Uladzislau Rezki (Sony) | 3f21a6b | 2019-03-05 15:43:34 -0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* |
| 4 | * Test module for stress and analyze performance of vmalloc allocator. |
| 5 | * (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com> |
| 6 | */ |
| 7 | #include <linux/init.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/vmalloc.h> |
| 11 | #include <linux/random.h> |
| 12 | #include <linux/kthread.h> |
| 13 | #include <linux/moduleparam.h> |
| 14 | #include <linux/completion.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/rwsem.h> |
| 17 | #include <linux/mm.h> |
| 18 | |
| 19 | #define __param(type, name, init, msg) \ |
| 20 | static type name = init; \ |
| 21 | module_param(name, type, 0444); \ |
| 22 | MODULE_PARM_DESC(name, msg) \ |
| 23 | |
| 24 | __param(bool, single_cpu_test, false, |
| 25 | "Use single first online CPU to run tests"); |
| 26 | |
| 27 | __param(bool, sequential_test_order, false, |
| 28 | "Use sequential stress tests order"); |
| 29 | |
| 30 | __param(int, test_repeat_count, 1, |
| 31 | "Set test repeat counter"); |
| 32 | |
| 33 | __param(int, test_loop_count, 1000000, |
| 34 | "Set test loop counter"); |
| 35 | |
| 36 | __param(int, run_test_mask, INT_MAX, |
| 37 | "Set tests specified in the mask.\n\n" |
| 38 | "\t\tid: 1, name: fix_size_alloc_test\n" |
| 39 | "\t\tid: 2, name: full_fit_alloc_test\n" |
| 40 | "\t\tid: 4, name: long_busy_list_alloc_test\n" |
| 41 | "\t\tid: 8, name: random_size_alloc_test\n" |
| 42 | "\t\tid: 16, name: fix_align_alloc_test\n" |
| 43 | "\t\tid: 32, name: random_size_align_alloc_test\n" |
| 44 | "\t\tid: 64, name: align_shift_alloc_test\n" |
| 45 | "\t\tid: 128, name: pcpu_alloc_test\n" |
| 46 | /* Add a new test case description here. */ |
| 47 | ); |
| 48 | |
| 49 | /* |
| 50 | * Depends on single_cpu_test parameter. If it is true, then |
| 51 | * use first online CPU to trigger a test on, otherwise go with |
| 52 | * all online CPUs. |
| 53 | */ |
| 54 | static cpumask_t cpus_run_test_mask = CPU_MASK_NONE; |
| 55 | |
| 56 | /* |
| 57 | * Read write semaphore for synchronization of setup |
| 58 | * phase that is done in main thread and workers. |
| 59 | */ |
| 60 | static DECLARE_RWSEM(prepare_for_test_rwsem); |
| 61 | |
| 62 | /* |
| 63 | * Completion tracking for worker threads. |
| 64 | */ |
| 65 | static DECLARE_COMPLETION(test_all_done_comp); |
| 66 | static atomic_t test_n_undone = ATOMIC_INIT(0); |
| 67 | |
| 68 | static inline void |
| 69 | test_report_one_done(void) |
| 70 | { |
| 71 | if (atomic_dec_and_test(&test_n_undone)) |
| 72 | complete(&test_all_done_comp); |
| 73 | } |
| 74 | |
| 75 | static int random_size_align_alloc_test(void) |
| 76 | { |
| 77 | unsigned long size, align, rnd; |
| 78 | void *ptr; |
| 79 | int i; |
| 80 | |
| 81 | for (i = 0; i < test_loop_count; i++) { |
| 82 | get_random_bytes(&rnd, sizeof(rnd)); |
| 83 | |
| 84 | /* |
| 85 | * Maximum 1024 pages, if PAGE_SIZE is 4096. |
| 86 | */ |
| 87 | align = 1 << (rnd % 23); |
| 88 | |
| 89 | /* |
| 90 | * Maximum 10 pages. |
| 91 | */ |
| 92 | size = ((rnd % 10) + 1) * PAGE_SIZE; |
| 93 | |
| 94 | ptr = __vmalloc_node_range(size, align, |
| 95 | VMALLOC_START, VMALLOC_END, |
| 96 | GFP_KERNEL | __GFP_ZERO, |
| 97 | PAGE_KERNEL, |
| 98 | 0, 0, __builtin_return_address(0)); |
| 99 | |
| 100 | if (!ptr) |
| 101 | return -1; |
| 102 | |
| 103 | vfree(ptr); |
| 104 | } |
| 105 | |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * This test case is supposed to be failed. |
| 111 | */ |
| 112 | static int align_shift_alloc_test(void) |
| 113 | { |
| 114 | unsigned long align; |
| 115 | void *ptr; |
| 116 | int i; |
| 117 | |
| 118 | for (i = 0; i < BITS_PER_LONG; i++) { |
| 119 | align = ((unsigned long) 1) << i; |
| 120 | |
| 121 | ptr = __vmalloc_node_range(PAGE_SIZE, align, |
| 122 | VMALLOC_START, VMALLOC_END, |
| 123 | GFP_KERNEL | __GFP_ZERO, |
| 124 | PAGE_KERNEL, |
| 125 | 0, 0, __builtin_return_address(0)); |
| 126 | |
| 127 | if (!ptr) |
| 128 | return -1; |
| 129 | |
| 130 | vfree(ptr); |
| 131 | } |
| 132 | |
| 133 | return 0; |
| 134 | } |
| 135 | |
| 136 | static int fix_align_alloc_test(void) |
| 137 | { |
| 138 | void *ptr; |
| 139 | int i; |
| 140 | |
| 141 | for (i = 0; i < test_loop_count; i++) { |
| 142 | ptr = __vmalloc_node_range(5 * PAGE_SIZE, |
| 143 | THREAD_ALIGN << 1, |
| 144 | VMALLOC_START, VMALLOC_END, |
| 145 | GFP_KERNEL | __GFP_ZERO, |
| 146 | PAGE_KERNEL, |
| 147 | 0, 0, __builtin_return_address(0)); |
| 148 | |
| 149 | if (!ptr) |
| 150 | return -1; |
| 151 | |
| 152 | vfree(ptr); |
| 153 | } |
| 154 | |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | static int random_size_alloc_test(void) |
| 159 | { |
| 160 | unsigned int n; |
| 161 | void *p; |
| 162 | int i; |
| 163 | |
| 164 | for (i = 0; i < test_loop_count; i++) { |
| 165 | get_random_bytes(&n, sizeof(i)); |
| 166 | n = (n % 100) + 1; |
| 167 | |
| 168 | p = vmalloc(n * PAGE_SIZE); |
| 169 | |
| 170 | if (!p) |
| 171 | return -1; |
| 172 | |
| 173 | *((__u8 *)p) = 1; |
| 174 | vfree(p); |
| 175 | } |
| 176 | |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | static int long_busy_list_alloc_test(void) |
| 181 | { |
| 182 | void *ptr_1, *ptr_2; |
| 183 | void **ptr; |
| 184 | int rv = -1; |
| 185 | int i; |
| 186 | |
| 187 | ptr = vmalloc(sizeof(void *) * 15000); |
| 188 | if (!ptr) |
| 189 | return rv; |
| 190 | |
| 191 | for (i = 0; i < 15000; i++) |
| 192 | ptr[i] = vmalloc(1 * PAGE_SIZE); |
| 193 | |
| 194 | for (i = 0; i < test_loop_count; i++) { |
| 195 | ptr_1 = vmalloc(100 * PAGE_SIZE); |
| 196 | if (!ptr_1) |
| 197 | goto leave; |
| 198 | |
| 199 | ptr_2 = vmalloc(1 * PAGE_SIZE); |
| 200 | if (!ptr_2) { |
| 201 | vfree(ptr_1); |
| 202 | goto leave; |
| 203 | } |
| 204 | |
| 205 | *((__u8 *)ptr_1) = 0; |
| 206 | *((__u8 *)ptr_2) = 1; |
| 207 | |
| 208 | vfree(ptr_1); |
| 209 | vfree(ptr_2); |
| 210 | } |
| 211 | |
| 212 | /* Success */ |
| 213 | rv = 0; |
| 214 | |
| 215 | leave: |
| 216 | for (i = 0; i < 15000; i++) |
| 217 | vfree(ptr[i]); |
| 218 | |
| 219 | vfree(ptr); |
| 220 | return rv; |
| 221 | } |
| 222 | |
| 223 | static int full_fit_alloc_test(void) |
| 224 | { |
| 225 | void **ptr, **junk_ptr, *tmp; |
| 226 | int junk_length; |
| 227 | int rv = -1; |
| 228 | int i; |
| 229 | |
| 230 | junk_length = fls(num_online_cpus()); |
| 231 | junk_length *= (32 * 1024 * 1024 / PAGE_SIZE); |
| 232 | |
| 233 | ptr = vmalloc(sizeof(void *) * junk_length); |
| 234 | if (!ptr) |
| 235 | return rv; |
| 236 | |
| 237 | junk_ptr = vmalloc(sizeof(void *) * junk_length); |
| 238 | if (!junk_ptr) { |
| 239 | vfree(ptr); |
| 240 | return rv; |
| 241 | } |
| 242 | |
| 243 | for (i = 0; i < junk_length; i++) { |
| 244 | ptr[i] = vmalloc(1 * PAGE_SIZE); |
| 245 | junk_ptr[i] = vmalloc(1 * PAGE_SIZE); |
| 246 | } |
| 247 | |
| 248 | for (i = 0; i < junk_length; i++) |
| 249 | vfree(junk_ptr[i]); |
| 250 | |
| 251 | for (i = 0; i < test_loop_count; i++) { |
| 252 | tmp = vmalloc(1 * PAGE_SIZE); |
| 253 | |
| 254 | if (!tmp) |
| 255 | goto error; |
| 256 | |
| 257 | *((__u8 *)tmp) = 1; |
| 258 | vfree(tmp); |
| 259 | } |
| 260 | |
| 261 | /* Success */ |
| 262 | rv = 0; |
| 263 | |
| 264 | error: |
| 265 | for (i = 0; i < junk_length; i++) |
| 266 | vfree(ptr[i]); |
| 267 | |
| 268 | vfree(ptr); |
| 269 | vfree(junk_ptr); |
| 270 | |
| 271 | return rv; |
| 272 | } |
| 273 | |
| 274 | static int fix_size_alloc_test(void) |
| 275 | { |
| 276 | void *ptr; |
| 277 | int i; |
| 278 | |
| 279 | for (i = 0; i < test_loop_count; i++) { |
| 280 | ptr = vmalloc(3 * PAGE_SIZE); |
| 281 | |
| 282 | if (!ptr) |
| 283 | return -1; |
| 284 | |
| 285 | *((__u8 *)ptr) = 0; |
| 286 | |
| 287 | vfree(ptr); |
| 288 | } |
| 289 | |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | static int |
| 294 | pcpu_alloc_test(void) |
| 295 | { |
| 296 | int rv = 0; |
| 297 | #ifndef CONFIG_NEED_PER_CPU_KM |
| 298 | void __percpu **pcpu; |
| 299 | size_t size, align; |
| 300 | int i; |
| 301 | |
| 302 | pcpu = vmalloc(sizeof(void __percpu *) * 35000); |
| 303 | if (!pcpu) |
| 304 | return -1; |
| 305 | |
| 306 | for (i = 0; i < 35000; i++) { |
| 307 | unsigned int r; |
| 308 | |
| 309 | get_random_bytes(&r, sizeof(i)); |
| 310 | size = (r % (PAGE_SIZE / 4)) + 1; |
| 311 | |
| 312 | /* |
| 313 | * Maximum PAGE_SIZE |
| 314 | */ |
| 315 | get_random_bytes(&r, sizeof(i)); |
| 316 | align = 1 << ((i % 11) + 1); |
| 317 | |
| 318 | pcpu[i] = __alloc_percpu(size, align); |
| 319 | if (!pcpu[i]) |
| 320 | rv = -1; |
| 321 | } |
| 322 | |
| 323 | for (i = 0; i < 35000; i++) |
| 324 | free_percpu(pcpu[i]); |
| 325 | |
| 326 | vfree(pcpu); |
| 327 | #endif |
| 328 | return rv; |
| 329 | } |
| 330 | |
| 331 | struct test_case_desc { |
| 332 | const char *test_name; |
| 333 | int (*test_func)(void); |
| 334 | }; |
| 335 | |
| 336 | static struct test_case_desc test_case_array[] = { |
| 337 | { "fix_size_alloc_test", fix_size_alloc_test }, |
| 338 | { "full_fit_alloc_test", full_fit_alloc_test }, |
| 339 | { "long_busy_list_alloc_test", long_busy_list_alloc_test }, |
| 340 | { "random_size_alloc_test", random_size_alloc_test }, |
| 341 | { "fix_align_alloc_test", fix_align_alloc_test }, |
| 342 | { "random_size_align_alloc_test", random_size_align_alloc_test }, |
| 343 | { "align_shift_alloc_test", align_shift_alloc_test }, |
| 344 | { "pcpu_alloc_test", pcpu_alloc_test }, |
| 345 | /* Add a new test case here. */ |
| 346 | }; |
| 347 | |
| 348 | struct test_case_data { |
| 349 | int test_failed; |
| 350 | int test_passed; |
| 351 | u64 time; |
| 352 | }; |
| 353 | |
| 354 | /* Split it to get rid of: WARNING: line over 80 characters */ |
| 355 | static struct test_case_data |
| 356 | per_cpu_test_data[NR_CPUS][ARRAY_SIZE(test_case_array)]; |
| 357 | |
| 358 | static struct test_driver { |
| 359 | struct task_struct *task; |
| 360 | unsigned long start; |
| 361 | unsigned long stop; |
| 362 | int cpu; |
| 363 | } per_cpu_test_driver[NR_CPUS]; |
| 364 | |
| 365 | static void shuffle_array(int *arr, int n) |
| 366 | { |
| 367 | unsigned int rnd; |
| 368 | int i, j, x; |
| 369 | |
| 370 | for (i = n - 1; i > 0; i--) { |
| 371 | get_random_bytes(&rnd, sizeof(rnd)); |
| 372 | |
| 373 | /* Cut the range. */ |
| 374 | j = rnd % i; |
| 375 | |
| 376 | /* Swap indexes. */ |
| 377 | x = arr[i]; |
| 378 | arr[i] = arr[j]; |
| 379 | arr[j] = x; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | static int test_func(void *private) |
| 384 | { |
| 385 | struct test_driver *t = private; |
| 386 | cpumask_t newmask = CPU_MASK_NONE; |
| 387 | int random_array[ARRAY_SIZE(test_case_array)]; |
| 388 | int index, i, j, ret; |
| 389 | ktime_t kt; |
| 390 | u64 delta; |
| 391 | |
| 392 | cpumask_set_cpu(t->cpu, &newmask); |
| 393 | set_cpus_allowed_ptr(current, &newmask); |
| 394 | |
| 395 | for (i = 0; i < ARRAY_SIZE(test_case_array); i++) |
| 396 | random_array[i] = i; |
| 397 | |
| 398 | if (!sequential_test_order) |
| 399 | shuffle_array(random_array, ARRAY_SIZE(test_case_array)); |
| 400 | |
| 401 | /* |
| 402 | * Block until initialization is done. |
| 403 | */ |
| 404 | down_read(&prepare_for_test_rwsem); |
| 405 | |
| 406 | t->start = get_cycles(); |
| 407 | for (i = 0; i < ARRAY_SIZE(test_case_array); i++) { |
| 408 | index = random_array[i]; |
| 409 | |
| 410 | /* |
| 411 | * Skip tests if run_test_mask has been specified. |
| 412 | */ |
| 413 | if (!((run_test_mask & (1 << index)) >> index)) |
| 414 | continue; |
| 415 | |
| 416 | kt = ktime_get(); |
| 417 | for (j = 0; j < test_repeat_count; j++) { |
| 418 | ret = test_case_array[index].test_func(); |
| 419 | if (!ret) |
| 420 | per_cpu_test_data[t->cpu][index].test_passed++; |
| 421 | else |
| 422 | per_cpu_test_data[t->cpu][index].test_failed++; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Take an average time that test took. |
| 427 | */ |
| 428 | delta = (u64) ktime_us_delta(ktime_get(), kt); |
| 429 | do_div(delta, (u32) test_repeat_count); |
| 430 | |
| 431 | per_cpu_test_data[t->cpu][index].time = delta; |
| 432 | } |
| 433 | t->stop = get_cycles(); |
| 434 | |
| 435 | up_read(&prepare_for_test_rwsem); |
| 436 | test_report_one_done(); |
| 437 | |
| 438 | /* |
| 439 | * Wait for the kthread_stop() call. |
| 440 | */ |
| 441 | while (!kthread_should_stop()) |
| 442 | msleep(10); |
| 443 | |
| 444 | return 0; |
| 445 | } |
| 446 | |
| 447 | static void |
| 448 | init_test_configurtion(void) |
| 449 | { |
| 450 | /* |
| 451 | * Reset all data of all CPUs. |
| 452 | */ |
| 453 | memset(per_cpu_test_data, 0, sizeof(per_cpu_test_data)); |
| 454 | |
| 455 | if (single_cpu_test) |
| 456 | cpumask_set_cpu(cpumask_first(cpu_online_mask), |
| 457 | &cpus_run_test_mask); |
| 458 | else |
| 459 | cpumask_and(&cpus_run_test_mask, cpu_online_mask, |
| 460 | cpu_online_mask); |
| 461 | |
| 462 | if (test_repeat_count <= 0) |
| 463 | test_repeat_count = 1; |
| 464 | |
| 465 | if (test_loop_count <= 0) |
| 466 | test_loop_count = 1; |
| 467 | } |
| 468 | |
| 469 | static void do_concurrent_test(void) |
| 470 | { |
| 471 | int cpu, ret; |
| 472 | |
| 473 | /* |
| 474 | * Set some basic configurations plus sanity check. |
| 475 | */ |
| 476 | init_test_configurtion(); |
| 477 | |
| 478 | /* |
| 479 | * Put on hold all workers. |
| 480 | */ |
| 481 | down_write(&prepare_for_test_rwsem); |
| 482 | |
| 483 | for_each_cpu(cpu, &cpus_run_test_mask) { |
| 484 | struct test_driver *t = &per_cpu_test_driver[cpu]; |
| 485 | |
| 486 | t->cpu = cpu; |
| 487 | t->task = kthread_run(test_func, t, "vmalloc_test/%d", cpu); |
| 488 | |
| 489 | if (!IS_ERR(t->task)) |
| 490 | /* Success. */ |
| 491 | atomic_inc(&test_n_undone); |
| 492 | else |
| 493 | pr_err("Failed to start kthread for %d CPU\n", cpu); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Now let the workers do their job. |
| 498 | */ |
| 499 | up_write(&prepare_for_test_rwsem); |
| 500 | |
| 501 | /* |
| 502 | * Sleep quiet until all workers are done with 1 second |
| 503 | * interval. Since the test can take a lot of time we |
| 504 | * can run into a stack trace of the hung task. That is |
| 505 | * why we go with completion_timeout and HZ value. |
| 506 | */ |
| 507 | do { |
| 508 | ret = wait_for_completion_timeout(&test_all_done_comp, HZ); |
| 509 | } while (!ret); |
| 510 | |
| 511 | for_each_cpu(cpu, &cpus_run_test_mask) { |
| 512 | struct test_driver *t = &per_cpu_test_driver[cpu]; |
| 513 | int i; |
| 514 | |
| 515 | if (!IS_ERR(t->task)) |
| 516 | kthread_stop(t->task); |
| 517 | |
| 518 | for (i = 0; i < ARRAY_SIZE(test_case_array); i++) { |
| 519 | if (!((run_test_mask & (1 << i)) >> i)) |
| 520 | continue; |
| 521 | |
| 522 | pr_info( |
| 523 | "Summary: %s passed: %d failed: %d repeat: %d loops: %d avg: %llu usec\n", |
| 524 | test_case_array[i].test_name, |
| 525 | per_cpu_test_data[cpu][i].test_passed, |
| 526 | per_cpu_test_data[cpu][i].test_failed, |
| 527 | test_repeat_count, test_loop_count, |
| 528 | per_cpu_test_data[cpu][i].time); |
| 529 | } |
| 530 | |
| 531 | pr_info("All test took CPU%d=%lu cycles\n", |
| 532 | cpu, t->stop - t->start); |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | static int vmalloc_test_init(void) |
| 537 | { |
| 538 | do_concurrent_test(); |
| 539 | return -EAGAIN; /* Fail will directly unload the module */ |
| 540 | } |
| 541 | |
| 542 | static void vmalloc_test_exit(void) |
| 543 | { |
| 544 | } |
| 545 | |
| 546 | module_init(vmalloc_test_init) |
| 547 | module_exit(vmalloc_test_exit) |
| 548 | |
| 549 | MODULE_LICENSE("GPL"); |
| 550 | MODULE_AUTHOR("Uladzislau Rezki"); |
| 551 | MODULE_DESCRIPTION("vmalloc test module"); |