blob: bb4bd15ae1f637b692df81bfa9b84a99237653f2 [file] [log] [blame]
Boris Brezillonc36ff262018-04-26 18:18:14 +02001/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8
9#ifndef __LINUX_SPI_MEM_H
10#define __LINUX_SPI_MEM_H
11
12#include <linux/spi/spi.h>
13
14#define SPI_MEM_OP_CMD(__opcode, __buswidth) \
15 { \
16 .buswidth = __buswidth, \
17 .opcode = __opcode, \
18 }
19
20#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
21 { \
22 .nbytes = __nbytes, \
23 .val = __val, \
24 .buswidth = __buswidth, \
25 }
26
27#define SPI_MEM_OP_NO_ADDR { }
28
29#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
30 { \
31 .nbytes = __nbytes, \
32 .buswidth = __buswidth, \
33 }
34
35#define SPI_MEM_OP_NO_DUMMY { }
36
37#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
38 { \
39 .dir = SPI_MEM_DATA_IN, \
40 .nbytes = __nbytes, \
41 .buf.in = __buf, \
42 .buswidth = __buswidth, \
43 }
44
45#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
46 { \
47 .dir = SPI_MEM_DATA_OUT, \
48 .nbytes = __nbytes, \
49 .buf.out = __buf, \
50 .buswidth = __buswidth, \
51 }
52
53#define SPI_MEM_OP_NO_DATA { }
54
55/**
56 * enum spi_mem_data_dir - describes the direction of a SPI memory data
57 * transfer from the controller perspective
58 * @SPI_MEM_DATA_IN: data coming from the SPI memory
59 * @SPI_MEM_DATA_OUT: data sent the SPI memory
60 */
61enum spi_mem_data_dir {
62 SPI_MEM_DATA_IN,
63 SPI_MEM_DATA_OUT,
64};
65
66/**
67 * struct spi_mem_op - describes a SPI memory operation
68 * @cmd.buswidth: number of IO lines used to transmit the command
69 * @cmd.opcode: operation opcode
70 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
71 * does not need to send an address
72 * @addr.buswidth: number of IO lines used to transmit the address cycles
73 * @addr.val: address value. This value is always sent MSB first on the bus.
74 * Note that only @addr.nbytes are taken into account in this
75 * address value, so users should make sure the value fits in the
76 * assigned number of bytes.
77 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
78 * be zero if the operation does not require dummy bytes
79 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
80 * @data.buswidth: number of IO lanes used to send/receive the data
81 * @data.dir: direction of the transfer
82 * @data.buf.in: input buffer
83 * @data.buf.out: output buffer
84 */
85struct spi_mem_op {
86 struct {
87 u8 buswidth;
88 u8 opcode;
89 } cmd;
90
91 struct {
92 u8 nbytes;
93 u8 buswidth;
94 u64 val;
95 } addr;
96
97 struct {
98 u8 nbytes;
99 u8 buswidth;
100 } dummy;
101
102 struct {
103 u8 buswidth;
104 enum spi_mem_data_dir dir;
105 unsigned int nbytes;
106 /* buf.{in,out} must be DMA-able. */
107 union {
108 void *in;
109 const void *out;
110 } buf;
111 } data;
112};
113
114#define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
115 { \
116 .cmd = __cmd, \
117 .addr = __addr, \
118 .dummy = __dummy, \
119 .data = __data, \
120 }
121
122/**
123 * struct spi_mem - describes a SPI memory device
124 * @spi: the underlying SPI device
125 * @drvpriv: spi_mem_drviver private data
126 *
127 * Extra information that describe the SPI memory device and may be needed by
128 * the controller to properly handle this device should be placed here.
129 *
130 * One example would be the device size since some controller expose their SPI
131 * mem devices through a io-mapped region.
132 */
133struct spi_mem {
134 struct spi_device *spi;
135 void *drvpriv;
136};
137
138/**
139 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
140 * device
141 * @mem: memory device
142 * @data: data to attach to the memory device
143 */
144static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
145{
146 mem->drvpriv = data;
147}
148
149/**
150 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
151 * device
152 * @mem: memory device
153 *
154 * Return: the data attached to the mem device.
155 */
156static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
157{
158 return mem->drvpriv;
159}
160
161/**
162 * struct spi_controller_mem_ops - SPI memory operations
163 * @adjust_op_size: shrink the data xfer of an operation to match controller's
164 * limitations (can be alignment of max RX/TX size
165 * limitations)
166 * @supports_op: check if an operation is supported by the controller
167 * @exec_op: execute a SPI memory operation
168 *
169 * This interface should be implemented by SPI controllers providing an
170 * high-level interface to execute SPI memory operation, which is usually the
171 * case for QSPI controllers.
172 */
173struct spi_controller_mem_ops {
174 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
175 bool (*supports_op)(struct spi_mem *mem,
176 const struct spi_mem_op *op);
177 int (*exec_op)(struct spi_mem *mem,
178 const struct spi_mem_op *op);
179};
180
181/**
182 * struct spi_mem_driver - SPI memory driver
183 * @spidrv: inherit from a SPI driver
184 * @probe: probe a SPI memory. Usually where detection/initialization takes
185 * place
186 * @remove: remove a SPI memory
187 * @shutdown: take appropriate action when the system is shutdown
188 *
189 * This is just a thin wrapper around a spi_driver. The core takes care of
190 * allocating the spi_mem object and forwarding the probe/remove/shutdown
191 * request to the spi_mem_driver. The reason we use this wrapper is because
192 * we might have to stuff more information into the spi_mem struct to let
193 * SPI controllers know more about the SPI memory they interact with, and
194 * having this intermediate layer allows us to do that without adding more
195 * useless fields to the spi_device object.
196 */
197struct spi_mem_driver {
198 struct spi_driver spidrv;
199 int (*probe)(struct spi_mem *mem);
200 int (*remove)(struct spi_mem *mem);
201 void (*shutdown)(struct spi_mem *mem);
202};
203
204#if IS_ENABLED(CONFIG_SPI_MEM)
205int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
206 const struct spi_mem_op *op,
207 struct sg_table *sg);
208
209void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
210 const struct spi_mem_op *op,
211 struct sg_table *sg);
212#else
213static inline int
214spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
215 const struct spi_mem_op *op,
216 struct sg_table *sg)
217{
218 return -ENOTSUPP;
219}
220
221static inline void
222spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
223 const struct spi_mem_op *op,
224 struct sg_table *sg)
225{
226}
227#endif /* CONFIG_SPI_MEM */
228
229int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
230
231bool spi_mem_supports_op(struct spi_mem *mem,
232 const struct spi_mem_op *op);
233
234int spi_mem_exec_op(struct spi_mem *mem,
235 const struct spi_mem_op *op);
236
237int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
238 struct module *owner);
239
240void spi_mem_driver_unregister(struct spi_mem_driver *drv);
241
242#define spi_mem_driver_register(__drv) \
243 spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
244
245#define module_spi_mem_driver(__drv) \
246 module_driver(__drv, spi_mem_driver_register, \
247 spi_mem_driver_unregister)
248
249#endif /* __LINUX_SPI_MEM_H */