958 | |
| 1959 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| 1960 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); |
| 1961 | |
| 1962 | /* |
| 1963 | * Get the agi buffer first. It ensures lock ordering |
| 1964 | * on the list. |
| 1965 | */ |
| 1966 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, |
| 1967 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); |
| 1968 | if (error) { |
| 1969 | cmn_err(CE_WARN, |
| 1970 | "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", |
| 1971 | error, mp->m_fsname); |
| 1972 | return error; |
| 1973 | } |
| 1974 | /* |
| 1975 | * Validate the magic number of the agi block. |
| 1976 | */ |
| 1977 | agi = XFS_BUF_TO_AGI(agibp); |
| 1978 | agi_ok = |
| 1979 | INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && |
| 1980 | XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); |
| 1981 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, |
| 1982 | XFS_RANDOM_IUNLINK_REMOVE))) { |
| 1983 | XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, |
| 1984 | mp, agi); |
| 1985 | xfs_trans_brelse(tp, agibp); |
| 1986 | cmn_err(CE_WARN, |
| 1987 | "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", |
| 1988 | mp->m_fsname); |
| 1989 | return XFS_ERROR(EFSCORRUPTED); |
| 1990 | } |
| 1991 | /* |
| 1992 | * Get the index into the agi hash table for the |
| 1993 | * list this inode will go on. |
| 1994 | */ |
| 1995 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 1996 | ASSERT(agino != 0); |
| 1997 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 1998 | ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); |
| 1999 | ASSERT(agi->agi_unlinked[bucket_index]); |
| 2000 | |
| 2001 | if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { |
| 2002 | /* |
| 2003 | * We're at the head of the list. Get the inode's |
| 2004 | * on-disk buffer to see if there is anyone after us |
| 2005 | * on the list. Only modify our next pointer if it |
| 2006 | * is not already NULLAGINO. This saves us the overhead |
| 2007 | * of dealing with the buffer when there is no need to |
| 2008 | * change it. |
| 2009 | */ |
| 2010 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); |
| 2011 | if (error) { |
| 2012 | cmn_err(CE_WARN, |
| 2013 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", |
| 2014 | error, mp->m_fsname); |
| 2015 | return error; |
| 2016 | } |
| 2017 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); |
| 2018 | ASSERT(next_agino != 0); |
| 2019 | if (next_agino != NULLAGINO) { |
| 2020 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); |
| 2021 | offset = ip->i_boffset + |
| 2022 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 2023 | xfs_trans_inode_buf(tp, ibp); |
| 2024 | xfs_trans_log_buf(tp, ibp, offset, |
| 2025 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2026 | xfs_inobp_check(mp, ibp); |
| 2027 | } else { |
| 2028 | xfs_trans_brelse(tp, ibp); |
| 2029 | } |
| 2030 | /* |
| 2031 | * Point the bucket head pointer at the next inode. |
| 2032 | */ |
| 2033 | ASSERT(next_agino != 0); |
| 2034 | ASSERT(next_agino != agino); |
| 2035 | INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); |
| 2036 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 2037 | (sizeof(xfs_agino_t) * bucket_index); |
| 2038 | xfs_trans_log_buf(tp, agibp, offset, |
| 2039 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2040 | } else { |
| 2041 | /* |
| 2042 | * We need to search the list for the inode being freed. |
| 2043 | */ |
| 2044 | next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); |
| 2045 | last_ibp = NULL; |
| 2046 | while (next_agino != agino) { |
| 2047 | /* |
| 2048 | * If the last inode wasn't the one pointing to |
| 2049 | * us, then release its buffer since we're not |
| 2050 | * going to do anything with it. |
| 2051 | */ |
| 2052 | if (last_ibp != NULL) { |
| 2053 | xfs_trans_brelse(tp, last_ibp); |
| 2054 | } |
| 2055 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); |
| 2056 | error = xfs_inotobp(mp, tp, next_ino, &last_dip, |
| 2057 | &last_ibp, &last_offset); |
| 2058 | if (error) { |
| 2059 | cmn_err(CE_WARN, |
| 2060 | "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", |
| 2061 | error, mp->m_fsname); |
| 2062 | return error; |
| 2063 | } |
| 2064 | next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); |
| 2065 | ASSERT(next_agino != NULLAGINO); |
| 2066 | ASSERT(next_agino != 0); |
| 2067 | } |
| 2068 | /* |
| 2069 | * Now last_ibp points to the buffer previous to us on |
| 2070 | * the unlinked list. Pull us from the list. |
| 2071 | */ |
| 2072 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); |
| 2073 | if (error) { |
| 2074 | cmn_err(CE_WARN, |
| 2075 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", |
| 2076 | error, mp->m_fsname); |
| 2077 | return error; |
| 2078 | } |
| 2079 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); |
| 2080 | ASSERT(next_agino != 0); |
| 2081 | ASSERT(next_agino != agino); |
| 2082 | if (next_agino != NULLAGINO) { |
| 2083 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); |
| 2084 | offset = ip->i_boffset + |
| 2085 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 2086 | xfs_trans_inode_buf(tp, ibp); |
| 2087 | xfs_trans_log_buf(tp, ibp, offset, |
| 2088 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2089 | xfs_inobp_check(mp, ibp); |
| 2090 | } else { |
| 2091 | xfs_trans_brelse(tp, ibp); |
| 2092 | } |
| 2093 | /* |
| 2094 | * Point the previous inode on the list to the next inode. |
| 2095 | */ |
| 2096 | INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); |
| 2097 | ASSERT(next_agino != 0); |
| 2098 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); |
| 2099 | xfs_trans_inode_buf(tp, last_ibp); |
| 2100 | xfs_trans_log_buf(tp, last_ibp, offset, |
| 2101 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2102 | xfs_inobp_check(mp, last_ibp); |
| 2103 | } |
| 2104 | return 0; |
| 2105 | } |
| 2106 | |
| 2107 | static __inline__ int xfs_inode_clean(xfs_inode_t *ip) |
| 2108 | { |
| 2109 | return (((ip->i_itemp == NULL) || |
| 2110 | !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && |
| 2111 | (ip->i_update_core == 0)); |
| 2112 | } |
| 2113 | |
Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame^] | 2114 | STATIC void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2115 | xfs_ifree_cluster( |
| 2116 | xfs_inode_t *free_ip, |
| 2117 | xfs_trans_t *tp, |
| 2118 | xfs_ino_t inum) |
| 2119 | { |
| 2120 | xfs_mount_t *mp = free_ip->i_mount; |
| 2121 | int blks_per_cluster; |
| 2122 | int nbufs; |
| 2123 | int ninodes; |
| 2124 | int i, j, found, pre_flushed; |
| 2125 | xfs_daddr_t blkno; |
| 2126 | xfs_buf_t *bp; |
| 2127 | xfs_ihash_t *ih; |
| 2128 | xfs_inode_t *ip, **ip_found; |
| 2129 | xfs_inode_log_item_t *iip; |
| 2130 | xfs_log_item_t *lip; |
| 2131 | SPLDECL(s); |
| 2132 | |
| 2133 | if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { |
| 2134 | blks_per_cluster = 1; |
| 2135 | ninodes = mp->m_sb.sb_inopblock; |
| 2136 | nbufs = XFS_IALLOC_BLOCKS(mp); |
| 2137 | } else { |
| 2138 | blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / |
| 2139 | mp->m_sb.sb_blocksize; |
| 2140 | ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; |
| 2141 | nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; |
| 2142 | } |
| 2143 | |
| 2144 | ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); |
| 2145 | |
| 2146 | for (j = 0; j < nbufs; j++, inum += ninodes) { |
| 2147 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| 2148 | XFS_INO_TO_AGBNO(mp, inum)); |
| 2149 | |
| 2150 | |
| 2151 | /* |
| 2152 | * Look for each inode in memory and attempt to lock it, |
| 2153 | * we can be racing with flush and tail pushing here. |
| 2154 | * any inode we get the locks on, add to an array of |
| 2155 | * inode items to process later. |
| 2156 | * |
| 2157 | * The get the buffer lock, we could beat a flush |
| 2158 | * or tail pushing thread to the lock here, in which |
| 2159 | * case they will go looking for the inode buffer |
| 2160 | * and fail, we need some other form of interlock |
| 2161 | * here. |
| 2162 | */ |
| 2163 | found = 0; |
| 2164 | for (i = 0; i < ninodes; i++) { |
| 2165 | ih = XFS_IHASH(mp, inum + i); |
| 2166 | read_lock(&ih->ih_lock); |
| 2167 | for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { |
| 2168 | if (ip->i_ino == inum + i) |
| 2169 | break; |
| 2170 | } |
| 2171 | |
| 2172 | /* Inode not in memory or we found it already, |
| 2173 | * nothing to do |
| 2174 | */ |
| 2175 | if (!ip || (ip->i_flags & XFS_ISTALE)) { |
| 2176 | read_unlock(&ih->ih_lock); |
| 2177 | continue; |
| 2178 | } |
| 2179 | |
| 2180 | if (xfs_inode_clean(ip)) { |
| 2181 | read_unlock(&ih->ih_lock); |
| 2182 | continue; |
| 2183 | } |
| 2184 | |
| 2185 | /* If we can get the locks then add it to the |
| 2186 | * list, otherwise by the time we get the bp lock |
| 2187 | * below it will already be attached to the |
| 2188 | * inode buffer. |
| 2189 | */ |
| 2190 | |
| 2191 | /* This inode will already be locked - by us, lets |
| 2192 | * keep it that way. |
| 2193 | */ |
| 2194 | |
| 2195 | if (ip == free_ip) { |
| 2196 | if (xfs_iflock_nowait(ip)) { |
| 2197 | ip->i_flags |= XFS_ISTALE; |
| 2198 | |
| 2199 | if (xfs_inode_clean(ip)) { |
| 2200 | xfs_ifunlock(ip); |
| 2201 | } else { |
| 2202 | ip_found[found++] = ip; |
| 2203 | } |
| 2204 | } |
| 2205 | read_unlock(&ih->ih_lock); |
| 2206 | continue; |
| 2207 | } |
| 2208 | |
| 2209 | if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| 2210 | if (xfs_iflock_nowait(ip)) { |
| 2211 | ip->i_flags |= XFS_ISTALE; |
| 2212 | |
| 2213 | if (xfs_inode_clean(ip)) { |
| 2214 | xfs_ifunlock(ip); |
| 2215 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2216 | } else { |
| 2217 | ip_found[found++] = ip; |
| 2218 | } |
| 2219 | } else { |
| 2220 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2221 | } |
| 2222 | } |
| 2223 | |
| 2224 | read_unlock(&ih->ih_lock); |
| 2225 | } |
| 2226 | |
| 2227 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
| 2228 | mp->m_bsize * blks_per_cluster, |
| 2229 | XFS_BUF_LOCK); |
| 2230 | |
| 2231 | pre_flushed = 0; |
| 2232 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); |
| 2233 | while (lip) { |
| 2234 | if (lip->li_type == XFS_LI_INODE) { |
| 2235 | iip = (xfs_inode_log_item_t *)lip; |
| 2236 | ASSERT(iip->ili_logged == 1); |
| 2237 | lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; |
| 2238 | AIL_LOCK(mp,s); |
| 2239 | iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| 2240 | AIL_UNLOCK(mp, s); |
| 2241 | iip->ili_inode->i_flags |= XFS_ISTALE; |
| 2242 | pre_flushed++; |
| 2243 | } |
| 2244 | lip = lip->li_bio_list; |
| 2245 | } |
| 2246 | |
| 2247 | for (i = 0; i < found; i++) { |
| 2248 | ip = ip_found[i]; |
| 2249 | iip = ip->i_itemp; |
| 2250 | |
| 2251 | if (!iip) { |
| 2252 | ip->i_update_core = 0; |
| 2253 | xfs_ifunlock(ip); |
| 2254 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2255 | continue; |
| 2256 | } |
| 2257 | |
| 2258 | iip->ili_last_fields = iip->ili_format.ilf_fields; |
| 2259 | iip->ili_format.ilf_fields = 0; |
| 2260 | iip->ili_logged = 1; |
| 2261 | AIL_LOCK(mp,s); |
| 2262 | iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| 2263 | AIL_UNLOCK(mp, s); |
| 2264 | |
| 2265 | xfs_buf_attach_iodone(bp, |
| 2266 | (void(*)(xfs_buf_t*,xfs_log_item_t*)) |
| 2267 | xfs_istale_done, (xfs_log_item_t *)iip); |
| 2268 | if (ip != free_ip) { |
| 2269 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2270 | } |
| 2271 | } |
| 2272 | |
| 2273 | if (found || pre_flushed) |
| 2274 | xfs_trans_stale_inode_buf(tp, bp); |
| 2275 | xfs_trans_binval(tp, bp); |
| 2276 | } |
| 2277 | |
| 2278 | kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); |
| 2279 | } |
| 2280 | |
| 2281 | /* |
| 2282 | * This is called to return an inode to the inode free list. |
| 2283 | * The inode should already be truncated to 0 length and have |
| 2284 | * no pages associated with it. This routine also assumes that |
| 2285 | * the inode is already a part of the transaction. |
| 2286 | * |
| 2287 | * The on-disk copy of the inode will have been added to the list |
| 2288 | * of unlinked inodes in the AGI. We need to remove the inode from |
| 2289 | * that list atomically with respect to freeing it here. |
| 2290 | */ |
| 2291 | int |
| 2292 | xfs_ifree( |
| 2293 | xfs_trans_t *tp, |
| 2294 | xfs_inode_t *ip, |
| 2295 | xfs_bmap_free_t *flist) |
| 2296 | { |
| 2297 | int error; |
| 2298 | int delete; |
| 2299 | xfs_ino_t first_ino; |
| 2300 | |
| 2301 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); |
| 2302 | ASSERT(ip->i_transp == tp); |
| 2303 | ASSERT(ip->i_d.di_nlink == 0); |
| 2304 | ASSERT(ip->i_d.di_nextents == 0); |
| 2305 | ASSERT(ip->i_d.di_anextents == 0); |
| 2306 | ASSERT((ip->i_d.di_size == 0) || |
| 2307 | ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); |
| 2308 | ASSERT(ip->i_d.di_nblocks == 0); |
| 2309 | |
| 2310 | /* |
| 2311 | * Pull the on-disk inode from the AGI unlinked list. |
| 2312 | */ |
| 2313 | error = xfs_iunlink_remove(tp, ip); |
| 2314 | if (error != 0) { |
| 2315 | return error; |
| 2316 | } |
| 2317 | |
| 2318 | error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); |
| 2319 | if (error != 0) { |
| 2320 | return error; |
| 2321 | } |
| 2322 | ip->i_d.di_mode = 0; /* mark incore inode as free */ |
| 2323 | ip->i_d.di_flags = 0; |
| 2324 | ip->i_d.di_dmevmask = 0; |
| 2325 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ |
| 2326 | ip->i_df.if_ext_max = |
| 2327 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| 2328 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 2329 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 2330 | /* |
| 2331 | * Bump the generation count so no one will be confused |
| 2332 | * by reincarnations of this inode. |
| 2333 | */ |
| 2334 | ip->i_d.di_gen++; |
| 2335 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 2336 | |
| 2337 | if (delete) { |
| 2338 | xfs_ifree_cluster(ip, tp, first_ino); |
| 2339 | } |
| 2340 | |
| 2341 | return 0; |
| 2342 | } |
| 2343 | |
| 2344 | /* |
| 2345 | * Reallocate the space for if_broot based on the number of records |
| 2346 | * being added or deleted as indicated in rec_diff. Move the records |
| 2347 | * and pointers in if_broot to fit the new size. When shrinking this |
| 2348 | * will eliminate holes between the records and pointers created by |
| 2349 | * the caller. When growing this will create holes to be filled in |
| 2350 | * by the caller. |
| 2351 | * |
| 2352 | * The caller must not request to add more records than would fit in |
| 2353 | * the on-disk inode root. If the if_broot is currently NULL, then |
| 2354 | * if we adding records one will be allocated. The caller must also |
| 2355 | * not request that the number of records go below zero, although |
| 2356 | * it can go to zero. |
| 2357 | * |
| 2358 | * ip -- the inode whose if_broot area is changing |
| 2359 | * ext_diff -- the change in the number of records, positive or negative, |
| 2360 | * requested for the if_broot array. |
| 2361 | */ |
| 2362 | void |
| 2363 | xfs_iroot_realloc( |
| 2364 | xfs_inode_t *ip, |
| 2365 | int rec_diff, |
| 2366 | int whichfork) |
| 2367 | { |
| 2368 | int cur_max; |
| 2369 | xfs_ifork_t *ifp; |
| 2370 | xfs_bmbt_block_t *new_broot; |
| 2371 | int new_max; |
| 2372 | size_t new_size; |
| 2373 | char *np; |
| 2374 | char *op; |
| 2375 | |
| 2376 | /* |
| 2377 | * Handle the degenerate case quietly. |
| 2378 | */ |
| 2379 | if (rec_diff == 0) { |
| 2380 | return; |
| 2381 | } |
| 2382 | |
| 2383 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2384 | if (rec_diff > 0) { |
| 2385 | /* |
| 2386 | * If there wasn't any memory allocated before, just |
| 2387 | * allocate it now and get out. |
| 2388 | */ |
| 2389 | if (ifp->if_broot_bytes == 0) { |
| 2390 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); |
| 2391 | ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, |
| 2392 | KM_SLEEP); |
| 2393 | ifp->if_broot_bytes = (int)new_size; |
| 2394 | return; |
| 2395 | } |
| 2396 | |
| 2397 | /* |
| 2398 | * If there is already an existing if_broot, then we need |
| 2399 | * to realloc() it and shift the pointers to their new |
| 2400 | * location. The records don't change location because |
| 2401 | * they are kept butted up against the btree block header. |
| 2402 | */ |
| 2403 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); |
| 2404 | new_max = cur_max + rec_diff; |
| 2405 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); |
| 2406 | ifp->if_broot = (xfs_bmbt_block_t *) |
| 2407 | kmem_realloc(ifp->if_broot, |
| 2408 | new_size, |
| 2409 | (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ |
| 2410 | KM_SLEEP); |
| 2411 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| 2412 | ifp->if_broot_bytes); |
| 2413 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| 2414 | (int)new_size); |
| 2415 | ifp->if_broot_bytes = (int)new_size; |
| 2416 | ASSERT(ifp->if_broot_bytes <= |
| 2417 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); |
| 2418 | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); |
| 2419 | return; |
| 2420 | } |
| 2421 | |
| 2422 | /* |
| 2423 | * rec_diff is less than 0. In this case, we are shrinking the |
| 2424 | * if_broot buffer. It must already exist. If we go to zero |
| 2425 | * records, just get rid of the root and clear the status bit. |
| 2426 | */ |
| 2427 | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); |
| 2428 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); |
| 2429 | new_max = cur_max + rec_diff; |
| 2430 | ASSERT(new_max >= 0); |
| 2431 | if (new_max > 0) |
| 2432 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); |
| 2433 | else |
| 2434 | new_size = 0; |
| 2435 | if (new_size > 0) { |
| 2436 | new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); |
| 2437 | /* |
| 2438 | * First copy over the btree block header. |
| 2439 | */ |
| 2440 | memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); |
| 2441 | } else { |
| 2442 | new_broot = NULL; |
| 2443 | ifp->if_flags &= ~XFS_IFBROOT; |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * Only copy the records and pointers if there are any. |
| 2448 | */ |
| 2449 | if (new_max > 0) { |
| 2450 | /* |
| 2451 | * First copy the records. |
| 2452 | */ |
| 2453 | op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, |
| 2454 | ifp->if_broot_bytes); |
| 2455 | np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, |
| 2456 | (int)new_size); |
| 2457 | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); |
| 2458 | |
| 2459 | /* |
| 2460 | * Then copy the pointers. |
| 2461 | */ |
| 2462 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| 2463 | ifp->if_broot_bytes); |
| 2464 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, |
| 2465 | (int)new_size); |
| 2466 | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); |
| 2467 | } |
| 2468 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); |
| 2469 | ifp->if_broot = new_broot; |
| 2470 | ifp->if_broot_bytes = (int)new_size; |
| 2471 | ASSERT(ifp->if_broot_bytes <= |
| 2472 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); |
| 2473 | return; |
| 2474 | } |
| 2475 | |
| 2476 | |
| 2477 | /* |
| 2478 | * This is called when the amount of space needed for if_extents |
| 2479 | * is increased or decreased. The change in size is indicated by |
| 2480 | * the number of extents that need to be added or deleted in the |
| 2481 | * ext_diff parameter. |
| 2482 | * |
| 2483 | * If the amount of space needed has decreased below the size of the |
| 2484 | * inline buffer, then switch to using the inline buffer. Otherwise, |
| 2485 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer |
| 2486 | * to what is needed. |
| 2487 | * |
| 2488 | * ip -- the inode whose if_extents area is changing |
| 2489 | * ext_diff -- the change in the number of extents, positive or negative, |
| 2490 | * requested for the if_extents array. |
| 2491 | */ |
| 2492 | void |
| 2493 | xfs_iext_realloc( |
| 2494 | xfs_inode_t *ip, |
| 2495 | int ext_diff, |
| 2496 | int whichfork) |
| 2497 | { |
| 2498 | int byte_diff; |
| 2499 | xfs_ifork_t *ifp; |
| 2500 | int new_size; |
| 2501 | uint rnew_size; |
| 2502 | |
| 2503 | if (ext_diff == 0) { |
| 2504 | return; |
| 2505 | } |
| 2506 | |
| 2507 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2508 | byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); |
| 2509 | new_size = (int)ifp->if_bytes + byte_diff; |
| 2510 | ASSERT(new_size >= 0); |
| 2511 | |
| 2512 | if (new_size == 0) { |
| 2513 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { |
| 2514 | ASSERT(ifp->if_real_bytes != 0); |
| 2515 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); |
| 2516 | } |
| 2517 | ifp->if_u1.if_extents = NULL; |
| 2518 | rnew_size = 0; |
| 2519 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { |
| 2520 | /* |
| 2521 | * If the valid extents can fit in if_inline_ext, |
| 2522 | * copy them from the malloc'd vector and free it. |
| 2523 | */ |
| 2524 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { |
| 2525 | /* |
| 2526 | * For now, empty files are format EXTENTS, |
| 2527 | * so the if_extents pointer is null. |
| 2528 | */ |
| 2529 | if (ifp->if_u1.if_extents) { |
| 2530 | memcpy(ifp->if_u2.if_inline_ext, |
| 2531 | ifp->if_u1.if_extents, new_size); |
| 2532 | kmem_free(ifp->if_u1.if_extents, |
| 2533 | ifp->if_real_bytes); |
| 2534 | } |
| 2535 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
| 2536 | } |
| 2537 | rnew_size = 0; |
| 2538 | } else { |
| 2539 | rnew_size = new_size; |
| 2540 | if ((rnew_size & (rnew_size - 1)) != 0) |
| 2541 | rnew_size = xfs_iroundup(rnew_size); |
| 2542 | /* |
| 2543 | * Stuck with malloc/realloc. |
| 2544 | */ |
| 2545 | if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { |
| 2546 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) |
| 2547 | kmem_alloc(rnew_size, KM_SLEEP); |
| 2548 | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, |
| 2549 | sizeof(ifp->if_u2.if_inline_ext)); |
| 2550 | } else if (rnew_size != ifp->if_real_bytes) { |
| 2551 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) |
| 2552 | kmem_realloc(ifp->if_u1.if_extents, |
| 2553 | rnew_size, |
| 2554 | ifp->if_real_bytes, |
| 2555 | KM_NOFS); |
| 2556 | } |
| 2557 | } |
| 2558 | ifp->if_real_bytes = rnew_size; |
| 2559 | ifp->if_bytes = new_size; |
| 2560 | } |
| 2561 | |
| 2562 | |
| 2563 | /* |
| 2564 | * This is called when the amount of space needed for if_data |
| 2565 | * is increased or decreased. The change in size is indicated by |
| 2566 | * the number of bytes that need to be added or deleted in the |
| 2567 | * byte_diff parameter. |
| 2568 | * |
| 2569 | * If the amount of space needed has decreased below the size of the |
| 2570 | * inline buffer, then switch to using the inline buffer. Otherwise, |
| 2571 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer |
| 2572 | * to what is needed. |
| 2573 | * |
| 2574 | * ip -- the inode whose if_data area is changing |
| 2575 | * byte_diff -- the change in the number of bytes, positive or negative, |
| 2576 | * requested for the if_data array. |
| 2577 | */ |
| 2578 | void |
| 2579 | xfs_idata_realloc( |
| 2580 | xfs_inode_t *ip, |
| 2581 | int byte_diff, |
| 2582 | int whichfork) |
| 2583 | { |
| 2584 | xfs_ifork_t *ifp; |
| 2585 | int new_size; |
| 2586 | int real_size; |
| 2587 | |
| 2588 | if (byte_diff == 0) { |
| 2589 | return; |
| 2590 | } |
| 2591 | |
| 2592 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2593 | new_size = (int)ifp->if_bytes + byte_diff; |
| 2594 | ASSERT(new_size >= 0); |
| 2595 | |
| 2596 | if (new_size == 0) { |
| 2597 | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| 2598 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); |
| 2599 | } |
| 2600 | ifp->if_u1.if_data = NULL; |
| 2601 | real_size = 0; |
| 2602 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { |
| 2603 | /* |
| 2604 | * If the valid extents/data can fit in if_inline_ext/data, |
| 2605 | * copy them from the malloc'd vector and free it. |
| 2606 | */ |
| 2607 | if (ifp->if_u1.if_data == NULL) { |
| 2608 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| 2609 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| 2610 | ASSERT(ifp->if_real_bytes != 0); |
| 2611 | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, |
| 2612 | new_size); |
| 2613 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); |
| 2614 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| 2615 | } |
| 2616 | real_size = 0; |
| 2617 | } else { |
| 2618 | /* |
| 2619 | * Stuck with malloc/realloc. |
| 2620 | * For inline data, the underlying buffer must be |
| 2621 | * a multiple of 4 bytes in size so that it can be |
| 2622 | * logged and stay on word boundaries. We enforce |
| 2623 | * that here. |
| 2624 | */ |
| 2625 | real_size = roundup(new_size, 4); |
| 2626 | if (ifp->if_u1.if_data == NULL) { |
| 2627 | ASSERT(ifp->if_real_bytes == 0); |
| 2628 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| 2629 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| 2630 | /* |
| 2631 | * Only do the realloc if the underlying size |
| 2632 | * is really changing. |
| 2633 | */ |
| 2634 | if (ifp->if_real_bytes != real_size) { |
| 2635 | ifp->if_u1.if_data = |
| 2636 | kmem_realloc(ifp->if_u1.if_data, |
| 2637 | real_size, |
| 2638 | ifp->if_real_bytes, |
| 2639 | KM_SLEEP); |
| 2640 | } |
| 2641 | } else { |
| 2642 | ASSERT(ifp->if_real_bytes == 0); |
| 2643 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| 2644 | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, |
| 2645 | ifp->if_bytes); |
| 2646 | } |
| 2647 | } |
| 2648 | ifp->if_real_bytes = real_size; |
| 2649 | ifp->if_bytes = new_size; |
| 2650 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); |
| 2651 | } |
| 2652 | |
| 2653 | |
| 2654 | |
| 2655 | |
| 2656 | /* |
| 2657 | * Map inode to disk block and offset. |
| 2658 | * |
| 2659 | * mp -- the mount point structure for the current file system |
| 2660 | * tp -- the current transaction |
| 2661 | * ino -- the inode number of the inode to be located |
| 2662 | * imap -- this structure is filled in with the information necessary |
| 2663 | * to retrieve the given inode from disk |
| 2664 | * flags -- flags to pass to xfs_dilocate indicating whether or not |
| 2665 | * lookups in the inode btree were OK or not |
| 2666 | */ |
| 2667 | int |
| 2668 | xfs_imap( |
| 2669 | xfs_mount_t *mp, |
| 2670 | xfs_trans_t *tp, |
| 2671 | xfs_ino_t ino, |
| 2672 | xfs_imap_t *imap, |
| 2673 | uint flags) |
| 2674 | { |
| 2675 | xfs_fsblock_t fsbno; |
| 2676 | int len; |
| 2677 | int off; |
| 2678 | int error; |
| 2679 | |
| 2680 | fsbno = imap->im_blkno ? |
| 2681 | XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; |
| 2682 | error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); |
| 2683 | if (error != 0) { |
| 2684 | return error; |
| 2685 | } |
| 2686 | imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); |
| 2687 | imap->im_len = XFS_FSB_TO_BB(mp, len); |
| 2688 | imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); |
| 2689 | imap->im_ioffset = (ushort)off; |
| 2690 | imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); |
| 2691 | return 0; |
| 2692 | } |
| 2693 | |
| 2694 | void |
| 2695 | xfs_idestroy_fork( |
| 2696 | xfs_inode_t *ip, |
| 2697 | int whichfork) |
| 2698 | { |
| 2699 | xfs_ifork_t *ifp; |
| 2700 | |
| 2701 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2702 | if (ifp->if_broot != NULL) { |
| 2703 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); |
| 2704 | ifp->if_broot = NULL; |
| 2705 | } |
| 2706 | |
| 2707 | /* |
| 2708 | * If the format is local, then we can't have an extents |
| 2709 | * array so just look for an inline data array. If we're |
| 2710 | * not local then we may or may not have an extents list, |
| 2711 | * so check and free it up if we do. |
| 2712 | */ |
| 2713 | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { |
| 2714 | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && |
| 2715 | (ifp->if_u1.if_data != NULL)) { |
| 2716 | ASSERT(ifp->if_real_bytes != 0); |
| 2717 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); |
| 2718 | ifp->if_u1.if_data = NULL; |
| 2719 | ifp->if_real_bytes = 0; |
| 2720 | } |
| 2721 | } else if ((ifp->if_flags & XFS_IFEXTENTS) && |
| 2722 | (ifp->if_u1.if_extents != NULL) && |
| 2723 | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { |
| 2724 | ASSERT(ifp->if_real_bytes != 0); |
| 2725 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); |
| 2726 | ifp->if_u1.if_extents = NULL; |
| 2727 | ifp->if_real_bytes = 0; |
| 2728 | } |
| 2729 | ASSERT(ifp->if_u1.if_extents == NULL || |
| 2730 | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); |
| 2731 | ASSERT(ifp->if_real_bytes == 0); |
| 2732 | if (whichfork == XFS_ATTR_FORK) { |
| 2733 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); |
| 2734 | ip->i_afp = NULL; |
| 2735 | } |
| 2736 | } |
| 2737 | |
| 2738 | /* |
| 2739 | * This is called free all the memory associated with an inode. |
| 2740 | * It must free the inode itself and any buffers allocated for |
| 2741 | * if_extents/if_data and if_broot. It must also free the lock |
| 2742 | * associated with the inode. |
| 2743 | */ |
| 2744 | void |
| 2745 | xfs_idestroy( |
| 2746 | xfs_inode_t *ip) |
| 2747 | { |
| 2748 | |
| 2749 | switch (ip->i_d.di_mode & S_IFMT) { |
| 2750 | case S_IFREG: |
| 2751 | case S_IFDIR: |
| 2752 | case S_IFLNK: |
| 2753 | xfs_idestroy_fork(ip, XFS_DATA_FORK); |
| 2754 | break; |
| 2755 | } |
| 2756 | if (ip->i_afp) |
| 2757 | xfs_idestroy_fork(ip, XFS_ATTR_FORK); |
| 2758 | mrfree(&ip->i_lock); |
| 2759 | mrfree(&ip->i_iolock); |
| 2760 | freesema(&ip->i_flock); |
| 2761 | #ifdef XFS_BMAP_TRACE |
| 2762 | ktrace_free(ip->i_xtrace); |
| 2763 | #endif |
| 2764 | #ifdef XFS_BMBT_TRACE |
| 2765 | ktrace_free(ip->i_btrace); |
| 2766 | #endif |
| 2767 | #ifdef XFS_RW_TRACE |
| 2768 | ktrace_free(ip->i_rwtrace); |
| 2769 | #endif |
| 2770 | #ifdef XFS_ILOCK_TRACE |
| 2771 | ktrace_free(ip->i_lock_trace); |
| 2772 | #endif |
| 2773 | #ifdef XFS_DIR2_TRACE |
| 2774 | ktrace_free(ip->i_dir_trace); |
| 2775 | #endif |
| 2776 | if (ip->i_itemp) { |
| 2777 | /* XXXdpd should be able to assert this but shutdown |
| 2778 | * is leaving the AIL behind. */ |
| 2779 | ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || |
| 2780 | XFS_FORCED_SHUTDOWN(ip->i_mount)); |
| 2781 | xfs_inode_item_destroy(ip); |
| 2782 | } |
| 2783 | kmem_zone_free(xfs_inode_zone, ip); |
| 2784 | } |
| 2785 | |
| 2786 | |
| 2787 | /* |
| 2788 | * Increment the pin count of the given buffer. |
| 2789 | * This value is protected by ipinlock spinlock in the mount structure. |
| 2790 | */ |
| 2791 | void |
| 2792 | xfs_ipin( |
| 2793 | xfs_inode_t *ip) |
| 2794 | { |
| 2795 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); |
| 2796 | |
| 2797 | atomic_inc(&ip->i_pincount); |
| 2798 | } |
| 2799 | |
| 2800 | /* |
| 2801 | * Decrement the pin count of the given inode, and wake up |
| 2802 | * anyone in xfs_iwait_unpin() if the count goes to 0. The |
| 2803 | * inode must have been previoulsy pinned with a call to xfs_ipin(). |
| 2804 | */ |
| 2805 | void |
| 2806 | xfs_iunpin( |
| 2807 | xfs_inode_t *ip) |
| 2808 | { |
| 2809 | ASSERT(atomic_read(&ip->i_pincount) > 0); |
| 2810 | |
| 2811 | if (atomic_dec_and_test(&ip->i_pincount)) { |
| 2812 | vnode_t *vp = XFS_ITOV_NULL(ip); |
| 2813 | |
| 2814 | /* make sync come back and flush this inode */ |
| 2815 | if (vp) { |
| 2816 | struct inode *inode = LINVFS_GET_IP(vp); |
| 2817 | |
| 2818 | if (!(inode->i_state & I_NEW)) |
| 2819 | mark_inode_dirty_sync(inode); |
| 2820 | } |
| 2821 | |
| 2822 | wake_up(&ip->i_ipin_wait); |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | /* |
| 2827 | * This is called to wait for the given inode to be unpinned. |
| 2828 | * It will sleep until this happens. The caller must have the |
| 2829 | * inode locked in at least shared mode so that the buffer cannot |
| 2830 | * be subsequently pinned once someone is waiting for it to be |
| 2831 | * unpinned. |
| 2832 | */ |
Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame^] | 2833 | STATIC void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2834 | xfs_iunpin_wait( |
| 2835 | xfs_inode_t *ip) |
| 2836 | { |
| 2837 | xfs_inode_log_item_t *iip; |
| 2838 | xfs_lsn_t lsn; |
| 2839 | |
| 2840 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); |
| 2841 | |
| 2842 | if (atomic_read(&ip->i_pincount) == 0) { |
| 2843 | return; |
| 2844 | } |
| 2845 | |
| 2846 | iip = ip->i_itemp; |
| 2847 | if (iip && iip->ili_last_lsn) { |
| 2848 | lsn = iip->ili_last_lsn; |
| 2849 | } else { |
| 2850 | lsn = (xfs_lsn_t)0; |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | * Give the log a push so we don't wait here too long. |
| 2855 | */ |
| 2856 | xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); |
| 2857 | |
| 2858 | wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); |
| 2859 | } |
| 2860 | |
| 2861 | |
| 2862 | /* |
| 2863 | * xfs_iextents_copy() |
| 2864 | * |
| 2865 | * This is called to copy the REAL extents (as opposed to the delayed |
| 2866 | * allocation extents) from the inode into the given buffer. It |
| 2867 | * returns the number of bytes copied into the buffer. |
| 2868 | * |
| 2869 | * If there are no delayed allocation extents, then we can just |
| 2870 | * memcpy() the extents into the buffer. Otherwise, we need to |
| 2871 | * examine each extent in turn and skip those which are delayed. |
| 2872 | */ |
| 2873 | int |
| 2874 | xfs_iextents_copy( |
| 2875 | xfs_inode_t *ip, |
| 2876 | xfs_bmbt_rec_t *buffer, |
| 2877 | int whichfork) |
| 2878 | { |
| 2879 | int copied; |
| 2880 | xfs_bmbt_rec_t *dest_ep; |
| 2881 | xfs_bmbt_rec_t *ep; |
| 2882 | #ifdef XFS_BMAP_TRACE |
| 2883 | static char fname[] = "xfs_iextents_copy"; |
| 2884 | #endif |
| 2885 | int i; |
| 2886 | xfs_ifork_t *ifp; |
| 2887 | int nrecs; |
| 2888 | xfs_fsblock_t start_block; |
| 2889 | |
| 2890 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2891 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); |
| 2892 | ASSERT(ifp->if_bytes > 0); |
| 2893 | |
| 2894 | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| 2895 | xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); |
| 2896 | ASSERT(nrecs > 0); |
| 2897 | |
| 2898 | /* |
| 2899 | * There are some delayed allocation extents in the |
| 2900 | * inode, so copy the extents one at a time and skip |
| 2901 | * the delayed ones. There must be at least one |
| 2902 | * non-delayed extent. |
| 2903 | */ |
| 2904 | ep = ifp->if_u1.if_extents; |
| 2905 | dest_ep = buffer; |
| 2906 | copied = 0; |
| 2907 | for (i = 0; i < nrecs; i++) { |
| 2908 | start_block = xfs_bmbt_get_startblock(ep); |
| 2909 | if (ISNULLSTARTBLOCK(start_block)) { |
| 2910 | /* |
| 2911 | * It's a delayed allocation extent, so skip it. |
| 2912 | */ |
| 2913 | ep++; |
| 2914 | continue; |
| 2915 | } |
| 2916 | |
| 2917 | /* Translate to on disk format */ |
| 2918 | put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), |
| 2919 | (__uint64_t*)&dest_ep->l0); |
| 2920 | put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), |
| 2921 | (__uint64_t*)&dest_ep->l1); |
| 2922 | dest_ep++; |
| 2923 | ep++; |
| 2924 | copied++; |
| 2925 | } |
| 2926 | ASSERT(copied != 0); |
| 2927 | xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); |
| 2928 | |
| 2929 | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); |
| 2930 | } |
| 2931 | |
| 2932 | /* |
| 2933 | * Each of the following cases stores data into the same region |
| 2934 | * of the on-disk inode, so only one of them can be valid at |
| 2935 | * any given time. While it is possible to have conflicting formats |
| 2936 | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is |
| 2937 | * in EXTENTS format, this can only happen when the fork has |
| 2938 | * changed formats after being modified but before being flushed. |
| 2939 | * In these cases, the format always takes precedence, because the |
| 2940 | * format indicates the current state of the fork. |
| 2941 | */ |
| 2942 | /*ARGSUSED*/ |
| 2943 | STATIC int |
| 2944 | xfs_iflush_fork( |
| 2945 | xfs_inode_t *ip, |
| 2946 | xfs_dinode_t *dip, |
| 2947 | xfs_inode_log_item_t *iip, |
| 2948 | int whichfork, |
| 2949 | xfs_buf_t *bp) |
| 2950 | { |
| 2951 | char *cp; |
| 2952 | xfs_ifork_t *ifp; |
| 2953 | xfs_mount_t *mp; |
| 2954 | #ifdef XFS_TRANS_DEBUG |
| 2955 | int first; |
| 2956 | #endif |
| 2957 | static const short brootflag[2] = |
| 2958 | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; |
| 2959 | static const short dataflag[2] = |
| 2960 | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; |
| 2961 | static const short extflag[2] = |
| 2962 | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; |
| 2963 | |
| 2964 | if (iip == NULL) |
| 2965 | return 0; |
| 2966 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2967 | /* |
| 2968 | * This can happen if we gave up in iformat in an error path, |
| 2969 | * for the attribute fork. |
| 2970 | */ |
| 2971 | if (ifp == NULL) { |
| 2972 | ASSERT(whichfork == XFS_ATTR_FORK); |
| 2973 | return 0; |
| 2974 | } |
| 2975 | cp = XFS_DFORK_PTR(dip, whichfork); |
| 2976 | mp = ip->i_mount; |
| 2977 | switch (XFS_IFORK_FORMAT(ip, whichfork)) { |
| 2978 | case XFS_DINODE_FMT_LOCAL: |
| 2979 | if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && |
| 2980 | (ifp->if_bytes > 0)) { |
| 2981 | ASSERT(ifp->if_u1.if_data != NULL); |
| 2982 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); |
| 2983 | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); |
| 2984 | } |
| 2985 | if (whichfork == XFS_DATA_FORK) { |
| 2986 | if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { |
| 2987 | XFS_ERROR_REPORT("xfs_iflush_fork", |
| 2988 | XFS_ERRLEVEL_LOW, mp); |
| 2989 | return XFS_ERROR(EFSCORRUPTED); |
| 2990 | } |
| 2991 | } |
| 2992 | break; |
| 2993 | |
| 2994 | case XFS_DINODE_FMT_EXTENTS: |
| 2995 | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || |
| 2996 | !(iip->ili_format.ilf_fields & extflag[whichfork])); |
| 2997 | ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); |
| 2998 | ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); |
| 2999 | if ((iip->ili_format.ilf_fields & extflag[whichfork]) && |
| 3000 | (ifp->if_bytes > 0)) { |
| 3001 | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); |
| 3002 | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, |
| 3003 | whichfork); |
| 3004 | } |
| 3005 | break; |
| 3006 | |
| 3007 | case XFS_DINODE_FMT_BTREE: |
| 3008 | if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && |
| 3009 | (ifp->if_broot_bytes > 0)) { |
| 3010 | ASSERT(ifp->if_broot != NULL); |
| 3011 | ASSERT(ifp->if_broot_bytes <= |
| 3012 | (XFS_IFORK_SIZE(ip, whichfork) + |
| 3013 | XFS_BROOT_SIZE_ADJ)); |
| 3014 | xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, |
| 3015 | (xfs_bmdr_block_t *)cp, |
| 3016 | XFS_DFORK_SIZE(dip, mp, whichfork)); |
| 3017 | } |
| 3018 | break; |
| 3019 | |
| 3020 | case XFS_DINODE_FMT_DEV: |
| 3021 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { |
| 3022 | ASSERT(whichfork == XFS_DATA_FORK); |
| 3023 | INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); |
| 3024 | } |
| 3025 | break; |
| 3026 | |
| 3027 | case XFS_DINODE_FMT_UUID: |
| 3028 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { |
| 3029 | ASSERT(whichfork == XFS_DATA_FORK); |
| 3030 | memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, |
| 3031 | sizeof(uuid_t)); |
| 3032 | } |
| 3033 | break; |
| 3034 | |
| 3035 | default: |
| 3036 | ASSERT(0); |
| 3037 | break; |
| 3038 | } |
| 3039 | |
| 3040 | return 0; |
| 3041 | } |
| 3042 | |
| 3043 | /* |
| 3044 | * xfs_iflush() will write a modified inode's changes out to the |
| 3045 | * inode's on disk home. The caller must have the inode lock held |
| 3046 | * in at least shared mode and the inode flush semaphore must be |
| 3047 | * held as well. The inode lock will still be held upon return from |
| 3048 | * the call and the caller is free to unlock it. |
| 3049 | * The inode flush lock will be unlocked when the inode reaches the disk. |
| 3050 | * The flags indicate how the inode's buffer should be written out. |
| 3051 | */ |
| 3052 | int |
| 3053 | xfs_iflush( |
| 3054 | xfs_inode_t *ip, |
| 3055 | uint flags) |
| 3056 | { |
| 3057 | xfs_inode_log_item_t *iip; |
| 3058 | xfs_buf_t *bp; |
| 3059 | xfs_dinode_t *dip; |
| 3060 | xfs_mount_t *mp; |
| 3061 | int error; |
| 3062 | /* REFERENCED */ |
| 3063 | xfs_chash_t *ch; |
| 3064 | xfs_inode_t *iq; |
| 3065 | int clcount; /* count of inodes clustered */ |
| 3066 | int bufwasdelwri; |
| 3067 | enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; |
| 3068 | SPLDECL(s); |
| 3069 | |
| 3070 | XFS_STATS_INC(xs_iflush_count); |
| 3071 | |
| 3072 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); |
| 3073 | ASSERT(valusema(&ip->i_flock) <= 0); |
| 3074 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3075 | ip->i_d.di_nextents > ip->i_df.if_ext_max); |
| 3076 | |
| 3077 | iip = ip->i_itemp; |
| 3078 | mp = ip->i_mount; |
| 3079 | |
| 3080 | /* |
| 3081 | * If the inode isn't dirty, then just release the inode |
| 3082 | * flush lock and do nothing. |
| 3083 | */ |
| 3084 | if ((ip->i_update_core == 0) && |
| 3085 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { |
| 3086 | ASSERT((iip != NULL) ? |
| 3087 | !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); |
| 3088 | xfs_ifunlock(ip); |
| 3089 | return 0; |
| 3090 | } |
| 3091 | |
| 3092 | /* |
| 3093 | * We can't flush the inode until it is unpinned, so |
| 3094 | * wait for it. We know noone new can pin it, because |
| 3095 | * we are holding the inode lock shared and you need |
| 3096 | * to hold it exclusively to pin the inode. |
| 3097 | */ |
| 3098 | xfs_iunpin_wait(ip); |
| 3099 | |
| 3100 | /* |
| 3101 | * This may have been unpinned because the filesystem is shutting |
| 3102 | * down forcibly. If that's the case we must not write this inode |
| 3103 | * to disk, because the log record didn't make it to disk! |
| 3104 | */ |
| 3105 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 3106 | ip->i_update_core = 0; |
| 3107 | if (iip) |
| 3108 | iip->ili_format.ilf_fields = 0; |
| 3109 | xfs_ifunlock(ip); |
| 3110 | return XFS_ERROR(EIO); |
| 3111 | } |
| 3112 | |
| 3113 | /* |
| 3114 | * Get the buffer containing the on-disk inode. |
| 3115 | */ |
| 3116 | error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); |
| 3117 | if (error != 0) { |
| 3118 | xfs_ifunlock(ip); |
| 3119 | return error; |
| 3120 | } |
| 3121 | |
| 3122 | /* |
| 3123 | * Decide how buffer will be flushed out. This is done before |
| 3124 | * the call to xfs_iflush_int because this field is zeroed by it. |
| 3125 | */ |
| 3126 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { |
| 3127 | /* |
| 3128 | * Flush out the inode buffer according to the directions |
| 3129 | * of the caller. In the cases where the caller has given |
| 3130 | * us a choice choose the non-delwri case. This is because |
| 3131 | * the inode is in the AIL and we need to get it out soon. |
| 3132 | */ |
| 3133 | switch (flags) { |
| 3134 | case XFS_IFLUSH_SYNC: |
| 3135 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: |
| 3136 | flags = 0; |
| 3137 | break; |
| 3138 | case XFS_IFLUSH_ASYNC: |
| 3139 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: |
| 3140 | flags = INT_ASYNC; |
| 3141 | break; |
| 3142 | case XFS_IFLUSH_DELWRI: |
| 3143 | flags = INT_DELWRI; |
| 3144 | break; |
| 3145 | default: |
| 3146 | ASSERT(0); |
| 3147 | flags = 0; |
| 3148 | break; |
| 3149 | } |
| 3150 | } else { |
| 3151 | switch (flags) { |
| 3152 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: |
| 3153 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: |
| 3154 | case XFS_IFLUSH_DELWRI: |
| 3155 | flags = INT_DELWRI; |
| 3156 | break; |
| 3157 | case XFS_IFLUSH_ASYNC: |
| 3158 | flags = INT_ASYNC; |
| 3159 | break; |
| 3160 | case XFS_IFLUSH_SYNC: |
| 3161 | flags = 0; |
| 3162 | break; |
| 3163 | default: |
| 3164 | ASSERT(0); |
| 3165 | flags = 0; |
| 3166 | break; |
| 3167 | } |
| 3168 | } |
| 3169 | |
| 3170 | /* |
| 3171 | * First flush out the inode that xfs_iflush was called with. |
| 3172 | */ |
| 3173 | error = xfs_iflush_int(ip, bp); |
| 3174 | if (error) { |
| 3175 | goto corrupt_out; |
| 3176 | } |
| 3177 | |
| 3178 | /* |
| 3179 | * inode clustering: |
| 3180 | * see if other inodes can be gathered into this write |
| 3181 | */ |
| 3182 | |
| 3183 | ip->i_chash->chl_buf = bp; |
| 3184 | |
| 3185 | ch = XFS_CHASH(mp, ip->i_blkno); |
| 3186 | s = mutex_spinlock(&ch->ch_lock); |
| 3187 | |
| 3188 | clcount = 0; |
| 3189 | for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { |
| 3190 | /* |
| 3191 | * Do an un-protected check to see if the inode is dirty and |
| 3192 | * is a candidate for flushing. These checks will be repeated |
| 3193 | * later after the appropriate locks are acquired. |
| 3194 | */ |
| 3195 | iip = iq->i_itemp; |
| 3196 | if ((iq->i_update_core == 0) && |
| 3197 | ((iip == NULL) || |
| 3198 | !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && |
| 3199 | xfs_ipincount(iq) == 0) { |
| 3200 | continue; |
| 3201 | } |
| 3202 | |
| 3203 | /* |
| 3204 | * Try to get locks. If any are unavailable, |
| 3205 | * then this inode cannot be flushed and is skipped. |
| 3206 | */ |
| 3207 | |
| 3208 | /* get inode locks (just i_lock) */ |
| 3209 | if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { |
| 3210 | /* get inode flush lock */ |
| 3211 | if (xfs_iflock_nowait(iq)) { |
| 3212 | /* check if pinned */ |
| 3213 | if (xfs_ipincount(iq) == 0) { |
| 3214 | /* arriving here means that |
| 3215 | * this inode can be flushed. |
| 3216 | * first re-check that it's |
| 3217 | * dirty |
| 3218 | */ |
| 3219 | iip = iq->i_itemp; |
| 3220 | if ((iq->i_update_core != 0)|| |
| 3221 | ((iip != NULL) && |
| 3222 | (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { |
| 3223 | clcount++; |
| 3224 | error = xfs_iflush_int(iq, bp); |
| 3225 | if (error) { |
| 3226 | xfs_iunlock(iq, |
| 3227 | XFS_ILOCK_SHARED); |
| 3228 | goto cluster_corrupt_out; |
| 3229 | } |
| 3230 | } else { |
| 3231 | xfs_ifunlock(iq); |
| 3232 | } |
| 3233 | } else { |
| 3234 | xfs_ifunlock(iq); |
| 3235 | } |
| 3236 | } |
| 3237 | xfs_iunlock(iq, XFS_ILOCK_SHARED); |
| 3238 | } |
| 3239 | } |
| 3240 | mutex_spinunlock(&ch->ch_lock, s); |
| 3241 | |
| 3242 | if (clcount) { |
| 3243 | XFS_STATS_INC(xs_icluster_flushcnt); |
| 3244 | XFS_STATS_ADD(xs_icluster_flushinode, clcount); |
| 3245 | } |
| 3246 | |
| 3247 | /* |
| 3248 | * If the buffer is pinned then push on the log so we won't |
| 3249 | * get stuck waiting in the write for too long. |
| 3250 | */ |
| 3251 | if (XFS_BUF_ISPINNED(bp)){ |
| 3252 | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); |
| 3253 | } |
| 3254 | |
| 3255 | if (flags & INT_DELWRI) { |
| 3256 | xfs_bdwrite(mp, bp); |
| 3257 | } else if (flags & INT_ASYNC) { |
| 3258 | xfs_bawrite(mp, bp); |
| 3259 | } else { |
| 3260 | error = xfs_bwrite(mp, bp); |
| 3261 | } |
| 3262 | return error; |
| 3263 | |
| 3264 | corrupt_out: |
| 3265 | xfs_buf_relse(bp); |
| 3266 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); |
| 3267 | xfs_iflush_abort(ip); |
| 3268 | /* |
| 3269 | * Unlocks the flush lock |
| 3270 | */ |
| 3271 | return XFS_ERROR(EFSCORRUPTED); |
| 3272 | |
| 3273 | cluster_corrupt_out: |
| 3274 | /* Corruption detected in the clustering loop. Invalidate the |
| 3275 | * inode buffer and shut down the filesystem. |
| 3276 | */ |
| 3277 | mutex_spinunlock(&ch->ch_lock, s); |
| 3278 | |
| 3279 | /* |
| 3280 | * Clean up the buffer. If it was B_DELWRI, just release it -- |
| 3281 | * brelse can handle it with no problems. If not, shut down the |
| 3282 | * filesystem before releasing the buffer. |
| 3283 | */ |
| 3284 | if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { |
| 3285 | xfs_buf_relse(bp); |
| 3286 | } |
| 3287 | |
| 3288 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); |
| 3289 | |
| 3290 | if(!bufwasdelwri) { |
| 3291 | /* |
| 3292 | * Just like incore_relse: if we have b_iodone functions, |
| 3293 | * mark the buffer as an error and call them. Otherwise |
| 3294 | * mark it as stale and brelse. |
| 3295 | */ |
| 3296 | if (XFS_BUF_IODONE_FUNC(bp)) { |
| 3297 | XFS_BUF_CLR_BDSTRAT_FUNC(bp); |
| 3298 | XFS_BUF_UNDONE(bp); |
| 3299 | XFS_BUF_STALE(bp); |
| 3300 | XFS_BUF_SHUT(bp); |
| 3301 | XFS_BUF_ERROR(bp,EIO); |
| 3302 | xfs_biodone(bp); |
| 3303 | } else { |
| 3304 | XFS_BUF_STALE(bp); |
| 3305 | xfs_buf_relse(bp); |
| 3306 | } |
| 3307 | } |
| 3308 | |
| 3309 | xfs_iflush_abort(iq); |
| 3310 | /* |
| 3311 | * Unlocks the flush lock |
| 3312 | */ |
| 3313 | return XFS_ERROR(EFSCORRUPTED); |
| 3314 | } |
| 3315 | |
| 3316 | |
| 3317 | STATIC int |
| 3318 | xfs_iflush_int( |
| 3319 | xfs_inode_t *ip, |
| 3320 | xfs_buf_t *bp) |
| 3321 | { |
| 3322 | xfs_inode_log_item_t *iip; |
| 3323 | xfs_dinode_t *dip; |
| 3324 | xfs_mount_t *mp; |
| 3325 | #ifdef XFS_TRANS_DEBUG |
| 3326 | int first; |
| 3327 | #endif |
| 3328 | SPLDECL(s); |
| 3329 | |
| 3330 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); |
| 3331 | ASSERT(valusema(&ip->i_flock) <= 0); |
| 3332 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3333 | ip->i_d.di_nextents > ip->i_df.if_ext_max); |
| 3334 | |
| 3335 | iip = ip->i_itemp; |
| 3336 | mp = ip->i_mount; |
| 3337 | |
| 3338 | |
| 3339 | /* |
| 3340 | * If the inode isn't dirty, then just release the inode |
| 3341 | * flush lock and do nothing. |
| 3342 | */ |
| 3343 | if ((ip->i_update_core == 0) && |
| 3344 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { |
| 3345 | xfs_ifunlock(ip); |
| 3346 | return 0; |
| 3347 | } |
| 3348 | |
| 3349 | /* set *dip = inode's place in the buffer */ |
| 3350 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); |
| 3351 | |
| 3352 | /* |
| 3353 | * Clear i_update_core before copying out the data. |
| 3354 | * This is for coordination with our timestamp updates |
| 3355 | * that don't hold the inode lock. They will always |
| 3356 | * update the timestamps BEFORE setting i_update_core, |
| 3357 | * so if we clear i_update_core after they set it we |
| 3358 | * are guaranteed to see their updates to the timestamps. |
| 3359 | * I believe that this depends on strongly ordered memory |
| 3360 | * semantics, but we have that. We use the SYNCHRONIZE |
| 3361 | * macro to make sure that the compiler does not reorder |
| 3362 | * the i_update_core access below the data copy below. |
| 3363 | */ |
| 3364 | ip->i_update_core = 0; |
| 3365 | SYNCHRONIZE(); |
| 3366 | |
| 3367 | if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, |
| 3368 | mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { |
| 3369 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3370 | "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", |
| 3371 | ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); |
| 3372 | goto corrupt_out; |
| 3373 | } |
| 3374 | if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, |
| 3375 | mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { |
| 3376 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3377 | "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", |
| 3378 | ip->i_ino, ip, ip->i_d.di_magic); |
| 3379 | goto corrupt_out; |
| 3380 | } |
| 3381 | if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { |
| 3382 | if (XFS_TEST_ERROR( |
| 3383 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3384 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), |
| 3385 | mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { |
| 3386 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3387 | "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", |
| 3388 | ip->i_ino, ip); |
| 3389 | goto corrupt_out; |
| 3390 | } |
| 3391 | } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { |
| 3392 | if (XFS_TEST_ERROR( |
| 3393 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3394 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| 3395 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), |
| 3396 | mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { |
| 3397 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3398 | "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", |
| 3399 | ip->i_ino, ip); |
| 3400 | goto corrupt_out; |
| 3401 | } |
| 3402 | } |
| 3403 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > |
| 3404 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, |
| 3405 | XFS_RANDOM_IFLUSH_5)) { |
| 3406 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3407 | "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", |
| 3408 | ip->i_ino, |
| 3409 | ip->i_d.di_nextents + ip->i_d.di_anextents, |
| 3410 | ip->i_d.di_nblocks, |
| 3411 | ip); |
| 3412 | goto corrupt_out; |
| 3413 | } |
| 3414 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, |
| 3415 | mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { |
| 3416 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| 3417 | "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", |
| 3418 | ip->i_ino, ip->i_d.di_forkoff, ip); |
| 3419 | goto corrupt_out; |
| 3420 | } |
| 3421 | /* |
| 3422 | * bump the flush iteration count, used to detect flushes which |
| 3423 | * postdate a log record during recovery. |
| 3424 | */ |
| 3425 | |
| 3426 | ip->i_d.di_flushiter++; |
| 3427 | |
| 3428 | /* |
| 3429 | * Copy the dirty parts of the inode into the on-disk |
| 3430 | * inode. We always copy out the core of the inode, |
| 3431 | * because if the inode is dirty at all the core must |
| 3432 | * be. |
| 3433 | */ |
| 3434 | xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); |
| 3435 | |
| 3436 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| 3437 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) |
| 3438 | ip->i_d.di_flushiter = 0; |
| 3439 | |
| 3440 | /* |
| 3441 | * If this is really an old format inode and the superblock version |
| 3442 | * has not been updated to support only new format inodes, then |
| 3443 | * convert back to the old inode format. If the superblock version |
| 3444 | * has been updated, then make the conversion permanent. |
| 3445 | */ |
| 3446 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || |
| 3447 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); |
| 3448 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| 3449 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { |
| 3450 | /* |
| 3451 | * Convert it back. |
| 3452 | */ |
| 3453 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); |
| 3454 | INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); |
| 3455 | } else { |
| 3456 | /* |
| 3457 | * The superblock version has already been bumped, |
| 3458 | * so just make the conversion to the new inode |
| 3459 | * format permanent. |
| 3460 | */ |
| 3461 | ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| 3462 | INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); |
| 3463 | ip->i_d.di_onlink = 0; |
| 3464 | dip->di_core.di_onlink = 0; |
| 3465 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| 3466 | memset(&(dip->di_core.di_pad[0]), 0, |
| 3467 | sizeof(dip->di_core.di_pad)); |
| 3468 | ASSERT(ip->i_d.di_projid == 0); |
| 3469 | } |
| 3470 | } |
| 3471 | |
| 3472 | if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { |
| 3473 | goto corrupt_out; |
| 3474 | } |
| 3475 | |
| 3476 | if (XFS_IFORK_Q(ip)) { |
| 3477 | /* |
| 3478 | * The only error from xfs_iflush_fork is on the data fork. |
| 3479 | */ |
| 3480 | (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); |
| 3481 | } |
| 3482 | xfs_inobp_check(mp, bp); |
| 3483 | |
| 3484 | /* |
| 3485 | * We've recorded everything logged in the inode, so we'd |
| 3486 | * like to clear the ilf_fields bits so we don't log and |
| 3487 | * flush things unnecessarily. However, we can't stop |
| 3488 | * logging all this information until the data we've copied |
| 3489 | * into the disk buffer is written to disk. If we did we might |
| 3490 | * overwrite the copy of the inode in the log with all the |
| 3491 | * data after re-logging only part of it, and in the face of |
| 3492 | * a crash we wouldn't have all the data we need to recover. |
| 3493 | * |
| 3494 | * What we do is move the bits to the ili_last_fields field. |
| 3495 | * When logging the inode, these bits are moved back to the |
| 3496 | * ilf_fields field. In the xfs_iflush_done() routine we |
| 3497 | * clear ili_last_fields, since we know that the information |
| 3498 | * those bits represent is permanently on disk. As long as |
| 3499 | * the flush completes before the inode is logged again, then |
| 3500 | * both ilf_fields and ili_last_fields will be cleared. |
| 3501 | * |
| 3502 | * We can play with the ilf_fields bits here, because the inode |
| 3503 | * lock must be held exclusively in order to set bits there |
| 3504 | * and the flush lock protects the ili_last_fields bits. |
| 3505 | * Set ili_logged so the flush done |
| 3506 | * routine can tell whether or not to look in the AIL. |
| 3507 | * Also, store the current LSN of the inode so that we can tell |
| 3508 | * whether the item has moved in the AIL from xfs_iflush_done(). |
| 3509 | * In order to read the lsn we need the AIL lock, because |
| 3510 | * it is a 64 bit value that cannot be read atomically. |
| 3511 | */ |
| 3512 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { |
| 3513 | iip->ili_last_fields = iip->ili_format.ilf_fields; |
| 3514 | iip->ili_format.ilf_fields = 0; |
| 3515 | iip->ili_logged = 1; |
| 3516 | |
| 3517 | ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ |
| 3518 | AIL_LOCK(mp,s); |
| 3519 | iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| 3520 | AIL_UNLOCK(mp, s); |
| 3521 | |
| 3522 | /* |
| 3523 | * Attach the function xfs_iflush_done to the inode's |
| 3524 | * buffer. This will remove the inode from the AIL |
| 3525 | * and unlock the inode's flush lock when the inode is |
| 3526 | * completely written to disk. |
| 3527 | */ |
| 3528 | xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) |
| 3529 | xfs_iflush_done, (xfs_log_item_t *)iip); |
| 3530 | |
| 3531 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); |
| 3532 | ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); |
| 3533 | } else { |
| 3534 | /* |
| 3535 | * We're flushing an inode which is not in the AIL and has |
| 3536 | * not been logged but has i_update_core set. For this |
| 3537 | * case we can use a B_DELWRI flush and immediately drop |
| 3538 | * the inode flush lock because we can avoid the whole |
| 3539 | * AIL state thing. It's OK to drop the flush lock now, |
| 3540 | * because we've already locked the buffer and to do anything |
| 3541 | * you really need both. |
| 3542 | */ |
| 3543 | if (iip != NULL) { |
| 3544 | ASSERT(iip->ili_logged == 0); |
| 3545 | ASSERT(iip->ili_last_fields == 0); |
| 3546 | ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); |
| 3547 | } |
| 3548 | xfs_ifunlock(ip); |
| 3549 | } |
| 3550 | |
| 3551 | return 0; |
| 3552 | |
| 3553 | corrupt_out: |
| 3554 | return XFS_ERROR(EFSCORRUPTED); |
| 3555 | } |
| 3556 | |
| 3557 | |
| 3558 | /* |
| 3559 | * Flush all inactive inodes in mp. Return true if no user references |
| 3560 | * were found, false otherwise. |
| 3561 | */ |
| 3562 | int |
| 3563 | xfs_iflush_all( |
| 3564 | xfs_mount_t *mp, |
| 3565 | int flag) |
| 3566 | { |
| 3567 | int busy; |
| 3568 | int done; |
| 3569 | int purged; |
| 3570 | xfs_inode_t *ip; |
| 3571 | vmap_t vmap; |
| 3572 | vnode_t *vp; |
| 3573 | |
| 3574 | busy = done = 0; |
| 3575 | while (!done) { |
| 3576 | purged = 0; |
| 3577 | XFS_MOUNT_ILOCK(mp); |
| 3578 | ip = mp->m_inodes; |
| 3579 | if (ip == NULL) { |
| 3580 | break; |
| 3581 | } |
| 3582 | do { |
| 3583 | /* Make sure we skip markers inserted by sync */ |
| 3584 | if (ip->i_mount == NULL) { |
| 3585 | ip = ip->i_mnext; |
| 3586 | continue; |
| 3587 | } |
| 3588 | |
| 3589 | /* |
| 3590 | * It's up to our caller to purge the root |
| 3591 | * and quota vnodes later. |
| 3592 | */ |
| 3593 | vp = XFS_ITOV_NULL(ip); |
| 3594 | |
| 3595 | if (!vp) { |
| 3596 | XFS_MOUNT_IUNLOCK(mp); |
| 3597 | xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); |
| 3598 | purged = 1; |
| 3599 | break; |
| 3600 | } |
| 3601 | |
| 3602 | if (vn_count(vp) != 0) { |
| 3603 | if (vn_count(vp) == 1 && |
| 3604 | (ip == mp->m_rootip || |
| 3605 | (mp->m_quotainfo && |
| 3606 | (ip->i_ino == mp->m_sb.sb_uquotino || |
| 3607 | ip->i_ino == mp->m_sb.sb_gquotino)))) { |
| 3608 | |
| 3609 | ip = ip->i_mnext; |
| 3610 | continue; |
| 3611 | } |
| 3612 | if (!(flag & XFS_FLUSH_ALL)) { |
| 3613 | busy = 1; |
| 3614 | done = 1; |
| 3615 | break; |
| 3616 | } |
| 3617 | /* |
| 3618 | * Ignore busy inodes but continue flushing |
| 3619 | * others. |
| 3620 | */ |
| 3621 | ip = ip->i_mnext; |
| 3622 | continue; |
| 3623 | } |
| 3624 | /* |
| 3625 | * Sample vp mapping while holding mp locked on MP |
| 3626 | * systems, so we don't purge a reclaimed or |
| 3627 | * nonexistent vnode. We break from the loop |
| 3628 | * since we know that we modify |
| 3629 | * it by pulling ourselves from it in xfs_reclaim() |
| 3630 | * called via vn_purge() below. Set ip to the next |
| 3631 | * entry in the list anyway so we'll know below |
| 3632 | * whether we reached the end or not. |
| 3633 | */ |
| 3634 | VMAP(vp, vmap); |
| 3635 | XFS_MOUNT_IUNLOCK(mp); |
| 3636 | |
| 3637 | vn_purge(vp, &vmap); |
| 3638 | |
| 3639 | purged = 1; |
| 3640 | break; |
| 3641 | } while (ip != mp->m_inodes); |
| 3642 | /* |
| 3643 | * We need to distinguish between when we exit the loop |
| 3644 | * after a purge and when we simply hit the end of the |
| 3645 | * list. We can't use the (ip == mp->m_inodes) test, |
| 3646 | * because when we purge an inode at the start of the list |
| 3647 | * the next inode on the list becomes mp->m_inodes. That |
| 3648 | * would cause such a test to bail out early. The purged |
| 3649 | * variable tells us how we got out of the loop. |
| 3650 | */ |
| 3651 | if (!purged) { |
| 3652 | done = 1; |
| 3653 | } |
| 3654 | } |
| 3655 | XFS_MOUNT_IUNLOCK(mp); |
| 3656 | return !busy; |
| 3657 | } |
| 3658 | |
| 3659 | |
| 3660 | /* |
| 3661 | * xfs_iaccess: check accessibility of inode for mode. |
| 3662 | */ |
| 3663 | int |
| 3664 | xfs_iaccess( |
| 3665 | xfs_inode_t *ip, |
| 3666 | mode_t mode, |
| 3667 | cred_t *cr) |
| 3668 | { |
| 3669 | int error; |
| 3670 | mode_t orgmode = mode; |
| 3671 | struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); |
| 3672 | |
| 3673 | if (mode & S_IWUSR) { |
| 3674 | umode_t imode = inode->i_mode; |
| 3675 | |
| 3676 | if (IS_RDONLY(inode) && |
| 3677 | (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) |
| 3678 | return XFS_ERROR(EROFS); |
| 3679 | |
| 3680 | if (IS_IMMUTABLE(inode)) |
| 3681 | return XFS_ERROR(EACCES); |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * If there's an Access Control List it's used instead of |
| 3686 | * the mode bits. |
| 3687 | */ |
| 3688 | if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) |
| 3689 | return error ? XFS_ERROR(error) : 0; |
| 3690 | |
| 3691 | if (current_fsuid(cr) != ip->i_d.di_uid) { |
| 3692 | mode >>= 3; |
| 3693 | if (!in_group_p((gid_t)ip->i_d.di_gid)) |
| 3694 | mode >>= 3; |
| 3695 | } |
| 3696 | |
| 3697 | /* |
| 3698 | * If the DACs are ok we don't need any capability check. |
| 3699 | */ |
| 3700 | if ((ip->i_d.di_mode & mode) == mode) |
| 3701 | return 0; |
| 3702 | /* |
| 3703 | * Read/write DACs are always overridable. |
| 3704 | * Executable DACs are overridable if at least one exec bit is set. |
| 3705 | */ |
| 3706 | if (!(orgmode & S_IXUSR) || |
| 3707 | (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) |
| 3708 | if (capable_cred(cr, CAP_DAC_OVERRIDE)) |
| 3709 | return 0; |
| 3710 | |
| 3711 | if ((orgmode == S_IRUSR) || |
| 3712 | (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { |
| 3713 | if (capable_cred(cr, CAP_DAC_READ_SEARCH)) |
| 3714 | return 0; |
| 3715 | #ifdef NOISE |
| 3716 | cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); |
| 3717 | #endif /* NOISE */ |
| 3718 | return XFS_ERROR(EACCES); |
| 3719 | } |
| 3720 | return XFS_ERROR(EACCES); |
| 3721 | } |
| 3722 | |
| 3723 | /* |
| 3724 | * xfs_iroundup: round up argument to next power of two |
| 3725 | */ |
| 3726 | uint |
| 3727 | xfs_iroundup( |
| 3728 | uint v) |
| 3729 | { |
| 3730 | int i; |
| 3731 | uint m; |
| 3732 | |
| 3733 | if ((v & (v - 1)) == 0) |
| 3734 | return v; |
| 3735 | ASSERT((v & 0x80000000) == 0); |
| 3736 | if ((v & (v + 1)) == 0) |
| 3737 | return v + 1; |
| 3738 | for (i = 0, m = 1; i < 31; i++, m <<= 1) { |
| 3739 | if (v & m) |
| 3740 | continue; |
| 3741 | v |= m; |
| 3742 | if ((v & (v + 1)) == 0) |
| 3743 | return v + 1; |
| 3744 | } |
| 3745 | ASSERT(0); |
| 3746 | return( 0 ); |
| 3747 | } |
| 3748 | |
| 3749 | /* |
| 3750 | * Change the requested timestamp in the given inode. |
| 3751 | * We don't lock across timestamp updates, and we don't log them but |
| 3752 | * we do record the fact that there is dirty information in core. |
| 3753 | * |
| 3754 | * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG |
| 3755 | * with XFS_ICHGTIME_ACC to be sure that access time |
| 3756 | * update will take. Calling first with XFS_ICHGTIME_ACC |
| 3757 | * and then XFS_ICHGTIME_MOD may fail to modify the access |
| 3758 | * timestamp if the filesystem is mounted noacctm. |
| 3759 | */ |
| 3760 | void |
| 3761 | xfs_ichgtime(xfs_inode_t *ip, |
| 3762 | int flags) |
| 3763 | { |
| 3764 | timespec_t tv; |
| 3765 | vnode_t *vp = XFS_ITOV(ip); |
| 3766 | struct inode *inode = LINVFS_GET_IP(vp); |
| 3767 | |
| 3768 | /* |
| 3769 | * We're not supposed to change timestamps in readonly-mounted |
| 3770 | * filesystems. Throw it away if anyone asks us. |
| 3771 | */ |
| 3772 | if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY)) |
| 3773 | return; |
| 3774 | |
| 3775 | /* |
| 3776 | * Don't update access timestamps on reads if mounted "noatime" |
| 3777 | * Throw it away if anyone asks us. |
| 3778 | */ |
| 3779 | if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && |
| 3780 | ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) |
| 3781 | == XFS_ICHGTIME_ACC)) |
| 3782 | return; |
| 3783 | |
| 3784 | nanotime(&tv); |
| 3785 | if (flags & XFS_ICHGTIME_MOD) { |
| 3786 | VN_MTIMESET(vp, &tv); |
| 3787 | ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; |
| 3788 | ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; |
| 3789 | } |
| 3790 | if (flags & XFS_ICHGTIME_ACC) { |
| 3791 | VN_ATIMESET(vp, &tv); |
| 3792 | ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; |
| 3793 | ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; |
| 3794 | } |
| 3795 | if (flags & XFS_ICHGTIME_CHG) { |
| 3796 | VN_CTIMESET(vp, &tv); |
| 3797 | ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; |
| 3798 | ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; |
| 3799 | } |
| 3800 | |
| 3801 | /* |
| 3802 | * We update the i_update_core field _after_ changing |
| 3803 | * the timestamps in order to coordinate properly with |
| 3804 | * xfs_iflush() so that we don't lose timestamp updates. |
| 3805 | * This keeps us from having to hold the inode lock |
| 3806 | * while doing this. We use the SYNCHRONIZE macro to |
| 3807 | * ensure that the compiler does not reorder the update |
| 3808 | * of i_update_core above the timestamp updates above. |
| 3809 | */ |
| 3810 | SYNCHRONIZE(); |
| 3811 | ip->i_update_core = 1; |
| 3812 | if (!(inode->i_state & I_LOCK)) |
| 3813 | mark_inode_dirty_sync(inode); |
| 3814 | } |
| 3815 | |
| 3816 | #ifdef XFS_ILOCK_TRACE |
| 3817 | ktrace_t *xfs_ilock_trace_buf; |
| 3818 | |
| 3819 | void |
| 3820 | xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) |
| 3821 | { |
| 3822 | ktrace_enter(ip->i_lock_trace, |
| 3823 | (void *)ip, |
| 3824 | (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ |
| 3825 | (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ |
| 3826 | (void *)ra, /* caller of ilock */ |
| 3827 | (void *)(unsigned long)current_cpu(), |
| 3828 | (void *)(unsigned long)current_pid(), |
| 3829 | NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); |
| 3830 | } |
| 3831 | #endif |