Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame^] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
| 4 | Copyright(c) 1999 - 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* |
| 30 | * 82571EB Gigabit Ethernet Controller |
| 31 | * 82571EB Gigabit Ethernet Controller (Fiber) |
| 32 | * 82572EI Gigabit Ethernet Controller (Copper) |
| 33 | * 82572EI Gigabit Ethernet Controller (Fiber) |
| 34 | * 82572EI Gigabit Ethernet Controller |
| 35 | * 82573V Gigabit Ethernet Controller (Copper) |
| 36 | * 82573E Gigabit Ethernet Controller (Copper) |
| 37 | * 82573L Gigabit Ethernet Controller |
| 38 | */ |
| 39 | |
| 40 | #include <linux/netdevice.h> |
| 41 | #include <linux/delay.h> |
| 42 | #include <linux/pci.h> |
| 43 | |
| 44 | #include "e1000.h" |
| 45 | |
| 46 | #define ID_LED_RESERVED_F746 0xF746 |
| 47 | #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ |
| 48 | (ID_LED_OFF1_ON2 << 8) | \ |
| 49 | (ID_LED_DEF1_DEF2 << 4) | \ |
| 50 | (ID_LED_DEF1_DEF2)) |
| 51 | |
| 52 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
| 53 | |
| 54 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); |
| 55 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); |
| 56 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); |
| 57 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
| 58 | u16 words, u16 *data); |
| 59 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); |
| 60 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); |
| 61 | static s32 e1000_setup_link_82571(struct e1000_hw *hw); |
| 62 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); |
| 63 | |
| 64 | /** |
| 65 | * e1000_init_phy_params_82571 - Init PHY func ptrs. |
| 66 | * @hw: pointer to the HW structure |
| 67 | * |
| 68 | * This is a function pointer entry point called by the api module. |
| 69 | **/ |
| 70 | static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) |
| 71 | { |
| 72 | struct e1000_phy_info *phy = &hw->phy; |
| 73 | s32 ret_val; |
| 74 | |
| 75 | if (hw->media_type != e1000_media_type_copper) { |
| 76 | phy->type = e1000_phy_none; |
| 77 | return 0; |
| 78 | } |
| 79 | |
| 80 | phy->addr = 1; |
| 81 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 82 | phy->reset_delay_us = 100; |
| 83 | |
| 84 | switch (hw->mac.type) { |
| 85 | case e1000_82571: |
| 86 | case e1000_82572: |
| 87 | phy->type = e1000_phy_igp_2; |
| 88 | break; |
| 89 | case e1000_82573: |
| 90 | phy->type = e1000_phy_m88; |
| 91 | break; |
| 92 | default: |
| 93 | return -E1000_ERR_PHY; |
| 94 | break; |
| 95 | } |
| 96 | |
| 97 | /* This can only be done after all function pointers are setup. */ |
| 98 | ret_val = e1000_get_phy_id_82571(hw); |
| 99 | |
| 100 | /* Verify phy id */ |
| 101 | switch (hw->mac.type) { |
| 102 | case e1000_82571: |
| 103 | case e1000_82572: |
| 104 | if (phy->id != IGP01E1000_I_PHY_ID) |
| 105 | return -E1000_ERR_PHY; |
| 106 | break; |
| 107 | case e1000_82573: |
| 108 | if (phy->id != M88E1111_I_PHY_ID) |
| 109 | return -E1000_ERR_PHY; |
| 110 | break; |
| 111 | default: |
| 112 | return -E1000_ERR_PHY; |
| 113 | break; |
| 114 | } |
| 115 | |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * e1000_init_nvm_params_82571 - Init NVM func ptrs. |
| 121 | * @hw: pointer to the HW structure |
| 122 | * |
| 123 | * This is a function pointer entry point called by the api module. |
| 124 | **/ |
| 125 | static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) |
| 126 | { |
| 127 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 128 | u32 eecd = er32(EECD); |
| 129 | u16 size; |
| 130 | |
| 131 | nvm->opcode_bits = 8; |
| 132 | nvm->delay_usec = 1; |
| 133 | switch (nvm->override) { |
| 134 | case e1000_nvm_override_spi_large: |
| 135 | nvm->page_size = 32; |
| 136 | nvm->address_bits = 16; |
| 137 | break; |
| 138 | case e1000_nvm_override_spi_small: |
| 139 | nvm->page_size = 8; |
| 140 | nvm->address_bits = 8; |
| 141 | break; |
| 142 | default: |
| 143 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| 144 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| 145 | break; |
| 146 | } |
| 147 | |
| 148 | switch (hw->mac.type) { |
| 149 | case e1000_82573: |
| 150 | if (((eecd >> 15) & 0x3) == 0x3) { |
| 151 | nvm->type = e1000_nvm_flash_hw; |
| 152 | nvm->word_size = 2048; |
| 153 | /* Autonomous Flash update bit must be cleared due |
| 154 | * to Flash update issue. |
| 155 | */ |
| 156 | eecd &= ~E1000_EECD_AUPDEN; |
| 157 | ew32(EECD, eecd); |
| 158 | break; |
| 159 | } |
| 160 | /* Fall Through */ |
| 161 | default: |
| 162 | nvm->type = e1000_nvm_eeprom_spi; |
| 163 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| 164 | E1000_EECD_SIZE_EX_SHIFT); |
| 165 | /* Added to a constant, "size" becomes the left-shift value |
| 166 | * for setting word_size. |
| 167 | */ |
| 168 | size += NVM_WORD_SIZE_BASE_SHIFT; |
| 169 | nvm->word_size = 1 << size; |
| 170 | break; |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * e1000_init_mac_params_82571 - Init MAC func ptrs. |
| 178 | * @hw: pointer to the HW structure |
| 179 | * |
| 180 | * This is a function pointer entry point called by the api module. |
| 181 | **/ |
| 182 | static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) |
| 183 | { |
| 184 | struct e1000_hw *hw = &adapter->hw; |
| 185 | struct e1000_mac_info *mac = &hw->mac; |
| 186 | struct e1000_mac_operations *func = &mac->ops; |
| 187 | |
| 188 | /* Set media type */ |
| 189 | switch (adapter->pdev->device) { |
| 190 | case E1000_DEV_ID_82571EB_FIBER: |
| 191 | case E1000_DEV_ID_82572EI_FIBER: |
| 192 | case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| 193 | hw->media_type = e1000_media_type_fiber; |
| 194 | break; |
| 195 | case E1000_DEV_ID_82571EB_SERDES: |
| 196 | case E1000_DEV_ID_82572EI_SERDES: |
| 197 | hw->media_type = e1000_media_type_internal_serdes; |
| 198 | break; |
| 199 | default: |
| 200 | hw->media_type = e1000_media_type_copper; |
| 201 | break; |
| 202 | } |
| 203 | |
| 204 | /* Set mta register count */ |
| 205 | mac->mta_reg_count = 128; |
| 206 | /* Set rar entry count */ |
| 207 | mac->rar_entry_count = E1000_RAR_ENTRIES; |
| 208 | /* Set if manageability features are enabled. */ |
| 209 | mac->arc_subsystem_valid = |
| 210 | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
| 211 | |
| 212 | /* check for link */ |
| 213 | switch (hw->media_type) { |
| 214 | case e1000_media_type_copper: |
| 215 | func->setup_physical_interface = e1000_setup_copper_link_82571; |
| 216 | func->check_for_link = e1000e_check_for_copper_link; |
| 217 | func->get_link_up_info = e1000e_get_speed_and_duplex_copper; |
| 218 | break; |
| 219 | case e1000_media_type_fiber: |
| 220 | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; |
| 221 | func->check_for_link = e1000e_check_for_fiber_link; |
| 222 | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; |
| 223 | break; |
| 224 | case e1000_media_type_internal_serdes: |
| 225 | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; |
| 226 | func->check_for_link = e1000e_check_for_serdes_link; |
| 227 | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; |
| 228 | break; |
| 229 | default: |
| 230 | return -E1000_ERR_CONFIG; |
| 231 | break; |
| 232 | } |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter) |
| 238 | { |
| 239 | struct e1000_hw *hw = &adapter->hw; |
| 240 | static int global_quad_port_a; /* global port a indication */ |
| 241 | struct pci_dev *pdev = adapter->pdev; |
| 242 | u16 eeprom_data = 0; |
| 243 | int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; |
| 244 | s32 rc; |
| 245 | |
| 246 | rc = e1000_init_mac_params_82571(adapter); |
| 247 | if (rc) |
| 248 | return rc; |
| 249 | |
| 250 | rc = e1000_init_nvm_params_82571(hw); |
| 251 | if (rc) |
| 252 | return rc; |
| 253 | |
| 254 | rc = e1000_init_phy_params_82571(hw); |
| 255 | if (rc) |
| 256 | return rc; |
| 257 | |
| 258 | /* tag quad port adapters first, it's used below */ |
| 259 | switch (pdev->device) { |
| 260 | case E1000_DEV_ID_82571EB_QUAD_COPPER: |
| 261 | case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| 262 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: |
| 263 | adapter->flags |= FLAG_IS_QUAD_PORT; |
| 264 | /* mark the first port */ |
| 265 | if (global_quad_port_a == 0) |
| 266 | adapter->flags |= FLAG_IS_QUAD_PORT_A; |
| 267 | /* Reset for multiple quad port adapters */ |
| 268 | global_quad_port_a++; |
| 269 | if (global_quad_port_a == 4) |
| 270 | global_quad_port_a = 0; |
| 271 | break; |
| 272 | default: |
| 273 | break; |
| 274 | } |
| 275 | |
| 276 | switch (adapter->hw.mac.type) { |
| 277 | case e1000_82571: |
| 278 | /* these dual ports don't have WoL on port B at all */ |
| 279 | if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || |
| 280 | (pdev->device == E1000_DEV_ID_82571EB_SERDES) || |
| 281 | (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && |
| 282 | (is_port_b)) |
| 283 | adapter->flags &= ~FLAG_HAS_WOL; |
| 284 | /* quad ports only support WoL on port A */ |
| 285 | if (adapter->flags & FLAG_IS_QUAD_PORT && |
| 286 | (!adapter->flags & FLAG_IS_QUAD_PORT_A)) |
| 287 | adapter->flags &= ~FLAG_HAS_WOL; |
| 288 | break; |
| 289 | |
| 290 | case e1000_82573: |
| 291 | if (pdev->device == E1000_DEV_ID_82573L) { |
| 292 | e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, |
| 293 | &eeprom_data); |
| 294 | if (eeprom_data & NVM_WORD1A_ASPM_MASK) |
| 295 | adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
| 296 | } |
| 297 | break; |
| 298 | default: |
| 299 | break; |
| 300 | } |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | /** |
| 306 | * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision |
| 307 | * @hw: pointer to the HW structure |
| 308 | * |
| 309 | * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| 310 | * revision in the hardware structure. |
| 311 | **/ |
| 312 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) |
| 313 | { |
| 314 | struct e1000_phy_info *phy = &hw->phy; |
| 315 | |
| 316 | switch (hw->mac.type) { |
| 317 | case e1000_82571: |
| 318 | case e1000_82572: |
| 319 | /* The 82571 firmware may still be configuring the PHY. |
| 320 | * In this case, we cannot access the PHY until the |
| 321 | * configuration is done. So we explicitly set the |
| 322 | * PHY ID. */ |
| 323 | phy->id = IGP01E1000_I_PHY_ID; |
| 324 | break; |
| 325 | case e1000_82573: |
| 326 | return e1000e_get_phy_id(hw); |
| 327 | break; |
| 328 | default: |
| 329 | return -E1000_ERR_PHY; |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | /** |
| 337 | * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore |
| 338 | * @hw: pointer to the HW structure |
| 339 | * |
| 340 | * Acquire the HW semaphore to access the PHY or NVM |
| 341 | **/ |
| 342 | static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) |
| 343 | { |
| 344 | u32 swsm; |
| 345 | s32 timeout = hw->nvm.word_size + 1; |
| 346 | s32 i = 0; |
| 347 | |
| 348 | /* Get the FW semaphore. */ |
| 349 | for (i = 0; i < timeout; i++) { |
| 350 | swsm = er32(SWSM); |
| 351 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
| 352 | |
| 353 | /* Semaphore acquired if bit latched */ |
| 354 | if (er32(SWSM) & E1000_SWSM_SWESMBI) |
| 355 | break; |
| 356 | |
| 357 | udelay(50); |
| 358 | } |
| 359 | |
| 360 | if (i == timeout) { |
| 361 | /* Release semaphores */ |
| 362 | e1000e_put_hw_semaphore(hw); |
| 363 | hw_dbg(hw, "Driver can't access the NVM\n"); |
| 364 | return -E1000_ERR_NVM; |
| 365 | } |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * e1000_put_hw_semaphore_82571 - Release hardware semaphore |
| 372 | * @hw: pointer to the HW structure |
| 373 | * |
| 374 | * Release hardware semaphore used to access the PHY or NVM |
| 375 | **/ |
| 376 | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) |
| 377 | { |
| 378 | u32 swsm; |
| 379 | |
| 380 | swsm = er32(SWSM); |
| 381 | |
| 382 | swsm &= ~E1000_SWSM_SWESMBI; |
| 383 | |
| 384 | ew32(SWSM, swsm); |
| 385 | } |
| 386 | |
| 387 | /** |
| 388 | * e1000_acquire_nvm_82571 - Request for access to the EEPROM |
| 389 | * @hw: pointer to the HW structure |
| 390 | * |
| 391 | * To gain access to the EEPROM, first we must obtain a hardware semaphore. |
| 392 | * Then for non-82573 hardware, set the EEPROM access request bit and wait |
| 393 | * for EEPROM access grant bit. If the access grant bit is not set, release |
| 394 | * hardware semaphore. |
| 395 | **/ |
| 396 | static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) |
| 397 | { |
| 398 | s32 ret_val; |
| 399 | |
| 400 | ret_val = e1000_get_hw_semaphore_82571(hw); |
| 401 | if (ret_val) |
| 402 | return ret_val; |
| 403 | |
| 404 | if (hw->mac.type != e1000_82573) |
| 405 | ret_val = e1000e_acquire_nvm(hw); |
| 406 | |
| 407 | if (ret_val) |
| 408 | e1000_put_hw_semaphore_82571(hw); |
| 409 | |
| 410 | return ret_val; |
| 411 | } |
| 412 | |
| 413 | /** |
| 414 | * e1000_release_nvm_82571 - Release exclusive access to EEPROM |
| 415 | * @hw: pointer to the HW structure |
| 416 | * |
| 417 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| 418 | **/ |
| 419 | static void e1000_release_nvm_82571(struct e1000_hw *hw) |
| 420 | { |
| 421 | e1000e_release_nvm(hw); |
| 422 | e1000_put_hw_semaphore_82571(hw); |
| 423 | } |
| 424 | |
| 425 | /** |
| 426 | * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface |
| 427 | * @hw: pointer to the HW structure |
| 428 | * @offset: offset within the EEPROM to be written to |
| 429 | * @words: number of words to write |
| 430 | * @data: 16 bit word(s) to be written to the EEPROM |
| 431 | * |
| 432 | * For non-82573 silicon, write data to EEPROM at offset using SPI interface. |
| 433 | * |
| 434 | * If e1000e_update_nvm_checksum is not called after this function, the |
| 435 | * EEPROM will most likley contain an invalid checksum. |
| 436 | **/ |
| 437 | static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, |
| 438 | u16 *data) |
| 439 | { |
| 440 | s32 ret_val; |
| 441 | |
| 442 | switch (hw->mac.type) { |
| 443 | case e1000_82573: |
| 444 | ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); |
| 445 | break; |
| 446 | case e1000_82571: |
| 447 | case e1000_82572: |
| 448 | ret_val = e1000e_write_nvm_spi(hw, offset, words, data); |
| 449 | break; |
| 450 | default: |
| 451 | ret_val = -E1000_ERR_NVM; |
| 452 | break; |
| 453 | } |
| 454 | |
| 455 | return ret_val; |
| 456 | } |
| 457 | |
| 458 | /** |
| 459 | * e1000_update_nvm_checksum_82571 - Update EEPROM checksum |
| 460 | * @hw: pointer to the HW structure |
| 461 | * |
| 462 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 463 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 464 | * value to the EEPROM. |
| 465 | **/ |
| 466 | static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) |
| 467 | { |
| 468 | u32 eecd; |
| 469 | s32 ret_val; |
| 470 | u16 i; |
| 471 | |
| 472 | ret_val = e1000e_update_nvm_checksum_generic(hw); |
| 473 | if (ret_val) |
| 474 | return ret_val; |
| 475 | |
| 476 | /* If our nvm is an EEPROM, then we're done |
| 477 | * otherwise, commit the checksum to the flash NVM. */ |
| 478 | if (hw->nvm.type != e1000_nvm_flash_hw) |
| 479 | return ret_val; |
| 480 | |
| 481 | /* Check for pending operations. */ |
| 482 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
| 483 | msleep(1); |
| 484 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
| 485 | break; |
| 486 | } |
| 487 | |
| 488 | if (i == E1000_FLASH_UPDATES) |
| 489 | return -E1000_ERR_NVM; |
| 490 | |
| 491 | /* Reset the firmware if using STM opcode. */ |
| 492 | if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { |
| 493 | /* The enabling of and the actual reset must be done |
| 494 | * in two write cycles. |
| 495 | */ |
| 496 | ew32(HICR, E1000_HICR_FW_RESET_ENABLE); |
| 497 | e1e_flush(); |
| 498 | ew32(HICR, E1000_HICR_FW_RESET); |
| 499 | } |
| 500 | |
| 501 | /* Commit the write to flash */ |
| 502 | eecd = er32(EECD) | E1000_EECD_FLUPD; |
| 503 | ew32(EECD, eecd); |
| 504 | |
| 505 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
| 506 | msleep(1); |
| 507 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
| 508 | break; |
| 509 | } |
| 510 | |
| 511 | if (i == E1000_FLASH_UPDATES) |
| 512 | return -E1000_ERR_NVM; |
| 513 | |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | /** |
| 518 | * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum |
| 519 | * @hw: pointer to the HW structure |
| 520 | * |
| 521 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 522 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 523 | **/ |
| 524 | static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) |
| 525 | { |
| 526 | if (hw->nvm.type == e1000_nvm_flash_hw) |
| 527 | e1000_fix_nvm_checksum_82571(hw); |
| 528 | |
| 529 | return e1000e_validate_nvm_checksum_generic(hw); |
| 530 | } |
| 531 | |
| 532 | /** |
| 533 | * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon |
| 534 | * @hw: pointer to the HW structure |
| 535 | * @offset: offset within the EEPROM to be written to |
| 536 | * @words: number of words to write |
| 537 | * @data: 16 bit word(s) to be written to the EEPROM |
| 538 | * |
| 539 | * After checking for invalid values, poll the EEPROM to ensure the previous |
| 540 | * command has completed before trying to write the next word. After write |
| 541 | * poll for completion. |
| 542 | * |
| 543 | * If e1000e_update_nvm_checksum is not called after this function, the |
| 544 | * EEPROM will most likley contain an invalid checksum. |
| 545 | **/ |
| 546 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
| 547 | u16 words, u16 *data) |
| 548 | { |
| 549 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 550 | u32 i; |
| 551 | u32 eewr = 0; |
| 552 | s32 ret_val = 0; |
| 553 | |
| 554 | /* A check for invalid values: offset too large, too many words, |
| 555 | * and not enough words. */ |
| 556 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 557 | (words == 0)) { |
| 558 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| 559 | return -E1000_ERR_NVM; |
| 560 | } |
| 561 | |
| 562 | for (i = 0; i < words; i++) { |
| 563 | eewr = (data[i] << E1000_NVM_RW_REG_DATA) | |
| 564 | ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
| 565 | E1000_NVM_RW_REG_START; |
| 566 | |
| 567 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
| 568 | if (ret_val) |
| 569 | break; |
| 570 | |
| 571 | ew32(EEWR, eewr); |
| 572 | |
| 573 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
| 574 | if (ret_val) |
| 575 | break; |
| 576 | } |
| 577 | |
| 578 | return ret_val; |
| 579 | } |
| 580 | |
| 581 | /** |
| 582 | * e1000_get_cfg_done_82571 - Poll for configuration done |
| 583 | * @hw: pointer to the HW structure |
| 584 | * |
| 585 | * Reads the management control register for the config done bit to be set. |
| 586 | **/ |
| 587 | static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) |
| 588 | { |
| 589 | s32 timeout = PHY_CFG_TIMEOUT; |
| 590 | |
| 591 | while (timeout) { |
| 592 | if (er32(EEMNGCTL) & |
| 593 | E1000_NVM_CFG_DONE_PORT_0) |
| 594 | break; |
| 595 | msleep(1); |
| 596 | timeout--; |
| 597 | } |
| 598 | if (!timeout) { |
| 599 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
| 600 | return -E1000_ERR_RESET; |
| 601 | } |
| 602 | |
| 603 | return 0; |
| 604 | } |
| 605 | |
| 606 | /** |
| 607 | * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state |
| 608 | * @hw: pointer to the HW structure |
| 609 | * @active: TRUE to enable LPLU, FALSE to disable |
| 610 | * |
| 611 | * Sets the LPLU D0 state according to the active flag. When activating LPLU |
| 612 | * this function also disables smart speed and vice versa. LPLU will not be |
| 613 | * activated unless the device autonegotiation advertisement meets standards |
| 614 | * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function |
| 615 | * pointer entry point only called by PHY setup routines. |
| 616 | **/ |
| 617 | static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) |
| 618 | { |
| 619 | struct e1000_phy_info *phy = &hw->phy; |
| 620 | s32 ret_val; |
| 621 | u16 data; |
| 622 | |
| 623 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| 624 | if (ret_val) |
| 625 | return ret_val; |
| 626 | |
| 627 | if (active) { |
| 628 | data |= IGP02E1000_PM_D0_LPLU; |
| 629 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| 630 | if (ret_val) |
| 631 | return ret_val; |
| 632 | |
| 633 | /* When LPLU is enabled, we should disable SmartSpeed */ |
| 634 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| 635 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 636 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| 637 | if (ret_val) |
| 638 | return ret_val; |
| 639 | } else { |
| 640 | data &= ~IGP02E1000_PM_D0_LPLU; |
| 641 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| 642 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| 643 | * during Dx states where the power conservation is most |
| 644 | * important. During driver activity we should enable |
| 645 | * SmartSpeed, so performance is maintained. */ |
| 646 | if (phy->smart_speed == e1000_smart_speed_on) { |
| 647 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 648 | &data); |
| 649 | if (ret_val) |
| 650 | return ret_val; |
| 651 | |
| 652 | data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 653 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 654 | data); |
| 655 | if (ret_val) |
| 656 | return ret_val; |
| 657 | } else if (phy->smart_speed == e1000_smart_speed_off) { |
| 658 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 659 | &data); |
| 660 | if (ret_val) |
| 661 | return ret_val; |
| 662 | |
| 663 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 664 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 665 | data); |
| 666 | if (ret_val) |
| 667 | return ret_val; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * e1000_reset_hw_82571 - Reset hardware |
| 676 | * @hw: pointer to the HW structure |
| 677 | * |
| 678 | * This resets the hardware into a known state. This is a |
| 679 | * function pointer entry point called by the api module. |
| 680 | **/ |
| 681 | static s32 e1000_reset_hw_82571(struct e1000_hw *hw) |
| 682 | { |
| 683 | u32 ctrl; |
| 684 | u32 extcnf_ctrl; |
| 685 | u32 ctrl_ext; |
| 686 | u32 icr; |
| 687 | s32 ret_val; |
| 688 | u16 i = 0; |
| 689 | |
| 690 | /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| 691 | * on the last TLP read/write transaction when MAC is reset. |
| 692 | */ |
| 693 | ret_val = e1000e_disable_pcie_master(hw); |
| 694 | if (ret_val) |
| 695 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| 696 | |
| 697 | hw_dbg(hw, "Masking off all interrupts\n"); |
| 698 | ew32(IMC, 0xffffffff); |
| 699 | |
| 700 | ew32(RCTL, 0); |
| 701 | ew32(TCTL, E1000_TCTL_PSP); |
| 702 | e1e_flush(); |
| 703 | |
| 704 | msleep(10); |
| 705 | |
| 706 | /* Must acquire the MDIO ownership before MAC reset. |
| 707 | * Ownership defaults to firmware after a reset. */ |
| 708 | if (hw->mac.type == e1000_82573) { |
| 709 | extcnf_ctrl = er32(EXTCNF_CTRL); |
| 710 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| 711 | |
| 712 | do { |
| 713 | ew32(EXTCNF_CTRL, extcnf_ctrl); |
| 714 | extcnf_ctrl = er32(EXTCNF_CTRL); |
| 715 | |
| 716 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
| 717 | break; |
| 718 | |
| 719 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| 720 | |
| 721 | msleep(2); |
| 722 | i++; |
| 723 | } while (i < MDIO_OWNERSHIP_TIMEOUT); |
| 724 | } |
| 725 | |
| 726 | ctrl = er32(CTRL); |
| 727 | |
| 728 | hw_dbg(hw, "Issuing a global reset to MAC\n"); |
| 729 | ew32(CTRL, ctrl | E1000_CTRL_RST); |
| 730 | |
| 731 | if (hw->nvm.type == e1000_nvm_flash_hw) { |
| 732 | udelay(10); |
| 733 | ctrl_ext = er32(CTRL_EXT); |
| 734 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 735 | ew32(CTRL_EXT, ctrl_ext); |
| 736 | e1e_flush(); |
| 737 | } |
| 738 | |
| 739 | ret_val = e1000e_get_auto_rd_done(hw); |
| 740 | if (ret_val) |
| 741 | /* We don't want to continue accessing MAC registers. */ |
| 742 | return ret_val; |
| 743 | |
| 744 | /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. |
| 745 | * Need to wait for Phy configuration completion before accessing |
| 746 | * NVM and Phy. |
| 747 | */ |
| 748 | if (hw->mac.type == e1000_82573) |
| 749 | msleep(25); |
| 750 | |
| 751 | /* Clear any pending interrupt events. */ |
| 752 | ew32(IMC, 0xffffffff); |
| 753 | icr = er32(ICR); |
| 754 | |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | /** |
| 759 | * e1000_init_hw_82571 - Initialize hardware |
| 760 | * @hw: pointer to the HW structure |
| 761 | * |
| 762 | * This inits the hardware readying it for operation. |
| 763 | **/ |
| 764 | static s32 e1000_init_hw_82571(struct e1000_hw *hw) |
| 765 | { |
| 766 | struct e1000_mac_info *mac = &hw->mac; |
| 767 | u32 reg_data; |
| 768 | s32 ret_val; |
| 769 | u16 i; |
| 770 | u16 rar_count = mac->rar_entry_count; |
| 771 | |
| 772 | e1000_initialize_hw_bits_82571(hw); |
| 773 | |
| 774 | /* Initialize identification LED */ |
| 775 | ret_val = e1000e_id_led_init(hw); |
| 776 | if (ret_val) { |
| 777 | hw_dbg(hw, "Error initializing identification LED\n"); |
| 778 | return ret_val; |
| 779 | } |
| 780 | |
| 781 | /* Disabling VLAN filtering */ |
| 782 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
| 783 | e1000e_clear_vfta(hw); |
| 784 | |
| 785 | /* Setup the receive address. */ |
| 786 | /* If, however, a locally administered address was assigned to the |
| 787 | * 82571, we must reserve a RAR for it to work around an issue where |
| 788 | * resetting one port will reload the MAC on the other port. |
| 789 | */ |
| 790 | if (e1000e_get_laa_state_82571(hw)) |
| 791 | rar_count--; |
| 792 | e1000e_init_rx_addrs(hw, rar_count); |
| 793 | |
| 794 | /* Zero out the Multicast HASH table */ |
| 795 | hw_dbg(hw, "Zeroing the MTA\n"); |
| 796 | for (i = 0; i < mac->mta_reg_count; i++) |
| 797 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| 798 | |
| 799 | /* Setup link and flow control */ |
| 800 | ret_val = e1000_setup_link_82571(hw); |
| 801 | |
| 802 | /* Set the transmit descriptor write-back policy */ |
| 803 | reg_data = er32(TXDCTL); |
| 804 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| 805 | E1000_TXDCTL_FULL_TX_DESC_WB | |
| 806 | E1000_TXDCTL_COUNT_DESC; |
| 807 | ew32(TXDCTL, reg_data); |
| 808 | |
| 809 | /* ...for both queues. */ |
| 810 | if (mac->type != e1000_82573) { |
| 811 | reg_data = er32(TXDCTL1); |
| 812 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| 813 | E1000_TXDCTL_FULL_TX_DESC_WB | |
| 814 | E1000_TXDCTL_COUNT_DESC; |
| 815 | ew32(TXDCTL1, reg_data); |
| 816 | } else { |
| 817 | e1000e_enable_tx_pkt_filtering(hw); |
| 818 | reg_data = er32(GCR); |
| 819 | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| 820 | ew32(GCR, reg_data); |
| 821 | } |
| 822 | |
| 823 | /* Clear all of the statistics registers (clear on read). It is |
| 824 | * important that we do this after we have tried to establish link |
| 825 | * because the symbol error count will increment wildly if there |
| 826 | * is no link. |
| 827 | */ |
| 828 | e1000_clear_hw_cntrs_82571(hw); |
| 829 | |
| 830 | return ret_val; |
| 831 | } |
| 832 | |
| 833 | /** |
| 834 | * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits |
| 835 | * @hw: pointer to the HW structure |
| 836 | * |
| 837 | * Initializes required hardware-dependent bits needed for normal operation. |
| 838 | **/ |
| 839 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) |
| 840 | { |
| 841 | u32 reg; |
| 842 | |
| 843 | /* Transmit Descriptor Control 0 */ |
| 844 | reg = er32(TXDCTL); |
| 845 | reg |= (1 << 22); |
| 846 | ew32(TXDCTL, reg); |
| 847 | |
| 848 | /* Transmit Descriptor Control 1 */ |
| 849 | reg = er32(TXDCTL1); |
| 850 | reg |= (1 << 22); |
| 851 | ew32(TXDCTL1, reg); |
| 852 | |
| 853 | /* Transmit Arbitration Control 0 */ |
| 854 | reg = er32(TARC0); |
| 855 | reg &= ~(0xF << 27); /* 30:27 */ |
| 856 | switch (hw->mac.type) { |
| 857 | case e1000_82571: |
| 858 | case e1000_82572: |
| 859 | reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); |
| 860 | break; |
| 861 | default: |
| 862 | break; |
| 863 | } |
| 864 | ew32(TARC0, reg); |
| 865 | |
| 866 | /* Transmit Arbitration Control 1 */ |
| 867 | reg = er32(TARC1); |
| 868 | switch (hw->mac.type) { |
| 869 | case e1000_82571: |
| 870 | case e1000_82572: |
| 871 | reg &= ~((1 << 29) | (1 << 30)); |
| 872 | reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); |
| 873 | if (er32(TCTL) & E1000_TCTL_MULR) |
| 874 | reg &= ~(1 << 28); |
| 875 | else |
| 876 | reg |= (1 << 28); |
| 877 | ew32(TARC1, reg); |
| 878 | break; |
| 879 | default: |
| 880 | break; |
| 881 | } |
| 882 | |
| 883 | /* Device Control */ |
| 884 | if (hw->mac.type == e1000_82573) { |
| 885 | reg = er32(CTRL); |
| 886 | reg &= ~(1 << 29); |
| 887 | ew32(CTRL, reg); |
| 888 | } |
| 889 | |
| 890 | /* Extended Device Control */ |
| 891 | if (hw->mac.type == e1000_82573) { |
| 892 | reg = er32(CTRL_EXT); |
| 893 | reg &= ~(1 << 23); |
| 894 | reg |= (1 << 22); |
| 895 | ew32(CTRL_EXT, reg); |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | /** |
| 900 | * e1000e_clear_vfta - Clear VLAN filter table |
| 901 | * @hw: pointer to the HW structure |
| 902 | * |
| 903 | * Clears the register array which contains the VLAN filter table by |
| 904 | * setting all the values to 0. |
| 905 | **/ |
| 906 | void e1000e_clear_vfta(struct e1000_hw *hw) |
| 907 | { |
| 908 | u32 offset; |
| 909 | u32 vfta_value = 0; |
| 910 | u32 vfta_offset = 0; |
| 911 | u32 vfta_bit_in_reg = 0; |
| 912 | |
| 913 | if (hw->mac.type == e1000_82573) { |
| 914 | if (hw->mng_cookie.vlan_id != 0) { |
| 915 | /* The VFTA is a 4096b bit-field, each identifying |
| 916 | * a single VLAN ID. The following operations |
| 917 | * determine which 32b entry (i.e. offset) into the |
| 918 | * array we want to set the VLAN ID (i.e. bit) of |
| 919 | * the manageability unit. |
| 920 | */ |
| 921 | vfta_offset = (hw->mng_cookie.vlan_id >> |
| 922 | E1000_VFTA_ENTRY_SHIFT) & |
| 923 | E1000_VFTA_ENTRY_MASK; |
| 924 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
| 925 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
| 926 | } |
| 927 | } |
| 928 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| 929 | /* If the offset we want to clear is the same offset of the |
| 930 | * manageability VLAN ID, then clear all bits except that of |
| 931 | * the manageability unit. |
| 932 | */ |
| 933 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| 934 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); |
| 935 | e1e_flush(); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | /** |
| 940 | * e1000_mc_addr_list_update_82571 - Update Multicast addresses |
| 941 | * @hw: pointer to the HW structure |
| 942 | * @mc_addr_list: array of multicast addresses to program |
| 943 | * @mc_addr_count: number of multicast addresses to program |
| 944 | * @rar_used_count: the first RAR register free to program |
| 945 | * @rar_count: total number of supported Receive Address Registers |
| 946 | * |
| 947 | * Updates the Receive Address Registers and Multicast Table Array. |
| 948 | * The caller must have a packed mc_addr_list of multicast addresses. |
| 949 | * The parameter rar_count will usually be hw->mac.rar_entry_count |
| 950 | * unless there are workarounds that change this. |
| 951 | **/ |
| 952 | static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, |
| 953 | u8 *mc_addr_list, |
| 954 | u32 mc_addr_count, |
| 955 | u32 rar_used_count, |
| 956 | u32 rar_count) |
| 957 | { |
| 958 | if (e1000e_get_laa_state_82571(hw)) |
| 959 | rar_count--; |
| 960 | |
| 961 | e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, |
| 962 | rar_used_count, rar_count); |
| 963 | } |
| 964 | |
| 965 | /** |
| 966 | * e1000_setup_link_82571 - Setup flow control and link settings |
| 967 | * @hw: pointer to the HW structure |
| 968 | * |
| 969 | * Determines which flow control settings to use, then configures flow |
| 970 | * control. Calls the appropriate media-specific link configuration |
| 971 | * function. Assuming the adapter has a valid link partner, a valid link |
| 972 | * should be established. Assumes the hardware has previously been reset |
| 973 | * and the transmitter and receiver are not enabled. |
| 974 | **/ |
| 975 | static s32 e1000_setup_link_82571(struct e1000_hw *hw) |
| 976 | { |
| 977 | /* 82573 does not have a word in the NVM to determine |
| 978 | * the default flow control setting, so we explicitly |
| 979 | * set it to full. |
| 980 | */ |
| 981 | if (hw->mac.type == e1000_82573) |
| 982 | hw->mac.fc = e1000_fc_full; |
| 983 | |
| 984 | return e1000e_setup_link(hw); |
| 985 | } |
| 986 | |
| 987 | /** |
| 988 | * e1000_setup_copper_link_82571 - Configure copper link settings |
| 989 | * @hw: pointer to the HW structure |
| 990 | * |
| 991 | * Configures the link for auto-neg or forced speed and duplex. Then we check |
| 992 | * for link, once link is established calls to configure collision distance |
| 993 | * and flow control are called. |
| 994 | **/ |
| 995 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) |
| 996 | { |
| 997 | u32 ctrl; |
| 998 | u32 led_ctrl; |
| 999 | s32 ret_val; |
| 1000 | |
| 1001 | ctrl = er32(CTRL); |
| 1002 | ctrl |= E1000_CTRL_SLU; |
| 1003 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1004 | ew32(CTRL, ctrl); |
| 1005 | |
| 1006 | switch (hw->phy.type) { |
| 1007 | case e1000_phy_m88: |
| 1008 | ret_val = e1000e_copper_link_setup_m88(hw); |
| 1009 | break; |
| 1010 | case e1000_phy_igp_2: |
| 1011 | ret_val = e1000e_copper_link_setup_igp(hw); |
| 1012 | /* Setup activity LED */ |
| 1013 | led_ctrl = er32(LEDCTL); |
| 1014 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 1015 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 1016 | ew32(LEDCTL, led_ctrl); |
| 1017 | break; |
| 1018 | default: |
| 1019 | return -E1000_ERR_PHY; |
| 1020 | break; |
| 1021 | } |
| 1022 | |
| 1023 | if (ret_val) |
| 1024 | return ret_val; |
| 1025 | |
| 1026 | ret_val = e1000e_setup_copper_link(hw); |
| 1027 | |
| 1028 | return ret_val; |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes |
| 1033 | * @hw: pointer to the HW structure |
| 1034 | * |
| 1035 | * Configures collision distance and flow control for fiber and serdes links. |
| 1036 | * Upon successful setup, poll for link. |
| 1037 | **/ |
| 1038 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) |
| 1039 | { |
| 1040 | switch (hw->mac.type) { |
| 1041 | case e1000_82571: |
| 1042 | case e1000_82572: |
| 1043 | /* If SerDes loopback mode is entered, there is no form |
| 1044 | * of reset to take the adapter out of that mode. So we |
| 1045 | * have to explicitly take the adapter out of loopback |
| 1046 | * mode. This prevents drivers from twidling their thumbs |
| 1047 | * if another tool failed to take it out of loopback mode. |
| 1048 | */ |
| 1049 | ew32(SCTL, |
| 1050 | E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
| 1051 | break; |
| 1052 | default: |
| 1053 | break; |
| 1054 | } |
| 1055 | |
| 1056 | return e1000e_setup_fiber_serdes_link(hw); |
| 1057 | } |
| 1058 | |
| 1059 | /** |
| 1060 | * e1000_valid_led_default_82571 - Verify a valid default LED config |
| 1061 | * @hw: pointer to the HW structure |
| 1062 | * @data: pointer to the NVM (EEPROM) |
| 1063 | * |
| 1064 | * Read the EEPROM for the current default LED configuration. If the |
| 1065 | * LED configuration is not valid, set to a valid LED configuration. |
| 1066 | **/ |
| 1067 | static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) |
| 1068 | { |
| 1069 | s32 ret_val; |
| 1070 | |
| 1071 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| 1072 | if (ret_val) { |
| 1073 | hw_dbg(hw, "NVM Read Error\n"); |
| 1074 | return ret_val; |
| 1075 | } |
| 1076 | |
| 1077 | if (hw->mac.type == e1000_82573 && |
| 1078 | *data == ID_LED_RESERVED_F746) |
| 1079 | *data = ID_LED_DEFAULT_82573; |
| 1080 | else if (*data == ID_LED_RESERVED_0000 || |
| 1081 | *data == ID_LED_RESERVED_FFFF) |
| 1082 | *data = ID_LED_DEFAULT; |
| 1083 | |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | /** |
| 1088 | * e1000e_get_laa_state_82571 - Get locally administered address state |
| 1089 | * @hw: pointer to the HW structure |
| 1090 | * |
| 1091 | * Retrieve and return the current locally administed address state. |
| 1092 | **/ |
| 1093 | bool e1000e_get_laa_state_82571(struct e1000_hw *hw) |
| 1094 | { |
| 1095 | if (hw->mac.type != e1000_82571) |
| 1096 | return 0; |
| 1097 | |
| 1098 | return hw->dev_spec.e82571.laa_is_present; |
| 1099 | } |
| 1100 | |
| 1101 | /** |
| 1102 | * e1000e_set_laa_state_82571 - Set locally administered address state |
| 1103 | * @hw: pointer to the HW structure |
| 1104 | * @state: enable/disable locally administered address |
| 1105 | * |
| 1106 | * Enable/Disable the current locally administed address state. |
| 1107 | **/ |
| 1108 | void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) |
| 1109 | { |
| 1110 | if (hw->mac.type != e1000_82571) |
| 1111 | return; |
| 1112 | |
| 1113 | hw->dev_spec.e82571.laa_is_present = state; |
| 1114 | |
| 1115 | /* If workaround is activated... */ |
| 1116 | if (state) |
| 1117 | /* Hold a copy of the LAA in RAR[14] This is done so that |
| 1118 | * between the time RAR[0] gets clobbered and the time it |
| 1119 | * gets fixed, the actual LAA is in one of the RARs and no |
| 1120 | * incoming packets directed to this port are dropped. |
| 1121 | * Eventually the LAA will be in RAR[0] and RAR[14]. |
| 1122 | */ |
| 1123 | e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); |
| 1124 | } |
| 1125 | |
| 1126 | /** |
| 1127 | * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum |
| 1128 | * @hw: pointer to the HW structure |
| 1129 | * |
| 1130 | * Verifies that the EEPROM has completed the update. After updating the |
| 1131 | * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If |
| 1132 | * the checksum fix is not implemented, we need to set the bit and update |
| 1133 | * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, |
| 1134 | * we need to return bad checksum. |
| 1135 | **/ |
| 1136 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) |
| 1137 | { |
| 1138 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 1139 | s32 ret_val; |
| 1140 | u16 data; |
| 1141 | |
| 1142 | if (nvm->type != e1000_nvm_flash_hw) |
| 1143 | return 0; |
| 1144 | |
| 1145 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating |
| 1146 | * 10h-12h. Checksum may need to be fixed. |
| 1147 | */ |
| 1148 | ret_val = e1000_read_nvm(hw, 0x10, 1, &data); |
| 1149 | if (ret_val) |
| 1150 | return ret_val; |
| 1151 | |
| 1152 | if (!(data & 0x10)) { |
| 1153 | /* Read 0x23 and check bit 15. This bit is a 1 |
| 1154 | * when the checksum has already been fixed. If |
| 1155 | * the checksum is still wrong and this bit is a |
| 1156 | * 1, we need to return bad checksum. Otherwise, |
| 1157 | * we need to set this bit to a 1 and update the |
| 1158 | * checksum. |
| 1159 | */ |
| 1160 | ret_val = e1000_read_nvm(hw, 0x23, 1, &data); |
| 1161 | if (ret_val) |
| 1162 | return ret_val; |
| 1163 | |
| 1164 | if (!(data & 0x8000)) { |
| 1165 | data |= 0x8000; |
| 1166 | ret_val = e1000_write_nvm(hw, 0x23, 1, &data); |
| 1167 | if (ret_val) |
| 1168 | return ret_val; |
| 1169 | ret_val = e1000e_update_nvm_checksum(hw); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | return 0; |
| 1174 | } |
| 1175 | |
| 1176 | /** |
| 1177 | * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters |
| 1178 | * @hw: pointer to the HW structure |
| 1179 | * |
| 1180 | * Clears the hardware counters by reading the counter registers. |
| 1181 | **/ |
| 1182 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) |
| 1183 | { |
| 1184 | u32 temp; |
| 1185 | |
| 1186 | e1000e_clear_hw_cntrs_base(hw); |
| 1187 | |
| 1188 | temp = er32(PRC64); |
| 1189 | temp = er32(PRC127); |
| 1190 | temp = er32(PRC255); |
| 1191 | temp = er32(PRC511); |
| 1192 | temp = er32(PRC1023); |
| 1193 | temp = er32(PRC1522); |
| 1194 | temp = er32(PTC64); |
| 1195 | temp = er32(PTC127); |
| 1196 | temp = er32(PTC255); |
| 1197 | temp = er32(PTC511); |
| 1198 | temp = er32(PTC1023); |
| 1199 | temp = er32(PTC1522); |
| 1200 | |
| 1201 | temp = er32(ALGNERRC); |
| 1202 | temp = er32(RXERRC); |
| 1203 | temp = er32(TNCRS); |
| 1204 | temp = er32(CEXTERR); |
| 1205 | temp = er32(TSCTC); |
| 1206 | temp = er32(TSCTFC); |
| 1207 | |
| 1208 | temp = er32(MGTPRC); |
| 1209 | temp = er32(MGTPDC); |
| 1210 | temp = er32(MGTPTC); |
| 1211 | |
| 1212 | temp = er32(IAC); |
| 1213 | temp = er32(ICRXOC); |
| 1214 | |
| 1215 | temp = er32(ICRXPTC); |
| 1216 | temp = er32(ICRXATC); |
| 1217 | temp = er32(ICTXPTC); |
| 1218 | temp = er32(ICTXATC); |
| 1219 | temp = er32(ICTXQEC); |
| 1220 | temp = er32(ICTXQMTC); |
| 1221 | temp = er32(ICRXDMTC); |
| 1222 | } |
| 1223 | |
| 1224 | static struct e1000_mac_operations e82571_mac_ops = { |
| 1225 | .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, |
| 1226 | /* .check_for_link: media type dependent */ |
| 1227 | .cleanup_led = e1000e_cleanup_led_generic, |
| 1228 | .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, |
| 1229 | .get_bus_info = e1000e_get_bus_info_pcie, |
| 1230 | /* .get_link_up_info: media type dependent */ |
| 1231 | .led_on = e1000e_led_on_generic, |
| 1232 | .led_off = e1000e_led_off_generic, |
| 1233 | .mc_addr_list_update = e1000_mc_addr_list_update_82571, |
| 1234 | .reset_hw = e1000_reset_hw_82571, |
| 1235 | .init_hw = e1000_init_hw_82571, |
| 1236 | .setup_link = e1000_setup_link_82571, |
| 1237 | /* .setup_physical_interface: media type dependent */ |
| 1238 | }; |
| 1239 | |
| 1240 | static struct e1000_phy_operations e82_phy_ops_igp = { |
| 1241 | .acquire_phy = e1000_get_hw_semaphore_82571, |
| 1242 | .check_reset_block = e1000e_check_reset_block_generic, |
| 1243 | .commit_phy = NULL, |
| 1244 | .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, |
| 1245 | .get_cfg_done = e1000_get_cfg_done_82571, |
| 1246 | .get_cable_length = e1000e_get_cable_length_igp_2, |
| 1247 | .get_phy_info = e1000e_get_phy_info_igp, |
| 1248 | .read_phy_reg = e1000e_read_phy_reg_igp, |
| 1249 | .release_phy = e1000_put_hw_semaphore_82571, |
| 1250 | .reset_phy = e1000e_phy_hw_reset_generic, |
| 1251 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
| 1252 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| 1253 | .write_phy_reg = e1000e_write_phy_reg_igp, |
| 1254 | }; |
| 1255 | |
| 1256 | static struct e1000_phy_operations e82_phy_ops_m88 = { |
| 1257 | .acquire_phy = e1000_get_hw_semaphore_82571, |
| 1258 | .check_reset_block = e1000e_check_reset_block_generic, |
| 1259 | .commit_phy = e1000e_phy_sw_reset, |
| 1260 | .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
| 1261 | .get_cfg_done = e1000e_get_cfg_done, |
| 1262 | .get_cable_length = e1000e_get_cable_length_m88, |
| 1263 | .get_phy_info = e1000e_get_phy_info_m88, |
| 1264 | .read_phy_reg = e1000e_read_phy_reg_m88, |
| 1265 | .release_phy = e1000_put_hw_semaphore_82571, |
| 1266 | .reset_phy = e1000e_phy_hw_reset_generic, |
| 1267 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
| 1268 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| 1269 | .write_phy_reg = e1000e_write_phy_reg_m88, |
| 1270 | }; |
| 1271 | |
| 1272 | static struct e1000_nvm_operations e82571_nvm_ops = { |
| 1273 | .acquire_nvm = e1000_acquire_nvm_82571, |
| 1274 | .read_nvm = e1000e_read_nvm_spi, |
| 1275 | .release_nvm = e1000_release_nvm_82571, |
| 1276 | .update_nvm = e1000_update_nvm_checksum_82571, |
| 1277 | .valid_led_default = e1000_valid_led_default_82571, |
| 1278 | .validate_nvm = e1000_validate_nvm_checksum_82571, |
| 1279 | .write_nvm = e1000_write_nvm_82571, |
| 1280 | }; |
| 1281 | |
| 1282 | static struct e1000_nvm_operations e82573_nvm_ops = { |
| 1283 | .acquire_nvm = e1000_acquire_nvm_82571, |
| 1284 | .read_nvm = e1000e_read_nvm_eerd, |
| 1285 | .release_nvm = e1000_release_nvm_82571, |
| 1286 | .update_nvm = e1000_update_nvm_checksum_82571, |
| 1287 | .valid_led_default = e1000_valid_led_default_82571, |
| 1288 | .validate_nvm = e1000_validate_nvm_checksum_82571, |
| 1289 | .write_nvm = e1000_write_nvm_82571, |
| 1290 | }; |
| 1291 | |
| 1292 | struct e1000_info e1000_82571_info = { |
| 1293 | .mac = e1000_82571, |
| 1294 | .flags = FLAG_HAS_HW_VLAN_FILTER |
| 1295 | | FLAG_HAS_JUMBO_FRAMES |
| 1296 | | FLAG_HAS_STATS_PTC_PRC |
| 1297 | | FLAG_HAS_WOL |
| 1298 | | FLAG_APME_IN_CTRL3 |
| 1299 | | FLAG_RX_CSUM_ENABLED |
| 1300 | | FLAG_HAS_CTRLEXT_ON_LOAD |
| 1301 | | FLAG_HAS_STATS_ICR_ICT |
| 1302 | | FLAG_HAS_SMART_POWER_DOWN |
| 1303 | | FLAG_RESET_OVERWRITES_LAA /* errata */ |
| 1304 | | FLAG_TARC_SPEED_MODE_BIT /* errata */ |
| 1305 | | FLAG_APME_CHECK_PORT_B, |
| 1306 | .pba = 38, |
| 1307 | .get_invariants = e1000_get_invariants_82571, |
| 1308 | .mac_ops = &e82571_mac_ops, |
| 1309 | .phy_ops = &e82_phy_ops_igp, |
| 1310 | .nvm_ops = &e82571_nvm_ops, |
| 1311 | }; |
| 1312 | |
| 1313 | struct e1000_info e1000_82572_info = { |
| 1314 | .mac = e1000_82572, |
| 1315 | .flags = FLAG_HAS_HW_VLAN_FILTER |
| 1316 | | FLAG_HAS_JUMBO_FRAMES |
| 1317 | | FLAG_HAS_STATS_PTC_PRC |
| 1318 | | FLAG_HAS_WOL |
| 1319 | | FLAG_APME_IN_CTRL3 |
| 1320 | | FLAG_RX_CSUM_ENABLED |
| 1321 | | FLAG_HAS_CTRLEXT_ON_LOAD |
| 1322 | | FLAG_HAS_STATS_ICR_ICT |
| 1323 | | FLAG_TARC_SPEED_MODE_BIT, /* errata */ |
| 1324 | .pba = 38, |
| 1325 | .get_invariants = e1000_get_invariants_82571, |
| 1326 | .mac_ops = &e82571_mac_ops, |
| 1327 | .phy_ops = &e82_phy_ops_igp, |
| 1328 | .nvm_ops = &e82571_nvm_ops, |
| 1329 | }; |
| 1330 | |
| 1331 | struct e1000_info e1000_82573_info = { |
| 1332 | .mac = e1000_82573, |
| 1333 | .flags = FLAG_HAS_HW_VLAN_FILTER |
| 1334 | | FLAG_HAS_JUMBO_FRAMES |
| 1335 | | FLAG_HAS_STATS_PTC_PRC |
| 1336 | | FLAG_HAS_WOL |
| 1337 | | FLAG_APME_IN_CTRL3 |
| 1338 | | FLAG_RX_CSUM_ENABLED |
| 1339 | | FLAG_HAS_STATS_ICR_ICT |
| 1340 | | FLAG_HAS_SMART_POWER_DOWN |
| 1341 | | FLAG_HAS_AMT |
| 1342 | | FLAG_HAS_ASPM |
| 1343 | | FLAG_HAS_ERT |
| 1344 | | FLAG_HAS_SWSM_ON_LOAD, |
| 1345 | .pba = 20, |
| 1346 | .get_invariants = e1000_get_invariants_82571, |
| 1347 | .mac_ops = &e82571_mac_ops, |
| 1348 | .phy_ops = &e82_phy_ops_m88, |
| 1349 | .nvm_ops = &e82573_nvm_ops, |
| 1350 | }; |
| 1351 | |