Stephan Mueller | bb5530e | 2015-05-25 15:10:20 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Non-physical true random number generator based on timing jitter. |
| 3 | * |
| 4 | * Copyright Stephan Mueller <smueller@chronox.de>, 2014 |
| 5 | * |
| 6 | * Design |
| 7 | * ====== |
| 8 | * |
| 9 | * See http://www.chronox.de/jent.html |
| 10 | * |
| 11 | * License |
| 12 | * ======= |
| 13 | * |
| 14 | * Redistribution and use in source and binary forms, with or without |
| 15 | * modification, are permitted provided that the following conditions |
| 16 | * are met: |
| 17 | * 1. Redistributions of source code must retain the above copyright |
| 18 | * notice, and the entire permission notice in its entirety, |
| 19 | * including the disclaimer of warranties. |
| 20 | * 2. Redistributions in binary form must reproduce the above copyright |
| 21 | * notice, this list of conditions and the following disclaimer in the |
| 22 | * documentation and/or other materials provided with the distribution. |
| 23 | * 3. The name of the author may not be used to endorse or promote |
| 24 | * products derived from this software without specific prior |
| 25 | * written permission. |
| 26 | * |
| 27 | * ALTERNATIVELY, this product may be distributed under the terms of |
| 28 | * the GNU General Public License, in which case the provisions of the GPL2 are |
| 29 | * required INSTEAD OF the above restrictions. (This clause is |
| 30 | * necessary due to a potential bad interaction between the GPL and |
| 31 | * the restrictions contained in a BSD-style copyright.) |
| 32 | * |
| 33 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 34 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 35 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF |
| 36 | * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE |
| 37 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 38 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| 39 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 40 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 41 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 42 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| 43 | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH |
| 44 | * DAMAGE. |
| 45 | */ |
| 46 | |
| 47 | /* |
| 48 | * This Jitterentropy RNG is based on the jitterentropy library |
| 49 | * version 1.1.0 provided at http://www.chronox.de/jent.html |
| 50 | */ |
| 51 | |
| 52 | #include <linux/module.h> |
| 53 | #include <linux/slab.h> |
| 54 | #include <linux/module.h> |
| 55 | #include <linux/fips.h> |
| 56 | #include <linux/time.h> |
| 57 | #include <linux/crypto.h> |
| 58 | #include <crypto/internal/rng.h> |
| 59 | |
| 60 | #ifdef __OPTIMIZE__ |
| 61 | #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c." |
| 62 | #endif |
| 63 | |
| 64 | /* The entropy pool */ |
| 65 | struct rand_data { |
| 66 | /* all data values that are vital to maintain the security |
| 67 | * of the RNG are marked as SENSITIVE. A user must not |
| 68 | * access that information while the RNG executes its loops to |
| 69 | * calculate the next random value. */ |
| 70 | __u64 data; /* SENSITIVE Actual random number */ |
| 71 | __u64 old_data; /* SENSITIVE Previous random number */ |
| 72 | __u64 prev_time; /* SENSITIVE Previous time stamp */ |
| 73 | #define DATA_SIZE_BITS ((sizeof(__u64)) * 8) |
| 74 | __u64 last_delta; /* SENSITIVE stuck test */ |
| 75 | __s64 last_delta2; /* SENSITIVE stuck test */ |
| 76 | unsigned int stuck:1; /* Time measurement stuck */ |
| 77 | unsigned int osr; /* Oversample rate */ |
| 78 | unsigned int stir:1; /* Post-processing stirring */ |
| 79 | unsigned int disable_unbias:1; /* Deactivate Von-Neuman unbias */ |
| 80 | #define JENT_MEMORY_BLOCKS 64 |
| 81 | #define JENT_MEMORY_BLOCKSIZE 32 |
| 82 | #define JENT_MEMORY_ACCESSLOOPS 128 |
| 83 | #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE) |
| 84 | unsigned char *mem; /* Memory access location with size of |
| 85 | * memblocks * memblocksize */ |
| 86 | unsigned int memlocation; /* Pointer to byte in *mem */ |
| 87 | unsigned int memblocks; /* Number of memory blocks in *mem */ |
| 88 | unsigned int memblocksize; /* Size of one memory block in bytes */ |
| 89 | unsigned int memaccessloops; /* Number of memory accesses per random |
| 90 | * bit generation */ |
| 91 | }; |
| 92 | |
| 93 | /* Flags that can be used to initialize the RNG */ |
| 94 | #define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */ |
| 95 | #define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */ |
| 96 | #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more |
| 97 | * entropy, saves MEMORY_SIZE RAM for |
| 98 | * entropy collector */ |
| 99 | |
| 100 | #define DRIVER_NAME "jitterentropy" |
| 101 | |
| 102 | /* -- error codes for init function -- */ |
| 103 | #define JENT_ENOTIME 1 /* Timer service not available */ |
| 104 | #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */ |
| 105 | #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */ |
| 106 | #define JENT_EMINVARIATION 4 /* Timer variations too small for RNG */ |
| 107 | #define JENT_EVARVAR 5 /* Timer does not produce variations of |
| 108 | * variations (2nd derivation of time is |
| 109 | * zero). */ |
| 110 | #define JENT_EMINVARVAR 6 /* Timer variations of variations is tooi |
| 111 | * small. */ |
| 112 | |
| 113 | /*************************************************************************** |
| 114 | * Helper functions |
| 115 | ***************************************************************************/ |
| 116 | |
| 117 | static inline void jent_get_nstime(__u64 *out) |
| 118 | { |
| 119 | struct timespec ts; |
| 120 | __u64 tmp = 0; |
| 121 | |
| 122 | tmp = random_get_entropy(); |
| 123 | |
| 124 | /* |
| 125 | * If random_get_entropy does not return a value (which is possible on, |
| 126 | * for example, MIPS), invoke __getnstimeofday |
| 127 | * hoping that there are timers we can work with. |
| 128 | * |
| 129 | * The list of available timers can be obtained from |
| 130 | * /sys/devices/system/clocksource/clocksource0/available_clocksource |
| 131 | * and are registered with clocksource_register() |
| 132 | */ |
| 133 | if ((0 == tmp) && |
| 134 | #ifndef MODULE |
| 135 | (0 == timekeeping_valid_for_hres()) && |
| 136 | #endif |
| 137 | (0 == __getnstimeofday(&ts))) { |
| 138 | tmp = ts.tv_sec; |
| 139 | tmp = tmp << 32; |
| 140 | tmp = tmp | ts.tv_nsec; |
| 141 | } |
| 142 | |
| 143 | *out = tmp; |
| 144 | } |
| 145 | |
| 146 | |
| 147 | /** |
| 148 | * Update of the loop count used for the next round of |
| 149 | * an entropy collection. |
| 150 | * |
| 151 | * Input: |
| 152 | * @ec entropy collector struct -- may be NULL |
| 153 | * @bits is the number of low bits of the timer to consider |
| 154 | * @min is the number of bits we shift the timer value to the right at |
| 155 | * the end to make sure we have a guaranteed minimum value |
| 156 | * |
| 157 | * @return Newly calculated loop counter |
| 158 | */ |
| 159 | static __u64 jent_loop_shuffle(struct rand_data *ec, |
| 160 | unsigned int bits, unsigned int min) |
| 161 | { |
| 162 | __u64 time = 0; |
| 163 | __u64 shuffle = 0; |
| 164 | unsigned int i = 0; |
| 165 | unsigned int mask = (1<<bits) - 1; |
| 166 | |
| 167 | jent_get_nstime(&time); |
| 168 | /* |
| 169 | * mix the current state of the random number into the shuffle |
| 170 | * calculation to balance that shuffle a bit more |
| 171 | */ |
| 172 | if (ec) |
| 173 | time ^= ec->data; |
| 174 | /* |
| 175 | * we fold the time value as much as possible to ensure that as many |
| 176 | * bits of the time stamp are included as possible |
| 177 | */ |
| 178 | for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) { |
| 179 | shuffle ^= time & mask; |
| 180 | time = time >> bits; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * We add a lower boundary value to ensure we have a minimum |
| 185 | * RNG loop count. |
| 186 | */ |
| 187 | return (shuffle + (1<<min)); |
| 188 | } |
| 189 | |
| 190 | /*************************************************************************** |
| 191 | * Noise sources |
| 192 | ***************************************************************************/ |
| 193 | |
| 194 | /** |
| 195 | * CPU Jitter noise source -- this is the noise source based on the CPU |
| 196 | * execution time jitter |
| 197 | * |
| 198 | * This function folds the time into one bit units by iterating |
| 199 | * through the DATA_SIZE_BITS bit time value as follows: assume our time value |
| 200 | * is 0xabcd |
| 201 | * 1st loop, 1st shift generates 0xd000 |
| 202 | * 1st loop, 2nd shift generates 0x000d |
| 203 | * 2nd loop, 1st shift generates 0xcd00 |
| 204 | * 2nd loop, 2nd shift generates 0x000c |
| 205 | * 3rd loop, 1st shift generates 0xbcd0 |
| 206 | * 3rd loop, 2nd shift generates 0x000b |
| 207 | * 4th loop, 1st shift generates 0xabcd |
| 208 | * 4th loop, 2nd shift generates 0x000a |
| 209 | * Now, the values at the end of the 2nd shifts are XORed together. |
| 210 | * |
| 211 | * The code is deliberately inefficient and shall stay that way. This function |
| 212 | * is the root cause why the code shall be compiled without optimization. This |
| 213 | * function not only acts as folding operation, but this function's execution |
| 214 | * is used to measure the CPU execution time jitter. Any change to the loop in |
| 215 | * this function implies that careful retesting must be done. |
| 216 | * |
| 217 | * Input: |
| 218 | * @ec entropy collector struct -- may be NULL |
| 219 | * @time time stamp to be folded |
| 220 | * @loop_cnt if a value not equal to 0 is set, use the given value as number of |
| 221 | * loops to perform the folding |
| 222 | * |
| 223 | * Output: |
| 224 | * @folded result of folding operation |
| 225 | * |
| 226 | * @return Number of loops the folding operation is performed |
| 227 | */ |
| 228 | static __u64 jent_fold_time(struct rand_data *ec, __u64 time, |
| 229 | __u64 *folded, __u64 loop_cnt) |
| 230 | { |
| 231 | unsigned int i; |
| 232 | __u64 j = 0; |
| 233 | __u64 new = 0; |
| 234 | #define MAX_FOLD_LOOP_BIT 4 |
| 235 | #define MIN_FOLD_LOOP_BIT 0 |
| 236 | __u64 fold_loop_cnt = |
| 237 | jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT); |
| 238 | |
| 239 | /* |
| 240 | * testing purposes -- allow test app to set the counter, not |
| 241 | * needed during runtime |
| 242 | */ |
| 243 | if (loop_cnt) |
| 244 | fold_loop_cnt = loop_cnt; |
| 245 | for (j = 0; j < fold_loop_cnt; j++) { |
| 246 | new = 0; |
| 247 | for (i = 1; (DATA_SIZE_BITS) >= i; i++) { |
| 248 | __u64 tmp = time << (DATA_SIZE_BITS - i); |
| 249 | |
| 250 | tmp = tmp >> (DATA_SIZE_BITS - 1); |
| 251 | new ^= tmp; |
| 252 | } |
| 253 | } |
| 254 | *folded = new; |
| 255 | return fold_loop_cnt; |
| 256 | } |
| 257 | |
| 258 | /** |
| 259 | * Memory Access noise source -- this is a noise source based on variations in |
| 260 | * memory access times |
| 261 | * |
| 262 | * This function performs memory accesses which will add to the timing |
| 263 | * variations due to an unknown amount of CPU wait states that need to be |
| 264 | * added when accessing memory. The memory size should be larger than the L1 |
| 265 | * caches as outlined in the documentation and the associated testing. |
| 266 | * |
| 267 | * The L1 cache has a very high bandwidth, albeit its access rate is usually |
| 268 | * slower than accessing CPU registers. Therefore, L1 accesses only add minimal |
| 269 | * variations as the CPU has hardly to wait. Starting with L2, significant |
| 270 | * variations are added because L2 typically does not belong to the CPU any more |
| 271 | * and therefore a wider range of CPU wait states is necessary for accesses. |
| 272 | * L3 and real memory accesses have even a wider range of wait states. However, |
| 273 | * to reliably access either L3 or memory, the ec->mem memory must be quite |
| 274 | * large which is usually not desirable. |
| 275 | * |
| 276 | * Input: |
| 277 | * @ec Reference to the entropy collector with the memory access data -- if |
| 278 | * the reference to the memory block to be accessed is NULL, this noise |
| 279 | * source is disabled |
| 280 | * @loop_cnt if a value not equal to 0 is set, use the given value as number of |
| 281 | * loops to perform the folding |
| 282 | * |
| 283 | * @return Number of memory access operations |
| 284 | */ |
| 285 | static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt) |
| 286 | { |
| 287 | unsigned char *tmpval = NULL; |
| 288 | unsigned int wrap = 0; |
| 289 | __u64 i = 0; |
| 290 | #define MAX_ACC_LOOP_BIT 7 |
| 291 | #define MIN_ACC_LOOP_BIT 0 |
| 292 | __u64 acc_loop_cnt = |
| 293 | jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT); |
| 294 | |
| 295 | if (NULL == ec || NULL == ec->mem) |
| 296 | return 0; |
| 297 | wrap = ec->memblocksize * ec->memblocks; |
| 298 | |
| 299 | /* |
| 300 | * testing purposes -- allow test app to set the counter, not |
| 301 | * needed during runtime |
| 302 | */ |
| 303 | if (loop_cnt) |
| 304 | acc_loop_cnt = loop_cnt; |
| 305 | |
| 306 | for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) { |
| 307 | tmpval = ec->mem + ec->memlocation; |
| 308 | /* |
| 309 | * memory access: just add 1 to one byte, |
| 310 | * wrap at 255 -- memory access implies read |
| 311 | * from and write to memory location |
| 312 | */ |
| 313 | *tmpval = (*tmpval + 1) & 0xff; |
| 314 | /* |
| 315 | * Addition of memblocksize - 1 to pointer |
| 316 | * with wrap around logic to ensure that every |
| 317 | * memory location is hit evenly |
| 318 | */ |
| 319 | ec->memlocation = ec->memlocation + ec->memblocksize - 1; |
| 320 | ec->memlocation = ec->memlocation % wrap; |
| 321 | } |
| 322 | return i; |
| 323 | } |
| 324 | |
| 325 | /*************************************************************************** |
| 326 | * Start of entropy processing logic |
| 327 | ***************************************************************************/ |
| 328 | |
| 329 | /** |
| 330 | * Stuck test by checking the: |
| 331 | * 1st derivation of the jitter measurement (time delta) |
| 332 | * 2nd derivation of the jitter measurement (delta of time deltas) |
| 333 | * 3rd derivation of the jitter measurement (delta of delta of time deltas) |
| 334 | * |
| 335 | * All values must always be non-zero. |
| 336 | * |
| 337 | * Input: |
| 338 | * @ec Reference to entropy collector |
| 339 | * @current_delta Jitter time delta |
| 340 | * |
| 341 | * @return |
| 342 | * 0 jitter measurement not stuck (good bit) |
| 343 | * 1 jitter measurement stuck (reject bit) |
| 344 | */ |
| 345 | static void jent_stuck(struct rand_data *ec, __u64 current_delta) |
| 346 | { |
| 347 | __s64 delta2 = ec->last_delta - current_delta; |
| 348 | __s64 delta3 = delta2 - ec->last_delta2; |
| 349 | |
| 350 | ec->last_delta = current_delta; |
| 351 | ec->last_delta2 = delta2; |
| 352 | |
| 353 | if (!current_delta || !delta2 || !delta3) |
| 354 | ec->stuck = 1; |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | * This is the heart of the entropy generation: calculate time deltas and |
| 359 | * use the CPU jitter in the time deltas. The jitter is folded into one |
| 360 | * bit. You can call this function the "random bit generator" as it |
| 361 | * produces one random bit per invocation. |
| 362 | * |
| 363 | * WARNING: ensure that ->prev_time is primed before using the output |
| 364 | * of this function! This can be done by calling this function |
| 365 | * and not using its result. |
| 366 | * |
| 367 | * Input: |
| 368 | * @entropy_collector Reference to entropy collector |
| 369 | * |
| 370 | * @return One random bit |
| 371 | */ |
| 372 | static __u64 jent_measure_jitter(struct rand_data *ec) |
| 373 | { |
| 374 | __u64 time = 0; |
| 375 | __u64 data = 0; |
| 376 | __u64 current_delta = 0; |
| 377 | |
| 378 | /* Invoke one noise source before time measurement to add variations */ |
| 379 | jent_memaccess(ec, 0); |
| 380 | |
| 381 | /* |
| 382 | * Get time stamp and calculate time delta to previous |
| 383 | * invocation to measure the timing variations |
| 384 | */ |
| 385 | jent_get_nstime(&time); |
| 386 | current_delta = time - ec->prev_time; |
| 387 | ec->prev_time = time; |
| 388 | |
| 389 | /* Now call the next noise sources which also folds the data */ |
| 390 | jent_fold_time(ec, current_delta, &data, 0); |
| 391 | |
| 392 | /* |
| 393 | * Check whether we have a stuck measurement. The enforcement |
| 394 | * is performed after the stuck value has been mixed into the |
| 395 | * entropy pool. |
| 396 | */ |
| 397 | jent_stuck(ec, current_delta); |
| 398 | |
| 399 | return data; |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the |
| 404 | * documentation of that RNG, the bits from jent_measure_jitter are considered |
| 405 | * independent which implies that the Von Neuman unbias operation is applicable. |
| 406 | * A proof of the Von-Neumann unbias operation to remove skews is given in the |
| 407 | * document "A proposal for: Functionality classes for random number |
| 408 | * generators", version 2.0 by Werner Schindler, section 5.4.1. |
| 409 | * |
| 410 | * Input: |
| 411 | * @entropy_collector Reference to entropy collector |
| 412 | * |
| 413 | * @return One random bit |
| 414 | */ |
| 415 | static __u64 jent_unbiased_bit(struct rand_data *entropy_collector) |
| 416 | { |
| 417 | do { |
| 418 | __u64 a = jent_measure_jitter(entropy_collector); |
| 419 | __u64 b = jent_measure_jitter(entropy_collector); |
| 420 | |
| 421 | if (a == b) |
| 422 | continue; |
| 423 | if (1 == a) |
| 424 | return 1; |
| 425 | else |
| 426 | return 0; |
| 427 | } while (1); |
| 428 | } |
| 429 | |
| 430 | /** |
| 431 | * Shuffle the pool a bit by mixing some value with a bijective function (XOR) |
| 432 | * into the pool. |
| 433 | * |
| 434 | * The function generates a mixer value that depends on the bits set and the |
| 435 | * location of the set bits in the random number generated by the entropy |
| 436 | * source. Therefore, based on the generated random number, this mixer value |
| 437 | * can have 2**64 different values. That mixer value is initialized with the |
| 438 | * first two SHA-1 constants. After obtaining the mixer value, it is XORed into |
| 439 | * the random number. |
| 440 | * |
| 441 | * The mixer value is not assumed to contain any entropy. But due to the XOR |
| 442 | * operation, it can also not destroy any entropy present in the entropy pool. |
| 443 | * |
| 444 | * Input: |
| 445 | * @entropy_collector Reference to entropy collector |
| 446 | */ |
| 447 | static void jent_stir_pool(struct rand_data *entropy_collector) |
| 448 | { |
| 449 | /* |
| 450 | * to shut up GCC on 32 bit, we have to initialize the 64 variable |
| 451 | * with two 32 bit variables |
| 452 | */ |
| 453 | union c { |
| 454 | __u64 u64; |
| 455 | __u32 u32[2]; |
| 456 | }; |
| 457 | /* |
| 458 | * This constant is derived from the first two 32 bit initialization |
| 459 | * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1 |
| 460 | */ |
| 461 | union c constant; |
| 462 | /* |
| 463 | * The start value of the mixer variable is derived from the third |
| 464 | * and fourth 32 bit initialization vector of SHA-1 as defined in |
| 465 | * FIPS 180-4 section 5.3.1 |
| 466 | */ |
| 467 | union c mixer; |
| 468 | unsigned int i = 0; |
| 469 | |
| 470 | /* |
| 471 | * Store the SHA-1 constants in reverse order to make up the 64 bit |
| 472 | * value -- this applies to a little endian system, on a big endian |
| 473 | * system, it reverses as expected. But this really does not matter |
| 474 | * as we do not rely on the specific numbers. We just pick the SHA-1 |
| 475 | * constants as they have a good mix of bit set and unset. |
| 476 | */ |
| 477 | constant.u32[1] = 0x67452301; |
| 478 | constant.u32[0] = 0xefcdab89; |
| 479 | mixer.u32[1] = 0x98badcfe; |
| 480 | mixer.u32[0] = 0x10325476; |
| 481 | |
| 482 | for (i = 0; i < DATA_SIZE_BITS; i++) { |
| 483 | /* |
| 484 | * get the i-th bit of the input random number and only XOR |
| 485 | * the constant into the mixer value when that bit is set |
| 486 | */ |
| 487 | if ((entropy_collector->data >> i) & 1) |
| 488 | mixer.u64 ^= constant.u64; |
| 489 | mixer.u64 = rol64(mixer.u64, 1); |
| 490 | } |
| 491 | entropy_collector->data ^= mixer.u64; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * Generator of one 64 bit random number |
| 496 | * Function fills rand_data->data |
| 497 | * |
| 498 | * Input: |
| 499 | * @ec Reference to entropy collector |
| 500 | */ |
| 501 | static void jent_gen_entropy(struct rand_data *ec) |
| 502 | { |
| 503 | unsigned int k = 0; |
| 504 | |
| 505 | /* priming of the ->prev_time value */ |
| 506 | jent_measure_jitter(ec); |
| 507 | |
| 508 | while (1) { |
| 509 | __u64 data = 0; |
| 510 | |
| 511 | if (ec->disable_unbias == 1) |
| 512 | data = jent_measure_jitter(ec); |
| 513 | else |
| 514 | data = jent_unbiased_bit(ec); |
| 515 | |
| 516 | /* enforcement of the jent_stuck test */ |
| 517 | if (ec->stuck) { |
| 518 | /* |
| 519 | * We only mix in the bit considered not appropriate |
| 520 | * without the LSFR. The reason is that if we apply |
| 521 | * the LSFR and we do not rotate, the 2nd bit with LSFR |
| 522 | * will cancel out the first LSFR application on the |
| 523 | * bad bit. |
| 524 | * |
| 525 | * And we do not rotate as we apply the next bit to the |
| 526 | * current bit location again. |
| 527 | */ |
| 528 | ec->data ^= data; |
| 529 | ec->stuck = 0; |
| 530 | continue; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Fibonacci LSFR with polynom of |
| 535 | * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is |
| 536 | * primitive according to |
| 537 | * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf |
| 538 | * (the shift values are the polynom values minus one |
| 539 | * due to counting bits from 0 to 63). As the current |
| 540 | * position is always the LSB, the polynom only needs |
| 541 | * to shift data in from the left without wrap. |
| 542 | */ |
| 543 | ec->data ^= data; |
| 544 | ec->data ^= ((ec->data >> 63) & 1); |
| 545 | ec->data ^= ((ec->data >> 60) & 1); |
| 546 | ec->data ^= ((ec->data >> 55) & 1); |
| 547 | ec->data ^= ((ec->data >> 30) & 1); |
| 548 | ec->data ^= ((ec->data >> 27) & 1); |
| 549 | ec->data ^= ((ec->data >> 22) & 1); |
| 550 | ec->data = rol64(ec->data, 1); |
| 551 | |
| 552 | /* |
| 553 | * We multiply the loop value with ->osr to obtain the |
| 554 | * oversampling rate requested by the caller |
| 555 | */ |
| 556 | if (++k >= (DATA_SIZE_BITS * ec->osr)) |
| 557 | break; |
| 558 | } |
| 559 | if (ec->stir) |
| 560 | jent_stir_pool(ec); |
| 561 | } |
| 562 | |
| 563 | /** |
| 564 | * The continuous test required by FIPS 140-2 -- the function automatically |
| 565 | * primes the test if needed. |
| 566 | * |
| 567 | * Return: |
| 568 | * 0 if FIPS test passed |
| 569 | * < 0 if FIPS test failed |
| 570 | */ |
| 571 | static void jent_fips_test(struct rand_data *ec) |
| 572 | { |
| 573 | if (!fips_enabled) |
| 574 | return; |
| 575 | |
| 576 | /* prime the FIPS test */ |
| 577 | if (!ec->old_data) { |
| 578 | ec->old_data = ec->data; |
| 579 | jent_gen_entropy(ec); |
| 580 | } |
| 581 | |
| 582 | if (ec->data == ec->old_data) |
| 583 | panic(DRIVER_NAME ": Duplicate output detected\n"); |
| 584 | |
| 585 | ec->old_data = ec->data; |
| 586 | } |
| 587 | |
| 588 | |
| 589 | /** |
| 590 | * Entry function: Obtain entropy for the caller. |
| 591 | * |
| 592 | * This function invokes the entropy gathering logic as often to generate |
| 593 | * as many bytes as requested by the caller. The entropy gathering logic |
| 594 | * creates 64 bit per invocation. |
| 595 | * |
| 596 | * This function truncates the last 64 bit entropy value output to the exact |
| 597 | * size specified by the caller. |
| 598 | * |
| 599 | * Input: |
| 600 | * @ec Reference to entropy collector |
| 601 | * @data pointer to buffer for storing random data -- buffer must already |
| 602 | * exist |
| 603 | * @len size of the buffer, specifying also the requested number of random |
| 604 | * in bytes |
| 605 | * |
| 606 | * @return 0 when request is fulfilled or an error |
| 607 | * |
| 608 | * The following error codes can occur: |
| 609 | * -1 entropy_collector is NULL |
| 610 | */ |
| 611 | static ssize_t jent_read_entropy(struct rand_data *ec, u8 *data, size_t len) |
| 612 | { |
| 613 | u8 *p = data; |
| 614 | |
| 615 | if (!ec) |
| 616 | return -EINVAL; |
| 617 | |
| 618 | while (0 < len) { |
| 619 | size_t tocopy; |
| 620 | |
| 621 | jent_gen_entropy(ec); |
| 622 | jent_fips_test(ec); |
| 623 | if ((DATA_SIZE_BITS / 8) < len) |
| 624 | tocopy = (DATA_SIZE_BITS / 8); |
| 625 | else |
| 626 | tocopy = len; |
| 627 | memcpy(p, &ec->data, tocopy); |
| 628 | |
| 629 | len -= tocopy; |
| 630 | p += tocopy; |
| 631 | } |
| 632 | |
| 633 | return 0; |
| 634 | } |
| 635 | |
| 636 | /*************************************************************************** |
| 637 | * Initialization logic |
| 638 | ***************************************************************************/ |
| 639 | |
| 640 | static struct rand_data *jent_entropy_collector_alloc(unsigned int osr, |
| 641 | unsigned int flags) |
| 642 | { |
| 643 | struct rand_data *entropy_collector; |
| 644 | |
| 645 | entropy_collector = kzalloc(sizeof(struct rand_data), GFP_KERNEL); |
| 646 | if (!entropy_collector) |
| 647 | return NULL; |
| 648 | |
| 649 | if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) { |
| 650 | /* Allocate memory for adding variations based on memory |
| 651 | * access |
| 652 | */ |
| 653 | entropy_collector->mem = kzalloc(JENT_MEMORY_SIZE, GFP_KERNEL); |
| 654 | if (!entropy_collector->mem) { |
| 655 | kfree(entropy_collector); |
| 656 | return NULL; |
| 657 | } |
| 658 | entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE; |
| 659 | entropy_collector->memblocks = JENT_MEMORY_BLOCKS; |
| 660 | entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS; |
| 661 | } |
| 662 | |
| 663 | /* verify and set the oversampling rate */ |
| 664 | if (0 == osr) |
| 665 | osr = 1; /* minimum sampling rate is 1 */ |
| 666 | entropy_collector->osr = osr; |
| 667 | |
| 668 | entropy_collector->stir = 1; |
| 669 | if (flags & JENT_DISABLE_STIR) |
| 670 | entropy_collector->stir = 0; |
| 671 | if (flags & JENT_DISABLE_UNBIAS) |
| 672 | entropy_collector->disable_unbias = 1; |
| 673 | |
| 674 | /* fill the data pad with non-zero values */ |
| 675 | jent_gen_entropy(entropy_collector); |
| 676 | |
| 677 | return entropy_collector; |
| 678 | } |
| 679 | |
| 680 | static void jent_entropy_collector_free(struct rand_data *entropy_collector) |
| 681 | { |
| 682 | if (entropy_collector->mem) |
| 683 | kzfree(entropy_collector->mem); |
| 684 | entropy_collector->mem = NULL; |
| 685 | if (entropy_collector) |
| 686 | kzfree(entropy_collector); |
| 687 | entropy_collector = NULL; |
| 688 | } |
| 689 | |
| 690 | static int jent_entropy_init(void) |
| 691 | { |
| 692 | int i; |
| 693 | __u64 delta_sum = 0; |
| 694 | __u64 old_delta = 0; |
| 695 | int time_backwards = 0; |
| 696 | int count_var = 0; |
| 697 | int count_mod = 0; |
| 698 | |
| 699 | /* We could perform statistical tests here, but the problem is |
| 700 | * that we only have a few loop counts to do testing. These |
| 701 | * loop counts may show some slight skew and we produce |
| 702 | * false positives. |
| 703 | * |
| 704 | * Moreover, only old systems show potentially problematic |
| 705 | * jitter entropy that could potentially be caught here. But |
| 706 | * the RNG is intended for hardware that is available or widely |
| 707 | * used, but not old systems that are long out of favor. Thus, |
| 708 | * no statistical tests. |
| 709 | */ |
| 710 | |
| 711 | /* |
| 712 | * We could add a check for system capabilities such as clock_getres or |
| 713 | * check for CONFIG_X86_TSC, but it does not make much sense as the |
| 714 | * following sanity checks verify that we have a high-resolution |
| 715 | * timer. |
| 716 | */ |
| 717 | /* |
| 718 | * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is |
| 719 | * definitely too little. |
| 720 | */ |
| 721 | #define TESTLOOPCOUNT 300 |
| 722 | #define CLEARCACHE 100 |
| 723 | for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { |
| 724 | __u64 time = 0; |
| 725 | __u64 time2 = 0; |
| 726 | __u64 folded = 0; |
| 727 | __u64 delta = 0; |
| 728 | unsigned int lowdelta = 0; |
| 729 | |
| 730 | jent_get_nstime(&time); |
| 731 | jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT); |
| 732 | jent_get_nstime(&time2); |
| 733 | |
| 734 | /* test whether timer works */ |
| 735 | if (!time || !time2) |
| 736 | return JENT_ENOTIME; |
| 737 | delta = time2 - time; |
| 738 | /* |
| 739 | * test whether timer is fine grained enough to provide |
| 740 | * delta even when called shortly after each other -- this |
| 741 | * implies that we also have a high resolution timer |
| 742 | */ |
| 743 | if (!delta) |
| 744 | return JENT_ECOARSETIME; |
| 745 | |
| 746 | /* |
| 747 | * up to here we did not modify any variable that will be |
| 748 | * evaluated later, but we already performed some work. Thus we |
| 749 | * already have had an impact on the caches, branch prediction, |
| 750 | * etc. with the goal to clear it to get the worst case |
| 751 | * measurements. |
| 752 | */ |
| 753 | if (CLEARCACHE > i) |
| 754 | continue; |
| 755 | |
| 756 | /* test whether we have an increasing timer */ |
| 757 | if (!(time2 > time)) |
| 758 | time_backwards++; |
| 759 | |
| 760 | /* |
| 761 | * Avoid modulo of 64 bit integer to allow code to compile |
| 762 | * on 32 bit architectures. |
| 763 | */ |
| 764 | lowdelta = time2 - time; |
| 765 | if (!(lowdelta % 100)) |
| 766 | count_mod++; |
| 767 | |
| 768 | /* |
| 769 | * ensure that we have a varying delta timer which is necessary |
| 770 | * for the calculation of entropy -- perform this check |
| 771 | * only after the first loop is executed as we need to prime |
| 772 | * the old_data value |
| 773 | */ |
| 774 | if (i) { |
| 775 | if (delta != old_delta) |
| 776 | count_var++; |
| 777 | if (delta > old_delta) |
| 778 | delta_sum += (delta - old_delta); |
| 779 | else |
| 780 | delta_sum += (old_delta - delta); |
| 781 | } |
| 782 | old_delta = delta; |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * we allow up to three times the time running backwards. |
| 787 | * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus, |
| 788 | * if such an operation just happens to interfere with our test, it |
| 789 | * should not fail. The value of 3 should cover the NTP case being |
| 790 | * performed during our test run. |
| 791 | */ |
| 792 | if (3 < time_backwards) |
| 793 | return JENT_ENOMONOTONIC; |
| 794 | /* Error if the time variances are always identical */ |
| 795 | if (!delta_sum) |
| 796 | return JENT_EVARVAR; |
| 797 | |
| 798 | /* |
| 799 | * Variations of deltas of time must on average be larger |
| 800 | * than 1 to ensure the entropy estimation |
| 801 | * implied with 1 is preserved |
| 802 | */ |
| 803 | if (delta_sum <= 1) |
| 804 | return JENT_EMINVARVAR; |
| 805 | |
| 806 | /* |
| 807 | * Ensure that we have variations in the time stamp below 10 for at |
| 808 | * least 10% of all checks -- on some platforms, the counter |
| 809 | * increments in multiples of 100, but not always |
| 810 | */ |
| 811 | if ((TESTLOOPCOUNT/10 * 9) < count_mod) |
| 812 | return JENT_ECOARSETIME; |
| 813 | |
| 814 | return 0; |
| 815 | } |
| 816 | |
| 817 | /*************************************************************************** |
| 818 | * Kernel crypto API interface |
| 819 | ***************************************************************************/ |
| 820 | |
| 821 | struct jitterentropy { |
| 822 | spinlock_t jent_lock; |
| 823 | struct rand_data *entropy_collector; |
| 824 | }; |
| 825 | |
| 826 | static int jent_kcapi_init(struct crypto_tfm *tfm) |
| 827 | { |
| 828 | struct jitterentropy *rng = crypto_tfm_ctx(tfm); |
| 829 | int ret = 0; |
| 830 | |
| 831 | rng->entropy_collector = jent_entropy_collector_alloc(1, 0); |
| 832 | if (!rng->entropy_collector) |
| 833 | ret = -ENOMEM; |
| 834 | |
| 835 | spin_lock_init(&rng->jent_lock); |
| 836 | return ret; |
| 837 | } |
| 838 | |
| 839 | static void jent_kcapi_cleanup(struct crypto_tfm *tfm) |
| 840 | { |
| 841 | struct jitterentropy *rng = crypto_tfm_ctx(tfm); |
| 842 | |
| 843 | spin_lock(&rng->jent_lock); |
| 844 | if (rng->entropy_collector) |
| 845 | jent_entropy_collector_free(rng->entropy_collector); |
| 846 | rng->entropy_collector = NULL; |
| 847 | spin_unlock(&rng->jent_lock); |
| 848 | } |
| 849 | |
| 850 | static int jent_kcapi_random(struct crypto_rng *tfm, |
| 851 | const u8 *src, unsigned int slen, |
| 852 | u8 *rdata, unsigned int dlen) |
| 853 | { |
| 854 | struct jitterentropy *rng = crypto_rng_ctx(tfm); |
| 855 | int ret = 0; |
| 856 | |
| 857 | spin_lock(&rng->jent_lock); |
| 858 | ret = jent_read_entropy(rng->entropy_collector, rdata, dlen); |
| 859 | spin_unlock(&rng->jent_lock); |
| 860 | |
| 861 | return ret; |
| 862 | } |
| 863 | |
| 864 | static int jent_kcapi_reset(struct crypto_rng *tfm, |
| 865 | const u8 *seed, unsigned int slen) |
| 866 | { |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | static struct rng_alg jent_alg = { |
| 871 | .generate = jent_kcapi_random, |
| 872 | .seed = jent_kcapi_reset, |
| 873 | .seedsize = 0, |
| 874 | .base = { |
| 875 | .cra_name = "jitterentropy_rng", |
| 876 | .cra_driver_name = "jitterentropy_rng", |
| 877 | .cra_priority = 100, |
| 878 | .cra_ctxsize = sizeof(struct jitterentropy), |
| 879 | .cra_module = THIS_MODULE, |
| 880 | .cra_init = jent_kcapi_init, |
| 881 | .cra_exit = jent_kcapi_cleanup, |
| 882 | |
| 883 | } |
| 884 | }; |
| 885 | |
| 886 | static int __init jent_mod_init(void) |
| 887 | { |
| 888 | int ret = 0; |
| 889 | |
| 890 | ret = jent_entropy_init(); |
| 891 | if (ret) { |
| 892 | pr_info(DRIVER_NAME ": Initialization failed with host not compliant with requirements: %d\n", ret); |
| 893 | return -EFAULT; |
| 894 | } |
| 895 | return crypto_register_rng(&jent_alg); |
| 896 | } |
| 897 | |
| 898 | static void __exit jent_mod_exit(void) |
| 899 | { |
| 900 | crypto_unregister_rng(&jent_alg); |
| 901 | } |
| 902 | |
| 903 | module_init(jent_mod_init); |
| 904 | module_exit(jent_mod_exit); |
| 905 | |
| 906 | MODULE_LICENSE("Dual BSD/GPL"); |
| 907 | MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); |
| 908 | MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter"); |
| 909 | MODULE_ALIAS_CRYPTO("jitterentropy_rng"); |