Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | # |
Dan Williams | 685784a | 2007-07-09 11:56:42 -0700 | [diff] [blame] | 2 | # Generic algorithms support |
| 3 | # |
| 4 | config XOR_BLOCKS |
| 5 | tristate |
| 6 | |
| 7 | # |
Dan Williams | 9bc89cd | 2007-01-02 11:10:44 -0700 | [diff] [blame] | 8 | # async_tx api: hardware offloaded memory transfer/transform support |
| 9 | # |
| 10 | source "crypto/async_tx/Kconfig" |
| 11 | |
| 12 | # |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 | # Cryptographic API Configuration |
| 14 | # |
Jan Engelhardt | 2e290f4 | 2007-05-18 15:11:01 +1000 | [diff] [blame] | 15 | menuconfig CRYPTO |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 16 | bool "Cryptographic API" |
| 17 | help |
| 18 | This option provides the core Cryptographic API. |
| 19 | |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 20 | if CRYPTO |
| 21 | |
| 22 | config CRYPTO_ALGAPI |
| 23 | tristate |
| 24 | help |
| 25 | This option provides the API for cryptographic algorithms. |
| 26 | |
Herbert Xu | 1ae9782 | 2007-08-30 15:36:14 +0800 | [diff] [blame] | 27 | config CRYPTO_AEAD |
| 28 | tristate |
| 29 | select CRYPTO_ALGAPI |
| 30 | |
Herbert Xu | 5cde0af | 2006-08-22 00:07:53 +1000 | [diff] [blame] | 31 | config CRYPTO_BLKCIPHER |
| 32 | tristate |
| 33 | select CRYPTO_ALGAPI |
| 34 | |
Herbert Xu | 0a27032 | 2007-11-30 21:38:37 +1100 | [diff] [blame] | 35 | config CRYPTO_SEQIV |
| 36 | tristate "Sequence Number IV Generator" |
Herbert Xu | 4726204 | 2007-12-14 10:19:27 +0800 | [diff] [blame] | 37 | select CRYPTO_AEAD |
Herbert Xu | 0a27032 | 2007-11-30 21:38:37 +1100 | [diff] [blame] | 38 | select CRYPTO_BLKCIPHER |
| 39 | help |
| 40 | This IV generator generates an IV based on a sequence number by |
| 41 | xoring it with a salt. This algorithm is mainly useful for CTR |
| 42 | and similar modes. |
| 43 | |
Herbert Xu | 055bcee | 2006-08-19 22:24:23 +1000 | [diff] [blame] | 44 | config CRYPTO_HASH |
| 45 | tristate |
| 46 | select CRYPTO_ALGAPI |
| 47 | |
Herbert Xu | 2b8c19d | 2006-09-21 11:31:44 +1000 | [diff] [blame] | 48 | config CRYPTO_MANAGER |
| 49 | tristate "Cryptographic algorithm manager" |
| 50 | select CRYPTO_ALGAPI |
Herbert Xu | 2b8c19d | 2006-09-21 11:31:44 +1000 | [diff] [blame] | 51 | help |
| 52 | Create default cryptographic template instantiations such as |
| 53 | cbc(aes). |
| 54 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 55 | config CRYPTO_HMAC |
Herbert Xu | 8425165 | 2006-08-20 15:25:22 +1000 | [diff] [blame] | 56 | tristate "HMAC support" |
Herbert Xu | 0796ae0 | 2006-08-21 20:50:52 +1000 | [diff] [blame] | 57 | select CRYPTO_HASH |
Herbert Xu | 4351840 | 2006-10-16 21:28:58 +1000 | [diff] [blame] | 58 | select CRYPTO_MANAGER |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 59 | help |
| 60 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
| 61 | This is required for IPSec. |
| 62 | |
Kazunori MIYAZAWA | 333b0d7 | 2006-10-28 13:15:24 +1000 | [diff] [blame] | 63 | config CRYPTO_XCBC |
| 64 | tristate "XCBC support" |
| 65 | depends on EXPERIMENTAL |
| 66 | select CRYPTO_HASH |
| 67 | select CRYPTO_MANAGER |
| 68 | help |
| 69 | XCBC: Keyed-Hashing with encryption algorithm |
| 70 | http://www.ietf.org/rfc/rfc3566.txt |
| 71 | http://csrc.nist.gov/encryption/modes/proposedmodes/ |
| 72 | xcbc-mac/xcbc-mac-spec.pdf |
| 73 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 74 | config CRYPTO_NULL |
| 75 | tristate "Null algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 76 | select CRYPTO_ALGAPI |
Adrian Bunk | c8620c2 | 2008-02-18 09:00:05 +0800 | [diff] [blame] | 77 | select CRYPTO_BLKCIPHER |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 78 | help |
| 79 | These are 'Null' algorithms, used by IPsec, which do nothing. |
| 80 | |
| 81 | config CRYPTO_MD4 |
| 82 | tristate "MD4 digest algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 83 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 84 | help |
| 85 | MD4 message digest algorithm (RFC1320). |
| 86 | |
| 87 | config CRYPTO_MD5 |
| 88 | tristate "MD5 digest algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 89 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 90 | help |
| 91 | MD5 message digest algorithm (RFC1321). |
| 92 | |
| 93 | config CRYPTO_SHA1 |
| 94 | tristate "SHA1 digest algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 95 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 | help |
| 97 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
| 98 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 99 | config CRYPTO_SHA256 |
Jonathan Lynch | cd12fb9 | 2007-11-10 20:08:25 +0800 | [diff] [blame] | 100 | tristate "SHA224 and SHA256 digest algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 101 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 102 | help |
| 103 | SHA256 secure hash standard (DFIPS 180-2). |
| 104 | |
| 105 | This version of SHA implements a 256 bit hash with 128 bits of |
| 106 | security against collision attacks. |
| 107 | |
Jonathan Lynch | cd12fb9 | 2007-11-10 20:08:25 +0800 | [diff] [blame] | 108 | This code also includes SHA-224, a 224 bit hash with 112 bits |
| 109 | of security against collision attacks. |
| 110 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 111 | config CRYPTO_SHA512 |
| 112 | tristate "SHA384 and SHA512 digest algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 113 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 114 | help |
| 115 | SHA512 secure hash standard (DFIPS 180-2). |
| 116 | |
| 117 | This version of SHA implements a 512 bit hash with 256 bits of |
| 118 | security against collision attacks. |
| 119 | |
| 120 | This code also includes SHA-384, a 384 bit hash with 192 bits |
| 121 | of security against collision attacks. |
| 122 | |
| 123 | config CRYPTO_WP512 |
| 124 | tristate "Whirlpool digest algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 125 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 126 | help |
| 127 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
| 128 | |
| 129 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
| 130 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard |
| 131 | |
| 132 | See also: |
| 133 | <http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html> |
| 134 | |
| 135 | config CRYPTO_TGR192 |
| 136 | tristate "Tiger digest algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 137 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 138 | help |
| 139 | Tiger hash algorithm 192, 160 and 128-bit hashes |
| 140 | |
| 141 | Tiger is a hash function optimized for 64-bit processors while |
| 142 | still having decent performance on 32-bit processors. |
| 143 | Tiger was developed by Ross Anderson and Eli Biham. |
| 144 | |
| 145 | See also: |
| 146 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
| 147 | |
Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 148 | config CRYPTO_GF128MUL |
| 149 | tristate "GF(2^128) multiplication functions (EXPERIMENTAL)" |
| 150 | depends on EXPERIMENTAL |
| 151 | help |
| 152 | Efficient table driven implementation of multiplications in the |
| 153 | field GF(2^128). This is needed by some cypher modes. This |
| 154 | option will be selected automatically if you select such a |
| 155 | cipher mode. Only select this option by hand if you expect to load |
| 156 | an external module that requires these functions. |
| 157 | |
Herbert Xu | db131ef | 2006-09-21 11:44:08 +1000 | [diff] [blame] | 158 | config CRYPTO_ECB |
| 159 | tristate "ECB support" |
| 160 | select CRYPTO_BLKCIPHER |
Herbert Xu | 4351840 | 2006-10-16 21:28:58 +1000 | [diff] [blame] | 161 | select CRYPTO_MANAGER |
Herbert Xu | db131ef | 2006-09-21 11:44:08 +1000 | [diff] [blame] | 162 | help |
| 163 | ECB: Electronic CodeBook mode |
| 164 | This is the simplest block cipher algorithm. It simply encrypts |
| 165 | the input block by block. |
| 166 | |
| 167 | config CRYPTO_CBC |
| 168 | tristate "CBC support" |
| 169 | select CRYPTO_BLKCIPHER |
Herbert Xu | 4351840 | 2006-10-16 21:28:58 +1000 | [diff] [blame] | 170 | select CRYPTO_MANAGER |
Herbert Xu | db131ef | 2006-09-21 11:44:08 +1000 | [diff] [blame] | 171 | help |
| 172 | CBC: Cipher Block Chaining mode |
| 173 | This block cipher algorithm is required for IPSec. |
| 174 | |
David Howells | 91652be | 2006-12-16 12:09:02 +1100 | [diff] [blame] | 175 | config CRYPTO_PCBC |
| 176 | tristate "PCBC support" |
| 177 | select CRYPTO_BLKCIPHER |
| 178 | select CRYPTO_MANAGER |
David Howells | 91652be | 2006-12-16 12:09:02 +1100 | [diff] [blame] | 179 | help |
| 180 | PCBC: Propagating Cipher Block Chaining mode |
| 181 | This block cipher algorithm is required for RxRPC. |
| 182 | |
Rik Snel | 64470f1 | 2006-11-26 09:43:10 +1100 | [diff] [blame] | 183 | config CRYPTO_LRW |
| 184 | tristate "LRW support (EXPERIMENTAL)" |
| 185 | depends on EXPERIMENTAL |
| 186 | select CRYPTO_BLKCIPHER |
| 187 | select CRYPTO_MANAGER |
| 188 | select CRYPTO_GF128MUL |
| 189 | help |
| 190 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable |
| 191 | narrow block cipher mode for dm-crypt. Use it with cipher |
| 192 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. |
| 193 | The first 128, 192 or 256 bits in the key are used for AES and the |
| 194 | rest is used to tie each cipher block to its logical position. |
| 195 | |
Rik Snel | f19f511 | 2007-09-19 20:23:13 +0800 | [diff] [blame] | 196 | config CRYPTO_XTS |
| 197 | tristate "XTS support (EXPERIMENTAL)" |
| 198 | depends on EXPERIMENTAL |
| 199 | select CRYPTO_BLKCIPHER |
| 200 | select CRYPTO_MANAGER |
| 201 | select CRYPTO_GF128MUL |
| 202 | help |
| 203 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, |
| 204 | key size 256, 384 or 512 bits. This implementation currently |
| 205 | can't handle a sectorsize which is not a multiple of 16 bytes. |
| 206 | |
Joy Latten | 23e353c | 2007-10-23 08:50:32 +0800 | [diff] [blame] | 207 | config CRYPTO_CTR |
| 208 | tristate "CTR support" |
| 209 | select CRYPTO_BLKCIPHER |
Herbert Xu | 0a27032 | 2007-11-30 21:38:37 +1100 | [diff] [blame] | 210 | select CRYPTO_SEQIV |
Joy Latten | 23e353c | 2007-10-23 08:50:32 +0800 | [diff] [blame] | 211 | select CRYPTO_MANAGER |
Joy Latten | 23e353c | 2007-10-23 08:50:32 +0800 | [diff] [blame] | 212 | help |
| 213 | CTR: Counter mode |
| 214 | This block cipher algorithm is required for IPSec. |
| 215 | |
Mikko Herranen | 28db8e3 | 2007-11-26 22:24:11 +0800 | [diff] [blame] | 216 | config CRYPTO_GCM |
| 217 | tristate "GCM/GMAC support" |
| 218 | select CRYPTO_CTR |
| 219 | select CRYPTO_AEAD |
| 220 | select CRYPTO_GF128MUL |
| 221 | help |
| 222 | Support for Galois/Counter Mode (GCM) and Galois Message |
| 223 | Authentication Code (GMAC). Required for IPSec. |
| 224 | |
Joy Latten | 4a49b49 | 2007-12-12 20:25:13 +0800 | [diff] [blame] | 225 | config CRYPTO_CCM |
| 226 | tristate "CCM support" |
| 227 | select CRYPTO_CTR |
| 228 | select CRYPTO_AEAD |
| 229 | help |
| 230 | Support for Counter with CBC MAC. Required for IPsec. |
| 231 | |
Herbert Xu | 124b53d | 2007-04-16 20:49:20 +1000 | [diff] [blame] | 232 | config CRYPTO_CRYPTD |
| 233 | tristate "Software async crypto daemon" |
Herbert Xu | 653ebd9c | 2007-11-27 19:48:27 +0800 | [diff] [blame] | 234 | select CRYPTO_BLKCIPHER |
Herbert Xu | 124b53d | 2007-04-16 20:49:20 +1000 | [diff] [blame] | 235 | select CRYPTO_MANAGER |
| 236 | help |
| 237 | This is a generic software asynchronous crypto daemon that |
| 238 | converts an arbitrary synchronous software crypto algorithm |
| 239 | into an asynchronous algorithm that executes in a kernel thread. |
| 240 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 241 | config CRYPTO_DES |
| 242 | tristate "DES and Triple DES EDE cipher algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 243 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 244 | help |
| 245 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
| 246 | |
David Howells | 9083163 | 2006-12-16 12:13:14 +1100 | [diff] [blame] | 247 | config CRYPTO_FCRYPT |
| 248 | tristate "FCrypt cipher algorithm" |
| 249 | select CRYPTO_ALGAPI |
| 250 | select CRYPTO_BLKCIPHER |
| 251 | help |
| 252 | FCrypt algorithm used by RxRPC. |
| 253 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 254 | config CRYPTO_BLOWFISH |
| 255 | tristate "Blowfish cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 256 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 257 | help |
| 258 | Blowfish cipher algorithm, by Bruce Schneier. |
| 259 | |
| 260 | This is a variable key length cipher which can use keys from 32 |
| 261 | bits to 448 bits in length. It's fast, simple and specifically |
| 262 | designed for use on "large microprocessors". |
| 263 | |
| 264 | See also: |
| 265 | <http://www.schneier.com/blowfish.html> |
| 266 | |
| 267 | config CRYPTO_TWOFISH |
| 268 | tristate "Twofish cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 269 | select CRYPTO_ALGAPI |
Joachim Fritschi | 2729bb4 | 2006-06-20 20:37:23 +1000 | [diff] [blame] | 270 | select CRYPTO_TWOFISH_COMMON |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 271 | help |
| 272 | Twofish cipher algorithm. |
| 273 | |
| 274 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 275 | candidate cipher by researchers at CounterPane Systems. It is a |
| 276 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 277 | bits. |
| 278 | |
| 279 | See also: |
| 280 | <http://www.schneier.com/twofish.html> |
| 281 | |
Joachim Fritschi | 2729bb4 | 2006-06-20 20:37:23 +1000 | [diff] [blame] | 282 | config CRYPTO_TWOFISH_COMMON |
| 283 | tristate |
Joachim Fritschi | 2729bb4 | 2006-06-20 20:37:23 +1000 | [diff] [blame] | 284 | help |
| 285 | Common parts of the Twofish cipher algorithm shared by the |
| 286 | generic c and the assembler implementations. |
| 287 | |
Joachim Fritschi | b9f535f | 2006-06-20 20:59:16 +1000 | [diff] [blame] | 288 | config CRYPTO_TWOFISH_586 |
| 289 | tristate "Twofish cipher algorithms (i586)" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 290 | depends on (X86 || UML_X86) && !64BIT |
| 291 | select CRYPTO_ALGAPI |
Joachim Fritschi | b9f535f | 2006-06-20 20:59:16 +1000 | [diff] [blame] | 292 | select CRYPTO_TWOFISH_COMMON |
| 293 | help |
| 294 | Twofish cipher algorithm. |
| 295 | |
| 296 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 297 | candidate cipher by researchers at CounterPane Systems. It is a |
| 298 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 299 | bits. |
| 300 | |
| 301 | See also: |
| 302 | <http://www.schneier.com/twofish.html> |
| 303 | |
Joachim Fritschi | eaf4408 | 2006-06-20 21:12:02 +1000 | [diff] [blame] | 304 | config CRYPTO_TWOFISH_X86_64 |
| 305 | tristate "Twofish cipher algorithm (x86_64)" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 306 | depends on (X86 || UML_X86) && 64BIT |
| 307 | select CRYPTO_ALGAPI |
Joachim Fritschi | eaf4408 | 2006-06-20 21:12:02 +1000 | [diff] [blame] | 308 | select CRYPTO_TWOFISH_COMMON |
| 309 | help |
| 310 | Twofish cipher algorithm (x86_64). |
| 311 | |
| 312 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 313 | candidate cipher by researchers at CounterPane Systems. It is a |
| 314 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 315 | bits. |
| 316 | |
| 317 | See also: |
| 318 | <http://www.schneier.com/twofish.html> |
| 319 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 320 | config CRYPTO_SERPENT |
| 321 | tristate "Serpent cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 322 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 323 | help |
| 324 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 325 | |
| 326 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 327 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed |
David Sterba | 3dde6ad | 2007-05-09 07:12:20 +0200 | [diff] [blame] | 328 | variant of Serpent for compatibility with old kerneli.org code. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 329 | |
| 330 | See also: |
| 331 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 332 | |
| 333 | config CRYPTO_AES |
| 334 | tristate "AES cipher algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 335 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 336 | help |
| 337 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 338 | algorithm. |
| 339 | |
| 340 | Rijndael appears to be consistently a very good performer in |
| 341 | both hardware and software across a wide range of computing |
| 342 | environments regardless of its use in feedback or non-feedback |
| 343 | modes. Its key setup time is excellent, and its key agility is |
| 344 | good. Rijndael's very low memory requirements make it very well |
| 345 | suited for restricted-space environments, in which it also |
| 346 | demonstrates excellent performance. Rijndael's operations are |
| 347 | among the easiest to defend against power and timing attacks. |
| 348 | |
| 349 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 350 | |
| 351 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. |
| 352 | |
| 353 | config CRYPTO_AES_586 |
| 354 | tristate "AES cipher algorithms (i586)" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 355 | depends on (X86 || UML_X86) && !64BIT |
| 356 | select CRYPTO_ALGAPI |
Sebastian Siewior | 5157dea | 2007-11-10 19:07:16 +0800 | [diff] [blame] | 357 | select CRYPTO_AES |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 358 | help |
| 359 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 360 | algorithm. |
| 361 | |
| 362 | Rijndael appears to be consistently a very good performer in |
| 363 | both hardware and software across a wide range of computing |
| 364 | environments regardless of its use in feedback or non-feedback |
| 365 | modes. Its key setup time is excellent, and its key agility is |
| 366 | good. Rijndael's very low memory requirements make it very well |
| 367 | suited for restricted-space environments, in which it also |
| 368 | demonstrates excellent performance. Rijndael's operations are |
| 369 | among the easiest to defend against power and timing attacks. |
| 370 | |
| 371 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 372 | |
| 373 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 374 | |
Andreas Steinmetz | a2a892a | 2005-07-06 13:55:00 -0700 | [diff] [blame] | 375 | config CRYPTO_AES_X86_64 |
| 376 | tristate "AES cipher algorithms (x86_64)" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 377 | depends on (X86 || UML_X86) && 64BIT |
| 378 | select CRYPTO_ALGAPI |
Sebastian Siewior | 81190b3 | 2007-11-08 21:25:04 +0800 | [diff] [blame] | 379 | select CRYPTO_AES |
Andreas Steinmetz | a2a892a | 2005-07-06 13:55:00 -0700 | [diff] [blame] | 380 | help |
| 381 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 382 | algorithm. |
| 383 | |
| 384 | Rijndael appears to be consistently a very good performer in |
| 385 | both hardware and software across a wide range of computing |
| 386 | environments regardless of its use in feedback or non-feedback |
| 387 | modes. Its key setup time is excellent, and its key agility is |
| 388 | good. Rijndael's very low memory requirements make it very well |
| 389 | suited for restricted-space environments, in which it also |
| 390 | demonstrates excellent performance. Rijndael's operations are |
| 391 | among the easiest to defend against power and timing attacks. |
| 392 | |
| 393 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 394 | |
| 395 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 396 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 397 | config CRYPTO_CAST5 |
| 398 | tristate "CAST5 (CAST-128) cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 399 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 400 | help |
| 401 | The CAST5 encryption algorithm (synonymous with CAST-128) is |
| 402 | described in RFC2144. |
| 403 | |
| 404 | config CRYPTO_CAST6 |
| 405 | tristate "CAST6 (CAST-256) cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 406 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 407 | help |
| 408 | The CAST6 encryption algorithm (synonymous with CAST-256) is |
| 409 | described in RFC2612. |
| 410 | |
| 411 | config CRYPTO_TEA |
Aaron Grothe | fb4f10e | 2005-09-01 17:42:46 -0700 | [diff] [blame] | 412 | tristate "TEA, XTEA and XETA cipher algorithms" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 413 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 414 | help |
| 415 | TEA cipher algorithm. |
| 416 | |
| 417 | Tiny Encryption Algorithm is a simple cipher that uses |
| 418 | many rounds for security. It is very fast and uses |
| 419 | little memory. |
| 420 | |
| 421 | Xtendend Tiny Encryption Algorithm is a modification to |
| 422 | the TEA algorithm to address a potential key weakness |
| 423 | in the TEA algorithm. |
| 424 | |
Aaron Grothe | fb4f10e | 2005-09-01 17:42:46 -0700 | [diff] [blame] | 425 | Xtendend Encryption Tiny Algorithm is a mis-implementation |
| 426 | of the XTEA algorithm for compatibility purposes. |
| 427 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 428 | config CRYPTO_ARC4 |
| 429 | tristate "ARC4 cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 430 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 431 | help |
| 432 | ARC4 cipher algorithm. |
| 433 | |
| 434 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 |
| 435 | bits in length. This algorithm is required for driver-based |
| 436 | WEP, but it should not be for other purposes because of the |
| 437 | weakness of the algorithm. |
| 438 | |
| 439 | config CRYPTO_KHAZAD |
| 440 | tristate "Khazad cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 441 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 442 | help |
| 443 | Khazad cipher algorithm. |
| 444 | |
| 445 | Khazad was a finalist in the initial NESSIE competition. It is |
| 446 | an algorithm optimized for 64-bit processors with good performance |
| 447 | on 32-bit processors. Khazad uses an 128 bit key size. |
| 448 | |
| 449 | See also: |
| 450 | <http://planeta.terra.com.br/informatica/paulobarreto/KhazadPage.html> |
| 451 | |
| 452 | config CRYPTO_ANUBIS |
| 453 | tristate "Anubis cipher algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 454 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 455 | help |
| 456 | Anubis cipher algorithm. |
| 457 | |
| 458 | Anubis is a variable key length cipher which can use keys from |
| 459 | 128 bits to 320 bits in length. It was evaluated as a entrant |
| 460 | in the NESSIE competition. |
| 461 | |
| 462 | See also: |
| 463 | <https://www.cosic.esat.kuleuven.ac.be/nessie/reports/> |
| 464 | <http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html> |
| 465 | |
Hye-Shik Chang | e2ee95b | 2007-08-21 20:01:03 +0800 | [diff] [blame] | 466 | config CRYPTO_SEED |
| 467 | tristate "SEED cipher algorithm" |
| 468 | select CRYPTO_ALGAPI |
| 469 | help |
| 470 | SEED cipher algorithm (RFC4269). |
| 471 | |
| 472 | SEED is a 128-bit symmetric key block cipher that has been |
| 473 | developed by KISA (Korea Information Security Agency) as a |
| 474 | national standard encryption algorithm of the Republic of Korea. |
| 475 | It is a 16 round block cipher with the key size of 128 bit. |
| 476 | |
| 477 | See also: |
| 478 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> |
| 479 | |
Tan Swee Heng | 2407d60 | 2007-11-23 19:45:00 +0800 | [diff] [blame] | 480 | config CRYPTO_SALSA20 |
| 481 | tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)" |
| 482 | depends on EXPERIMENTAL |
| 483 | select CRYPTO_BLKCIPHER |
| 484 | help |
| 485 | Salsa20 stream cipher algorithm. |
| 486 | |
| 487 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 488 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 489 | |
| 490 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 491 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 492 | |
Tan Swee Heng | 974e4b7 | 2007-12-10 15:52:56 +0800 | [diff] [blame] | 493 | config CRYPTO_SALSA20_586 |
| 494 | tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)" |
| 495 | depends on (X86 || UML_X86) && !64BIT |
| 496 | depends on EXPERIMENTAL |
| 497 | select CRYPTO_BLKCIPHER |
Tan Swee Heng | 974e4b7 | 2007-12-10 15:52:56 +0800 | [diff] [blame] | 498 | help |
| 499 | Salsa20 stream cipher algorithm. |
| 500 | |
| 501 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 502 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 503 | |
| 504 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 505 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
| 506 | |
Tan Swee Heng | 9a7dafb | 2007-12-18 00:04:40 +0800 | [diff] [blame] | 507 | config CRYPTO_SALSA20_X86_64 |
| 508 | tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)" |
| 509 | depends on (X86 || UML_X86) && 64BIT |
| 510 | depends on EXPERIMENTAL |
| 511 | select CRYPTO_BLKCIPHER |
Tan Swee Heng | 9a7dafb | 2007-12-18 00:04:40 +0800 | [diff] [blame] | 512 | help |
| 513 | Salsa20 stream cipher algorithm. |
| 514 | |
| 515 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 516 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 517 | |
| 518 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 519 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
| 520 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 521 | config CRYPTO_DEFLATE |
| 522 | tristate "Deflate compression algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 523 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 524 | select ZLIB_INFLATE |
| 525 | select ZLIB_DEFLATE |
| 526 | help |
| 527 | This is the Deflate algorithm (RFC1951), specified for use in |
| 528 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). |
| 529 | |
| 530 | You will most probably want this if using IPSec. |
| 531 | |
| 532 | config CRYPTO_MICHAEL_MIC |
| 533 | tristate "Michael MIC keyed digest algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 534 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 535 | help |
| 536 | Michael MIC is used for message integrity protection in TKIP |
| 537 | (IEEE 802.11i). This algorithm is required for TKIP, but it |
| 538 | should not be used for other purposes because of the weakness |
| 539 | of the algorithm. |
| 540 | |
| 541 | config CRYPTO_CRC32C |
| 542 | tristate "CRC32c CRC algorithm" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 543 | select CRYPTO_ALGAPI |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 544 | select LIBCRC32C |
| 545 | help |
| 546 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
| 547 | by iSCSI for header and data digests and by others. |
| 548 | See Castagnoli93. This implementation uses lib/libcrc32c. |
| 549 | Module will be crc32c. |
| 550 | |
Noriaki TAKAMIYA | 04ac7db | 2006-10-22 14:49:17 +1000 | [diff] [blame] | 551 | config CRYPTO_CAMELLIA |
| 552 | tristate "Camellia cipher algorithms" |
| 553 | depends on CRYPTO |
| 554 | select CRYPTO_ALGAPI |
| 555 | help |
| 556 | Camellia cipher algorithms module. |
| 557 | |
| 558 | Camellia is a symmetric key block cipher developed jointly |
| 559 | at NTT and Mitsubishi Electric Corporation. |
| 560 | |
| 561 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 562 | |
| 563 | See also: |
| 564 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 565 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 566 | config CRYPTO_TEST |
| 567 | tristate "Testing module" |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 568 | depends on m |
| 569 | select CRYPTO_ALGAPI |
Sebastian Siewior | d1cda4e | 2007-12-18 00:08:27 +0800 | [diff] [blame] | 570 | select CRYPTO_AEAD |
Frederik Deweerdt | 242f1a3 | 2008-02-15 19:19:33 +0800 | [diff] [blame] | 571 | select CRYPTO_BLKCIPHER |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 572 | help |
| 573 | Quick & dirty crypto test module. |
| 574 | |
Herbert Xu | 3c09f17 | 2007-08-30 16:24:15 +0800 | [diff] [blame] | 575 | config CRYPTO_AUTHENC |
| 576 | tristate "Authenc support" |
| 577 | select CRYPTO_AEAD |
Herbert Xu | 3e16bfb | 2008-02-23 11:13:00 +0800 | [diff] [blame] | 578 | select CRYPTO_BLKCIPHER |
Herbert Xu | 3c09f17 | 2007-08-30 16:24:15 +0800 | [diff] [blame] | 579 | select CRYPTO_MANAGER |
Borislav Petkov | 5e55311 | 2007-12-14 16:43:32 +0800 | [diff] [blame] | 580 | select CRYPTO_HASH |
Herbert Xu | 3c09f17 | 2007-08-30 16:24:15 +0800 | [diff] [blame] | 581 | help |
| 582 | Authenc: Combined mode wrapper for IPsec. |
| 583 | This is required for IPSec. |
| 584 | |
Zoltan Sogor | 0b77abb | 2007-12-07 16:53:23 +0800 | [diff] [blame] | 585 | config CRYPTO_LZO |
| 586 | tristate "LZO compression algorithm" |
| 587 | select CRYPTO_ALGAPI |
| 588 | select LZO_COMPRESS |
| 589 | select LZO_DECOMPRESS |
| 590 | help |
| 591 | This is the LZO algorithm. |
| 592 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 593 | source "drivers/crypto/Kconfig" |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 594 | |
Herbert Xu | cce9e06 | 2006-08-21 21:08:13 +1000 | [diff] [blame] | 595 | endif # if CRYPTO |