blob: 08906ef3ff7e9403c6f99b5e6eb4ed1d7695a679 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11/******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39/******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48/******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skcsum.h"
105 * "h/skrlmt.h"
106 *
107 ******************************************************************************/
108
109#include "h/skversion.h"
110
111#include <linux/module.h>
112#include <linux/moduleparam.h>
113#include <linux/init.h>
114#include <linux/proc_fs.h>
Domen Puncer1e7f0bd2005-06-26 18:22:14 -0400115#include <linux/dma-mapping.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116
117#include "h/skdrv1st.h"
118#include "h/skdrv2nd.h"
119
120/*******************************************************************************
121 *
122 * Defines
123 *
124 ******************************************************************************/
125
126/* for debuging on x86 only */
127/* #define BREAKPOINT() asm(" int $3"); */
128
129/* use the transmit hw checksum driver functionality */
130#define USE_SK_TX_CHECKSUM
131
132/* use the receive hw checksum driver functionality */
133#define USE_SK_RX_CHECKSUM
134
135/* use the scatter-gather functionality with sendfile() */
136#define SK_ZEROCOPY
137
138/* use of a transmit complete interrupt */
139#define USE_TX_COMPLETE
140
141/*
142 * threshold for copying small receive frames
143 * set to 0 to avoid copying, set to 9001 to copy all frames
144 */
145#define SK_COPY_THRESHOLD 50
146
147/* number of adapters that can be configured via command line params */
148#define SK_MAX_CARD_PARAM 16
149
150
151
152/*
153 * use those defines for a compile-in version of the driver instead
154 * of command line parameters
155 */
156// #define LINK_SPEED_A {"Auto", }
157// #define LINK_SPEED_B {"Auto", }
158// #define AUTO_NEG_A {"Sense", }
159// #define AUTO_NEG_B {"Sense", }
160// #define DUP_CAP_A {"Both", }
161// #define DUP_CAP_B {"Both", }
162// #define FLOW_CTRL_A {"SymOrRem", }
163// #define FLOW_CTRL_B {"SymOrRem", }
164// #define ROLE_A {"Auto", }
165// #define ROLE_B {"Auto", }
166// #define PREF_PORT {"A", }
167// #define CON_TYPE {"Auto", }
168// #define RLMT_MODE {"CheckLinkState", }
169
170#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
171#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
172#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
173
174
175/* Set blink mode*/
176#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
177 SK_DUP_LED_NORMAL | \
178 SK_LED_LINK100_ON)
179
180
181/* Isr return value */
182#define SkIsrRetVar irqreturn_t
183#define SkIsrRetNone IRQ_NONE
184#define SkIsrRetHandled IRQ_HANDLED
185
186
187/*******************************************************************************
188 *
189 * Local Function Prototypes
190 *
191 ******************************************************************************/
192
193static void FreeResources(struct SK_NET_DEVICE *dev);
194static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
195static SK_BOOL BoardAllocMem(SK_AC *pAC);
196static void BoardFreeMem(SK_AC *pAC);
197static void BoardInitMem(SK_AC *pAC);
198static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
199static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
200static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
201static int SkGeOpen(struct SK_NET_DEVICE *dev);
202static int SkGeClose(struct SK_NET_DEVICE *dev);
203static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
204static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
205static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
206static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
207static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
208static void GetConfiguration(SK_AC*);
209static void ProductStr(SK_AC*);
210static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
211static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
212static void FillRxRing(SK_AC*, RX_PORT*);
213static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
214static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
215static void ClearAndStartRx(SK_AC*, int);
216static void ClearTxIrq(SK_AC*, int, int);
217static void ClearRxRing(SK_AC*, RX_PORT*);
218static void ClearTxRing(SK_AC*, TX_PORT*);
219static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
220static void PortReInitBmu(SK_AC*, int);
221static int SkGeIocMib(DEV_NET*, unsigned int, int);
222static int SkGeInitPCI(SK_AC *pAC);
223static void StartDrvCleanupTimer(SK_AC *pAC);
224static void StopDrvCleanupTimer(SK_AC *pAC);
225static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
226
227#ifdef SK_DIAG_SUPPORT
228static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
229static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
230static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
231#endif
232
233/*******************************************************************************
234 *
235 * Extern Function Prototypes
236 *
237 ******************************************************************************/
Al Viro66600222005-09-28 22:32:57 +0100238static const char SKRootName[] = "net/sk98lin";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239static struct proc_dir_entry *pSkRootDir;
240extern struct file_operations sk_proc_fops;
241
242static inline void SkGeProcCreate(struct net_device *dev)
243{
244 struct proc_dir_entry *pe;
245
246 if (pSkRootDir &&
247 (pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
248 pe->proc_fops = &sk_proc_fops;
249 pe->data = dev;
250 pe->owner = THIS_MODULE;
251 }
252}
253
254static inline void SkGeProcRemove(struct net_device *dev)
255{
256 if (pSkRootDir)
257 remove_proc_entry(dev->name, pSkRootDir);
258}
259
260extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
261extern void SkDimDisplayModerationSettings(SK_AC *pAC);
262extern void SkDimStartModerationTimer(SK_AC *pAC);
263extern void SkDimModerate(SK_AC *pAC);
264extern void SkGeBlinkTimer(unsigned long data);
265
266#ifdef DEBUG
267static void DumpMsg(struct sk_buff*, char*);
268static void DumpData(char*, int);
269static void DumpLong(char*, int);
270#endif
271
272/* global variables *********************************************************/
273static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
274extern struct ethtool_ops SkGeEthtoolOps;
275
276/* local variables **********************************************************/
277static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
278static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
279
280/*****************************************************************************
281 *
Adrian Bunkc8ebd3a2005-11-11 20:44:21 +0100282 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
283 *
284 * Description:
285 * This routine writes a 32 bit value to the pci configuration
286 * space.
287 *
288 * Returns:
289 * 0 - indicate everything worked ok.
290 * != 0 - error indication
291 */
292static inline int SkPciWriteCfgDWord(
293SK_AC *pAC, /* Adapter Control structure pointer */
294int PciAddr, /* PCI register address */
295SK_U32 Val) /* pointer to store the read value */
296{
297 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
298 return(0);
299} /* SkPciWriteCfgDWord */
300
301/*****************************************************************************
302 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303 * SkGeInitPCI - Init the PCI resources
304 *
305 * Description:
306 * This function initialize the PCI resources and IO
307 *
308 * Returns: N/A
309 *
310 */
311int SkGeInitPCI(SK_AC *pAC)
312{
313 struct SK_NET_DEVICE *dev = pAC->dev[0];
314 struct pci_dev *pdev = pAC->PciDev;
315 int retval;
316
317 if (pci_enable_device(pdev) != 0) {
318 return 1;
319 }
320
321 dev->mem_start = pci_resource_start (pdev, 0);
322 pci_set_master(pdev);
323
324 if (pci_request_regions(pdev, pAC->Name) != 0) {
325 retval = 2;
326 goto out_disable;
327 }
328
329#ifdef SK_BIG_ENDIAN
330 /*
331 * On big endian machines, we use the adapter's aibility of
332 * reading the descriptors as big endian.
333 */
334 {
335 SK_U32 our2;
336 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
337 our2 |= PCI_REV_DESC;
338 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
339 }
340#endif
341
342 /*
343 * Remap the regs into kernel space.
344 */
345 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
346
347 if (!pAC->IoBase){
348 retval = 3;
349 goto out_release;
350 }
351
352 return 0;
353
354 out_release:
355 pci_release_regions(pdev);
356 out_disable:
357 pci_disable_device(pdev);
358 return retval;
359}
360
361
362/*****************************************************************************
363 *
364 * FreeResources - release resources allocated for adapter
365 *
366 * Description:
367 * This function releases the IRQ, unmaps the IO and
368 * frees the desriptor ring.
369 *
370 * Returns: N/A
371 *
372 */
373static void FreeResources(struct SK_NET_DEVICE *dev)
374{
375SK_U32 AllocFlag;
376DEV_NET *pNet;
377SK_AC *pAC;
378
379 pNet = netdev_priv(dev);
380 pAC = pNet->pAC;
381 AllocFlag = pAC->AllocFlag;
382 if (pAC->PciDev) {
383 pci_release_regions(pAC->PciDev);
384 }
385 if (AllocFlag & SK_ALLOC_IRQ) {
386 free_irq(dev->irq, dev);
387 }
388 if (pAC->IoBase) {
389 iounmap(pAC->IoBase);
390 }
391 if (pAC->pDescrMem) {
392 BoardFreeMem(pAC);
393 }
394
395} /* FreeResources */
396
397MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
398MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
399MODULE_LICENSE("GPL");
400
401#ifdef LINK_SPEED_A
402static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
403#else
404static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
405#endif
406
407#ifdef LINK_SPEED_B
408static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
409#else
410static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
411#endif
412
413#ifdef AUTO_NEG_A
414static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
415#else
416static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
417#endif
418
419#ifdef DUP_CAP_A
420static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
421#else
422static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
423#endif
424
425#ifdef FLOW_CTRL_A
426static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
427#else
428static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
429#endif
430
431#ifdef ROLE_A
432static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
433#else
434static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
435#endif
436
437#ifdef AUTO_NEG_B
438static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
439#else
440static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
441#endif
442
443#ifdef DUP_CAP_B
444static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
445#else
446static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
447#endif
448
449#ifdef FLOW_CTRL_B
450static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
451#else
452static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
453#endif
454
455#ifdef ROLE_B
456static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
457#else
458static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
459#endif
460
461#ifdef CON_TYPE
462static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
463#else
464static char *ConType[SK_MAX_CARD_PARAM] = {"", };
465#endif
466
467#ifdef PREF_PORT
468static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
469#else
470static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
471#endif
472
473#ifdef RLMT_MODE
474static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
475#else
476static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
477#endif
478
479static int IntsPerSec[SK_MAX_CARD_PARAM];
480static char *Moderation[SK_MAX_CARD_PARAM];
481static char *ModerationMask[SK_MAX_CARD_PARAM];
482static char *AutoSizing[SK_MAX_CARD_PARAM];
483static char *Stats[SK_MAX_CARD_PARAM];
484
485module_param_array(Speed_A, charp, NULL, 0);
486module_param_array(Speed_B, charp, NULL, 0);
487module_param_array(AutoNeg_A, charp, NULL, 0);
488module_param_array(AutoNeg_B, charp, NULL, 0);
489module_param_array(DupCap_A, charp, NULL, 0);
490module_param_array(DupCap_B, charp, NULL, 0);
491module_param_array(FlowCtrl_A, charp, NULL, 0);
492module_param_array(FlowCtrl_B, charp, NULL, 0);
493module_param_array(Role_A, charp, NULL, 0);
494module_param_array(Role_B, charp, NULL, 0);
495module_param_array(ConType, charp, NULL, 0);
496module_param_array(PrefPort, charp, NULL, 0);
497module_param_array(RlmtMode, charp, NULL, 0);
498/* used for interrupt moderation */
499module_param_array(IntsPerSec, int, NULL, 0);
500module_param_array(Moderation, charp, NULL, 0);
501module_param_array(Stats, charp, NULL, 0);
502module_param_array(ModerationMask, charp, NULL, 0);
503module_param_array(AutoSizing, charp, NULL, 0);
504
505/*****************************************************************************
506 *
507 * SkGeBoardInit - do level 0 and 1 initialization
508 *
509 * Description:
510 * This function prepares the board hardware for running. The desriptor
511 * ring is set up, the IRQ is allocated and the configuration settings
512 * are examined.
513 *
514 * Returns:
515 * 0, if everything is ok
516 * !=0, on error
517 */
518static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
519{
520short i;
521unsigned long Flags;
522char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
523char *VerStr = VER_STRING;
524int Ret; /* return code of request_irq */
525SK_BOOL DualNet;
526
527 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
528 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
529 for (i=0; i<SK_MAX_MACS; i++) {
530 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
531 pAC->TxPort[i][0].PortIndex = i;
532 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
533 pAC->RxPort[i].PortIndex = i;
534 }
535
536 /* Initialize the mutexes */
537 for (i=0; i<SK_MAX_MACS; i++) {
538 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
539 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
540 }
541 spin_lock_init(&pAC->SlowPathLock);
542
543 /* setup phy_id blink timer */
544 pAC->BlinkTimer.function = SkGeBlinkTimer;
545 pAC->BlinkTimer.data = (unsigned long) dev;
546 init_timer(&pAC->BlinkTimer);
547
548 /* level 0 init common modules here */
549
550 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
551 /* Does a RESET on board ...*/
552 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
553 printk("HWInit (0) failed.\n");
554 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
555 return(-EAGAIN);
556 }
557 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
558 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
559 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
560 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
561 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
562 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
563
564 pAC->BoardLevel = SK_INIT_DATA;
565 pAC->RxBufSize = ETH_BUF_SIZE;
566
567 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
568 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
569
570 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
571
572 /* level 1 init common modules here (HW init) */
573 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
574 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
575 printk("sk98lin: HWInit (1) failed.\n");
576 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
577 return(-EAGAIN);
578 }
579 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
580 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
581 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
582 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
583 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
584 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
585
586 /* Set chipset type support */
587 pAC->ChipsetType = 0;
588 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
589 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
590 pAC->ChipsetType = 1;
591 }
592
593 GetConfiguration(pAC);
594 if (pAC->RlmtNets == 2) {
595 pAC->GIni.GIPortUsage = SK_MUL_LINK;
596 }
597
598 pAC->BoardLevel = SK_INIT_IO;
599 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
600
601 if (pAC->GIni.GIMacsFound == 2) {
602 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
603 } else if (pAC->GIni.GIMacsFound == 1) {
604 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
605 pAC->Name, dev);
606 } else {
607 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
608 pAC->GIni.GIMacsFound);
609 return -EAGAIN;
610 }
611
612 if (Ret) {
613 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
614 dev->irq);
615 return -EAGAIN;
616 }
617 pAC->AllocFlag |= SK_ALLOC_IRQ;
618
619 /* Alloc memory for this board (Mem for RxD/TxD) : */
620 if(!BoardAllocMem(pAC)) {
621 printk("No memory for descriptor rings.\n");
622 return(-EAGAIN);
623 }
624
625 SkCsSetReceiveFlags(pAC,
626 SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
627 &pAC->CsOfs1, &pAC->CsOfs2, 0);
628 pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
629
630 BoardInitMem(pAC);
631 /* tschilling: New common function with minimum size check. */
632 DualNet = SK_FALSE;
633 if (pAC->RlmtNets == 2) {
634 DualNet = SK_TRUE;
635 }
636
637 if (SkGeInitAssignRamToQueues(
638 pAC,
639 pAC->ActivePort,
640 DualNet)) {
641 BoardFreeMem(pAC);
642 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
643 return(-EAGAIN);
644 }
645
646 return (0);
647} /* SkGeBoardInit */
648
649
650/*****************************************************************************
651 *
652 * BoardAllocMem - allocate the memory for the descriptor rings
653 *
654 * Description:
655 * This function allocates the memory for all descriptor rings.
656 * Each ring is aligned for the desriptor alignment and no ring
657 * has a 4 GByte boundary in it (because the upper 32 bit must
658 * be constant for all descriptiors in one rings).
659 *
660 * Returns:
661 * SK_TRUE, if all memory could be allocated
662 * SK_FALSE, if not
663 */
664static SK_BOOL BoardAllocMem(
665SK_AC *pAC)
666{
667caddr_t pDescrMem; /* pointer to descriptor memory area */
668size_t AllocLength; /* length of complete descriptor area */
669int i; /* loop counter */
670unsigned long BusAddr;
671
672
673 /* rings plus one for alignment (do not cross 4 GB boundary) */
674 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
675#if (BITS_PER_LONG == 32)
676 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
677#else
678 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
679 + RX_RING_SIZE + 8;
680#endif
681
682 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
683 &pAC->pDescrMemDMA);
684
685 if (pDescrMem == NULL) {
686 return (SK_FALSE);
687 }
688 pAC->pDescrMem = pDescrMem;
689 BusAddr = (unsigned long) pAC->pDescrMemDMA;
690
691 /* Descriptors need 8 byte alignment, and this is ensured
692 * by pci_alloc_consistent.
693 */
694 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
695 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
696 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
697 i, (unsigned long) pDescrMem,
698 BusAddr));
699 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
700 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
701 pDescrMem += TX_RING_SIZE;
702 BusAddr += TX_RING_SIZE;
703
704 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
705 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
706 i, (unsigned long) pDescrMem,
707 (unsigned long)BusAddr));
708 pAC->RxPort[i].pRxDescrRing = pDescrMem;
709 pAC->RxPort[i].VRxDescrRing = BusAddr;
710 pDescrMem += RX_RING_SIZE;
711 BusAddr += RX_RING_SIZE;
712 } /* for */
713
714 return (SK_TRUE);
715} /* BoardAllocMem */
716
717
718/****************************************************************************
719 *
720 * BoardFreeMem - reverse of BoardAllocMem
721 *
722 * Description:
723 * Free all memory allocated in BoardAllocMem: adapter context,
724 * descriptor rings, locks.
725 *
726 * Returns: N/A
727 */
728static void BoardFreeMem(
729SK_AC *pAC)
730{
731size_t AllocLength; /* length of complete descriptor area */
732
733 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
734 ("BoardFreeMem\n"));
735#if (BITS_PER_LONG == 32)
736 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
737#else
738 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
739 + RX_RING_SIZE + 8;
740#endif
741
742 pci_free_consistent(pAC->PciDev, AllocLength,
743 pAC->pDescrMem, pAC->pDescrMemDMA);
744 pAC->pDescrMem = NULL;
745} /* BoardFreeMem */
746
747
748/*****************************************************************************
749 *
750 * BoardInitMem - initiate the descriptor rings
751 *
752 * Description:
753 * This function sets the descriptor rings up in memory.
754 * The adapter is initialized with the descriptor start addresses.
755 *
756 * Returns: N/A
757 */
758static void BoardInitMem(
759SK_AC *pAC) /* pointer to adapter context */
760{
761int i; /* loop counter */
762int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
763int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
764
765 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
766 ("BoardInitMem\n"));
767
768 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
769 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
770 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
771 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
772
773 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
774 SetupRing(
775 pAC,
776 pAC->TxPort[i][0].pTxDescrRing,
777 pAC->TxPort[i][0].VTxDescrRing,
778 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
779 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
780 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
781 &pAC->TxPort[i][0].TxdRingFree,
782 SK_TRUE);
783 SetupRing(
784 pAC,
785 pAC->RxPort[i].pRxDescrRing,
786 pAC->RxPort[i].VRxDescrRing,
787 &pAC->RxPort[i].pRxdRingHead,
788 &pAC->RxPort[i].pRxdRingTail,
789 &pAC->RxPort[i].pRxdRingPrev,
790 &pAC->RxPort[i].RxdRingFree,
791 SK_FALSE);
792 }
793} /* BoardInitMem */
794
795
796/*****************************************************************************
797 *
798 * SetupRing - create one descriptor ring
799 *
800 * Description:
801 * This function creates one descriptor ring in the given memory area.
802 * The head, tail and number of free descriptors in the ring are set.
803 *
804 * Returns:
805 * none
806 */
807static void SetupRing(
808SK_AC *pAC,
809void *pMemArea, /* a pointer to the memory area for the ring */
810uintptr_t VMemArea, /* the virtual bus address of the memory area */
811RXD **ppRingHead, /* address where the head should be written */
812RXD **ppRingTail, /* address where the tail should be written */
813RXD **ppRingPrev, /* address where the tail should be written */
814int *pRingFree, /* address where the # of free descr. goes */
815SK_BOOL IsTx) /* flag: is this a tx ring */
816{
817int i; /* loop counter */
818int DescrSize; /* the size of a descriptor rounded up to alignment*/
819int DescrNum; /* number of descriptors per ring */
820RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
821RXD *pNextDescr; /* pointer to the next descriptor */
822RXD *pPrevDescr; /* pointer to the previous descriptor */
823uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
824
825 if (IsTx == SK_TRUE) {
826 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
827 DESCR_ALIGN;
828 DescrNum = TX_RING_SIZE / DescrSize;
829 } else {
830 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
831 DESCR_ALIGN;
832 DescrNum = RX_RING_SIZE / DescrSize;
833 }
834
835 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
836 ("Descriptor size: %d Descriptor Number: %d\n",
837 DescrSize,DescrNum));
838
839 pDescr = (RXD*) pMemArea;
840 pPrevDescr = NULL;
841 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
842 VNextDescr = VMemArea + DescrSize;
843 for(i=0; i<DescrNum; i++) {
844 /* set the pointers right */
845 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
846 pDescr->pNextRxd = pNextDescr;
847 pDescr->TcpSumStarts = pAC->CsOfs;
848
849 /* advance one step */
850 pPrevDescr = pDescr;
851 pDescr = pNextDescr;
852 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
853 VNextDescr += DescrSize;
854 }
855 pPrevDescr->pNextRxd = (RXD*) pMemArea;
856 pPrevDescr->VNextRxd = VMemArea;
857 pDescr = (RXD*) pMemArea;
858 *ppRingHead = (RXD*) pMemArea;
859 *ppRingTail = *ppRingHead;
860 *ppRingPrev = pPrevDescr;
861 *pRingFree = DescrNum;
862} /* SetupRing */
863
864
865/*****************************************************************************
866 *
867 * PortReInitBmu - re-initiate the descriptor rings for one port
868 *
869 * Description:
870 * This function reinitializes the descriptor rings of one port
871 * in memory. The port must be stopped before.
872 * The HW is initialized with the descriptor start addresses.
873 *
874 * Returns:
875 * none
876 */
877static void PortReInitBmu(
878SK_AC *pAC, /* pointer to adapter context */
879int PortIndex) /* index of the port for which to re-init */
880{
881 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
882 ("PortReInitBmu "));
883
884 /* set address of first descriptor of ring in BMU */
885 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
886 (uint32_t)(((caddr_t)
887 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
888 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
889 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
890 0xFFFFFFFF));
891 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
892 (uint32_t)(((caddr_t)
893 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
894 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
895 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
896 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
897 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
898 pAC->RxPort[PortIndex].pRxDescrRing +
899 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
900 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
901 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
902 pAC->RxPort[PortIndex].pRxDescrRing +
903 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
904} /* PortReInitBmu */
905
906
907/****************************************************************************
908 *
909 * SkGeIsr - handle adapter interrupts
910 *
911 * Description:
912 * The interrupt routine is called when the network adapter
913 * generates an interrupt. It may also be called if another device
914 * shares this interrupt vector with the driver.
915 *
916 * Returns: N/A
917 *
918 */
919static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
920{
921struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
922DEV_NET *pNet;
923SK_AC *pAC;
924SK_U32 IntSrc; /* interrupts source register contents */
925
926 pNet = netdev_priv(dev);
927 pAC = pNet->pAC;
928
929 /*
930 * Check and process if its our interrupt
931 */
932 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
933 if (IntSrc == 0) {
934 return SkIsrRetNone;
935 }
936
937 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
938#if 0 /* software irq currently not used */
939 if (IntSrc & IS_IRQ_SW) {
940 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
941 SK_DBGCAT_DRV_INT_SRC,
942 ("Software IRQ\n"));
943 }
944#endif
945 if (IntSrc & IS_R1_F) {
946 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
947 SK_DBGCAT_DRV_INT_SRC,
948 ("EOF RX1 IRQ\n"));
949 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
950 SK_PNMI_CNT_RX_INTR(pAC, 0);
951 }
952 if (IntSrc & IS_R2_F) {
953 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
954 SK_DBGCAT_DRV_INT_SRC,
955 ("EOF RX2 IRQ\n"));
956 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
957 SK_PNMI_CNT_RX_INTR(pAC, 1);
958 }
959#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
960 if (IntSrc & IS_XA1_F) {
961 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
962 SK_DBGCAT_DRV_INT_SRC,
963 ("EOF AS TX1 IRQ\n"));
964 SK_PNMI_CNT_TX_INTR(pAC, 0);
965 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
966 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
967 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
968 }
969 if (IntSrc & IS_XA2_F) {
970 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
971 SK_DBGCAT_DRV_INT_SRC,
972 ("EOF AS TX2 IRQ\n"));
973 SK_PNMI_CNT_TX_INTR(pAC, 1);
974 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
975 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
976 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
977 }
978#if 0 /* only if sync. queues used */
979 if (IntSrc & IS_XS1_F) {
980 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
981 SK_DBGCAT_DRV_INT_SRC,
982 ("EOF SY TX1 IRQ\n"));
983 SK_PNMI_CNT_TX_INTR(pAC, 1);
984 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
985 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
986 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
987 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
988 }
989 if (IntSrc & IS_XS2_F) {
990 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
991 SK_DBGCAT_DRV_INT_SRC,
992 ("EOF SY TX2 IRQ\n"));
993 SK_PNMI_CNT_TX_INTR(pAC, 1);
994 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
995 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
996 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
997 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
998 }
999#endif
1000#endif
1001
1002 /* do all IO at once */
1003 if (IntSrc & IS_R1_F)
1004 ClearAndStartRx(pAC, 0);
1005 if (IntSrc & IS_R2_F)
1006 ClearAndStartRx(pAC, 1);
1007#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1008 if (IntSrc & IS_XA1_F)
1009 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1010 if (IntSrc & IS_XA2_F)
1011 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
1012#endif
1013 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1014 } /* while (IntSrc & IRQ_MASK != 0) */
1015
1016 IntSrc &= pAC->GIni.GIValIrqMask;
1017 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1018 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1019 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
1020 pAC->CheckQueue = SK_FALSE;
1021 spin_lock(&pAC->SlowPathLock);
1022 if (IntSrc & SPECIAL_IRQS)
1023 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1024
1025 SkEventDispatcher(pAC, pAC->IoBase);
1026 spin_unlock(&pAC->SlowPathLock);
1027 }
1028 /*
1029 * do it all again is case we cleared an interrupt that
1030 * came in after handling the ring (OUTs may be delayed
1031 * in hardware buffers, but are through after IN)
1032 *
1033 * rroesler: has been commented out and shifted to
1034 * SkGeDrvEvent(), because it is timer
1035 * guarded now
1036 *
1037 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1038 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1039 */
1040
1041 if (pAC->CheckQueue) {
1042 pAC->CheckQueue = SK_FALSE;
1043 spin_lock(&pAC->SlowPathLock);
1044 SkEventDispatcher(pAC, pAC->IoBase);
1045 spin_unlock(&pAC->SlowPathLock);
1046 }
1047
1048 /* IRQ is processed - Enable IRQs again*/
1049 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1050
1051 return SkIsrRetHandled;
1052} /* SkGeIsr */
1053
1054
1055/****************************************************************************
1056 *
1057 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1058 *
1059 * Description:
1060 * The interrupt routine is called when the network adapter
1061 * generates an interrupt. It may also be called if another device
1062 * shares this interrupt vector with the driver.
1063 * This is the same as above, but handles only one port.
1064 *
1065 * Returns: N/A
1066 *
1067 */
1068static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1069{
1070struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1071DEV_NET *pNet;
1072SK_AC *pAC;
1073SK_U32 IntSrc; /* interrupts source register contents */
1074
1075 pNet = netdev_priv(dev);
1076 pAC = pNet->pAC;
1077
1078 /*
1079 * Check and process if its our interrupt
1080 */
1081 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1082 if (IntSrc == 0) {
1083 return SkIsrRetNone;
1084 }
1085
1086 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1087#if 0 /* software irq currently not used */
1088 if (IntSrc & IS_IRQ_SW) {
1089 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1090 SK_DBGCAT_DRV_INT_SRC,
1091 ("Software IRQ\n"));
1092 }
1093#endif
1094 if (IntSrc & IS_R1_F) {
1095 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1096 SK_DBGCAT_DRV_INT_SRC,
1097 ("EOF RX1 IRQ\n"));
1098 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1099 SK_PNMI_CNT_RX_INTR(pAC, 0);
1100 }
1101#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1102 if (IntSrc & IS_XA1_F) {
1103 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1104 SK_DBGCAT_DRV_INT_SRC,
1105 ("EOF AS TX1 IRQ\n"));
1106 SK_PNMI_CNT_TX_INTR(pAC, 0);
1107 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1108 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1109 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1110 }
1111#if 0 /* only if sync. queues used */
1112 if (IntSrc & IS_XS1_F) {
1113 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1114 SK_DBGCAT_DRV_INT_SRC,
1115 ("EOF SY TX1 IRQ\n"));
1116 SK_PNMI_CNT_TX_INTR(pAC, 0);
1117 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1118 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1119 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1120 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1121 }
1122#endif
1123#endif
1124
1125 /* do all IO at once */
1126 if (IntSrc & IS_R1_F)
1127 ClearAndStartRx(pAC, 0);
1128#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1129 if (IntSrc & IS_XA1_F)
1130 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1131#endif
1132 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1133 } /* while (IntSrc & IRQ_MASK != 0) */
1134
1135 IntSrc &= pAC->GIni.GIValIrqMask;
1136 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1137 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1138 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1139 pAC->CheckQueue = SK_FALSE;
1140 spin_lock(&pAC->SlowPathLock);
1141 if (IntSrc & SPECIAL_IRQS)
1142 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1143
1144 SkEventDispatcher(pAC, pAC->IoBase);
1145 spin_unlock(&pAC->SlowPathLock);
1146 }
1147 /*
1148 * do it all again is case we cleared an interrupt that
1149 * came in after handling the ring (OUTs may be delayed
1150 * in hardware buffers, but are through after IN)
1151 *
1152 * rroesler: has been commented out and shifted to
1153 * SkGeDrvEvent(), because it is timer
1154 * guarded now
1155 *
1156 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1157 */
1158
1159 /* IRQ is processed - Enable IRQs again*/
1160 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1161
1162 return SkIsrRetHandled;
1163} /* SkGeIsrOnePort */
1164
1165#ifdef CONFIG_NET_POLL_CONTROLLER
1166/****************************************************************************
1167 *
1168 * SkGePollController - polling receive, for netconsole
1169 *
1170 * Description:
1171 * Polling receive - used by netconsole and other diagnostic tools
1172 * to allow network i/o with interrupts disabled.
1173 *
1174 * Returns: N/A
1175 */
1176static void SkGePollController(struct net_device *dev)
1177{
1178 disable_irq(dev->irq);
1179 SkGeIsr(dev->irq, dev, NULL);
1180 enable_irq(dev->irq);
1181}
1182#endif
1183
1184/****************************************************************************
1185 *
1186 * SkGeOpen - handle start of initialized adapter
1187 *
1188 * Description:
1189 * This function starts the initialized adapter.
1190 * The board level variable is set and the adapter is
1191 * brought to full functionality.
1192 * The device flags are set for operation.
1193 * Do all necessary level 2 initialization, enable interrupts and
1194 * give start command to RLMT.
1195 *
1196 * Returns:
1197 * 0 on success
1198 * != 0 on error
1199 */
1200static int SkGeOpen(
1201struct SK_NET_DEVICE *dev)
1202{
1203 DEV_NET *pNet;
1204 SK_AC *pAC;
1205 unsigned long Flags; /* for spin lock */
1206 int i;
1207 SK_EVPARA EvPara; /* an event parameter union */
1208
1209 pNet = netdev_priv(dev);
1210 pAC = pNet->pAC;
1211
1212 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1213 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1214
1215#ifdef SK_DIAG_SUPPORT
1216 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1217 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1218 return (-1); /* still in use by diag; deny actions */
1219 }
1220 }
1221#endif
1222
1223 /* Set blink mode */
1224 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1225 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1226
1227 if (pAC->BoardLevel == SK_INIT_DATA) {
1228 /* level 1 init common modules here */
1229 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1230 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1231 return (-1);
1232 }
1233 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1234 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1235 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1236 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1237 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1238 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1239 pAC->BoardLevel = SK_INIT_IO;
1240 }
1241
1242 if (pAC->BoardLevel != SK_INIT_RUN) {
1243 /* tschilling: Level 2 init modules here, check return value. */
1244 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1245 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1246 return (-1);
1247 }
1248 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1249 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1250 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1251 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1252 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1253 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1254 pAC->BoardLevel = SK_INIT_RUN;
1255 }
1256
1257 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1258 /* Enable transmit descriptor polling. */
1259 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1260 FillRxRing(pAC, &pAC->RxPort[i]);
1261 }
1262 SkGeYellowLED(pAC, pAC->IoBase, 1);
1263
1264 StartDrvCleanupTimer(pAC);
1265 SkDimEnableModerationIfNeeded(pAC);
1266 SkDimDisplayModerationSettings(pAC);
1267
1268 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1269
1270 /* enable Interrupts */
1271 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1272 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1273
1274 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1275
1276 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1277 EvPara.Para32[0] = pAC->RlmtNets;
1278 EvPara.Para32[1] = -1;
1279 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1280 EvPara);
1281 EvPara.Para32[0] = pAC->RlmtMode;
1282 EvPara.Para32[1] = 0;
1283 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1284 EvPara);
1285 }
1286
1287 EvPara.Para32[0] = pNet->NetNr;
1288 EvPara.Para32[1] = -1;
1289 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1290 SkEventDispatcher(pAC, pAC->IoBase);
1291 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1292
1293 pAC->MaxPorts++;
1294 pNet->Up = 1;
1295
1296
1297 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1298 ("SkGeOpen suceeded\n"));
1299
1300 return (0);
1301} /* SkGeOpen */
1302
1303
1304/****************************************************************************
1305 *
1306 * SkGeClose - Stop initialized adapter
1307 *
1308 * Description:
1309 * Close initialized adapter.
1310 *
1311 * Returns:
1312 * 0 - on success
1313 * error code - on error
1314 */
1315static int SkGeClose(
1316struct SK_NET_DEVICE *dev)
1317{
1318 DEV_NET *pNet;
1319 DEV_NET *newPtrNet;
1320 SK_AC *pAC;
1321
1322 unsigned long Flags; /* for spin lock */
1323 int i;
1324 int PortIdx;
1325 SK_EVPARA EvPara;
1326
1327 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1328 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1329
1330 pNet = netdev_priv(dev);
1331 pAC = pNet->pAC;
1332
1333#ifdef SK_DIAG_SUPPORT
1334 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1335 if (pAC->DiagFlowCtrl == SK_FALSE) {
1336 /*
1337 ** notify that the interface which has been closed
1338 ** by operator interaction must not be started up
1339 ** again when the DIAG has finished.
1340 */
1341 newPtrNet = netdev_priv(pAC->dev[0]);
1342 if (newPtrNet == pNet) {
1343 pAC->WasIfUp[0] = SK_FALSE;
1344 } else {
1345 pAC->WasIfUp[1] = SK_FALSE;
1346 }
1347 return 0; /* return to system everything is fine... */
1348 } else {
1349 pAC->DiagFlowCtrl = SK_FALSE;
1350 }
1351 }
1352#endif
1353
1354 netif_stop_queue(dev);
1355
1356 if (pAC->RlmtNets == 1)
1357 PortIdx = pAC->ActivePort;
1358 else
1359 PortIdx = pNet->NetNr;
1360
1361 StopDrvCleanupTimer(pAC);
1362
1363 /*
1364 * Clear multicast table, promiscuous mode ....
1365 */
1366 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1367 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1368 SK_PROM_MODE_NONE);
1369
1370 if (pAC->MaxPorts == 1) {
1371 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1372 /* disable interrupts */
1373 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1374 EvPara.Para32[0] = pNet->NetNr;
1375 EvPara.Para32[1] = -1;
1376 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1377 SkEventDispatcher(pAC, pAC->IoBase);
1378 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1379 /* stop the hardware */
1380 SkGeDeInit(pAC, pAC->IoBase);
1381 pAC->BoardLevel = SK_INIT_DATA;
1382 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1383 } else {
1384
1385 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1386 EvPara.Para32[0] = pNet->NetNr;
1387 EvPara.Para32[1] = -1;
1388 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1389 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1390 SkEventDispatcher(pAC, pAC->IoBase);
1391 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1392
1393 /* Stop port */
1394 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1395 [TX_PRIO_LOW].TxDesRingLock, Flags);
1396 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1397 SK_STOP_ALL, SK_HARD_RST);
1398 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1399 [TX_PRIO_LOW].TxDesRingLock, Flags);
1400 }
1401
1402 if (pAC->RlmtNets == 1) {
1403 /* clear all descriptor rings */
1404 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1405 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1406 ClearRxRing(pAC, &pAC->RxPort[i]);
1407 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1408 }
1409 } else {
1410 /* clear port descriptor rings */
1411 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1412 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1413 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1414 }
1415
1416 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1417 ("SkGeClose: done "));
1418
1419 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1420 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1421 sizeof(SK_PNMI_STRUCT_DATA));
1422
1423 pAC->MaxPorts--;
1424 pNet->Up = 0;
1425
1426 return (0);
1427} /* SkGeClose */
1428
1429
1430/*****************************************************************************
1431 *
1432 * SkGeXmit - Linux frame transmit function
1433 *
1434 * Description:
1435 * The system calls this function to send frames onto the wire.
1436 * It puts the frame in the tx descriptor ring. If the ring is
1437 * full then, the 'tbusy' flag is set.
1438 *
1439 * Returns:
1440 * 0, if everything is ok
1441 * !=0, on error
1442 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1443 * allocated skb's) !!!
1444 */
1445static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1446{
1447DEV_NET *pNet;
1448SK_AC *pAC;
1449int Rc; /* return code of XmitFrame */
1450
1451 pNet = netdev_priv(dev);
1452 pAC = pNet->pAC;
1453
1454 if ((!skb_shinfo(skb)->nr_frags) ||
1455 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1456 /* Don't activate scatter-gather and hardware checksum */
1457
1458 if (pAC->RlmtNets == 2)
1459 Rc = XmitFrame(
1460 pAC,
1461 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1462 skb);
1463 else
1464 Rc = XmitFrame(
1465 pAC,
1466 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1467 skb);
1468 } else {
1469 /* scatter-gather and hardware TCP checksumming anabled*/
1470 if (pAC->RlmtNets == 2)
1471 Rc = XmitFrameSG(
1472 pAC,
1473 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1474 skb);
1475 else
1476 Rc = XmitFrameSG(
1477 pAC,
1478 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1479 skb);
1480 }
1481
1482 /* Transmitter out of resources? */
1483 if (Rc <= 0) {
1484 netif_stop_queue(dev);
1485 }
1486
1487 /* If not taken, give buffer ownership back to the
1488 * queueing layer.
1489 */
1490 if (Rc < 0)
1491 return (1);
1492
1493 dev->trans_start = jiffies;
1494 return (0);
1495} /* SkGeXmit */
1496
1497
1498/*****************************************************************************
1499 *
1500 * XmitFrame - fill one socket buffer into the transmit ring
1501 *
1502 * Description:
1503 * This function puts a message into the transmit descriptor ring
1504 * if there is a descriptors left.
1505 * Linux skb's consist of only one continuous buffer.
1506 * The first step locks the ring. It is held locked
1507 * all time to avoid problems with SWITCH_../PORT_RESET.
1508 * Then the descriptoris allocated.
1509 * The second part is linking the buffer to the descriptor.
1510 * At the very last, the Control field of the descriptor
1511 * is made valid for the BMU and a start TX command is given
1512 * if necessary.
1513 *
1514 * Returns:
1515 * > 0 - on succes: the number of bytes in the message
1516 * = 0 - on resource shortage: this frame sent or dropped, now
1517 * the ring is full ( -> set tbusy)
1518 * < 0 - on failure: other problems ( -> return failure to upper layers)
1519 */
1520static int XmitFrame(
1521SK_AC *pAC, /* pointer to adapter context */
1522TX_PORT *pTxPort, /* pointer to struct of port to send to */
1523struct sk_buff *pMessage) /* pointer to send-message */
1524{
1525 TXD *pTxd; /* the rxd to fill */
1526 TXD *pOldTxd;
1527 unsigned long Flags;
1528 SK_U64 PhysAddr;
1529 int Protocol;
1530 int IpHeaderLength;
1531 int BytesSend = pMessage->len;
1532
1533 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1534
1535 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1536#ifndef USE_TX_COMPLETE
1537 FreeTxDescriptors(pAC, pTxPort);
1538#endif
1539 if (pTxPort->TxdRingFree == 0) {
1540 /*
1541 ** no enough free descriptors in ring at the moment.
1542 ** Maybe free'ing some old one help?
1543 */
1544 FreeTxDescriptors(pAC, pTxPort);
1545 if (pTxPort->TxdRingFree == 0) {
1546 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1547 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1548 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1549 SK_DBGCAT_DRV_TX_PROGRESS,
1550 ("XmitFrame failed\n"));
1551 /*
1552 ** the desired message can not be sent
1553 ** Because tbusy seems to be set, the message
1554 ** should not be freed here. It will be used
1555 ** by the scheduler of the ethernet handler
1556 */
1557 return (-1);
1558 }
1559 }
1560
1561 /*
1562 ** If the passed socket buffer is of smaller MTU-size than 60,
1563 ** copy everything into new buffer and fill all bytes between
1564 ** the original packet end and the new packet end of 60 with 0x00.
1565 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1566 */
1567 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1568 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1569 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1570 return 0;
1571 }
1572 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1573 }
1574
1575 /*
1576 ** advance head counter behind descriptor needed for this frame,
1577 ** so that needed descriptor is reserved from that on. The next
1578 ** action will be to add the passed buffer to the TX-descriptor
1579 */
1580 pTxd = pTxPort->pTxdRingHead;
1581 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1582 pTxPort->TxdRingFree--;
1583
1584#ifdef SK_DUMP_TX
1585 DumpMsg(pMessage, "XmitFrame");
1586#endif
1587
1588 /*
1589 ** First step is to map the data to be sent via the adapter onto
1590 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1591 ** and 2.6 need to use pci_map_page() for that mapping.
1592 */
1593 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1594 virt_to_page(pMessage->data),
1595 ((unsigned long) pMessage->data & ~PAGE_MASK),
1596 pMessage->len,
1597 PCI_DMA_TODEVICE);
1598 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1599 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1600 pTxd->pMBuf = pMessage;
1601
1602 if (pMessage->ip_summed == CHECKSUM_HW) {
1603 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1604 if ((Protocol == C_PROTO_ID_UDP) &&
1605 (pAC->GIni.GIChipRev == 0) &&
1606 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1607 pTxd->TBControl = BMU_TCP_CHECK;
1608 } else {
1609 pTxd->TBControl = BMU_UDP_CHECK;
1610 }
1611
1612 IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
1613 IpHeaderLength = (IpHeaderLength & 0xf) * 4;
1614 pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
1615 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1616 (Protocol == C_PROTO_ID_UDP ?
1617 C_OFFSET_UDPHEADER_UDPCS :
1618 C_OFFSET_TCPHEADER_TCPCS);
1619 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1620
1621 pTxd->TBControl |= BMU_OWN | BMU_STF |
1622 BMU_SW | BMU_EOF |
1623#ifdef USE_TX_COMPLETE
1624 BMU_IRQ_EOF |
1625#endif
1626 pMessage->len;
1627 } else {
1628 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1629 BMU_SW | BMU_EOF |
1630#ifdef USE_TX_COMPLETE
1631 BMU_IRQ_EOF |
1632#endif
1633 pMessage->len;
1634 }
1635
1636 /*
1637 ** If previous descriptor already done, give TX start cmd
1638 */
1639 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1640 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1641 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1642 }
1643
1644 /*
1645 ** after releasing the lock, the skb may immediately be free'd
1646 */
1647 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1648 if (pTxPort->TxdRingFree != 0) {
1649 return (BytesSend);
1650 } else {
1651 return (0);
1652 }
1653
1654} /* XmitFrame */
1655
1656/*****************************************************************************
1657 *
1658 * XmitFrameSG - fill one socket buffer into the transmit ring
1659 * (use SG and TCP/UDP hardware checksumming)
1660 *
1661 * Description:
1662 * This function puts a message into the transmit descriptor ring
1663 * if there is a descriptors left.
1664 *
1665 * Returns:
1666 * > 0 - on succes: the number of bytes in the message
1667 * = 0 - on resource shortage: this frame sent or dropped, now
1668 * the ring is full ( -> set tbusy)
1669 * < 0 - on failure: other problems ( -> return failure to upper layers)
1670 */
1671static int XmitFrameSG(
1672SK_AC *pAC, /* pointer to adapter context */
1673TX_PORT *pTxPort, /* pointer to struct of port to send to */
1674struct sk_buff *pMessage) /* pointer to send-message */
1675{
1676
1677 TXD *pTxd;
1678 TXD *pTxdFst;
1679 TXD *pTxdLst;
1680 int CurrFrag;
1681 int BytesSend;
1682 int IpHeaderLength;
1683 int Protocol;
1684 skb_frag_t *sk_frag;
1685 SK_U64 PhysAddr;
1686 unsigned long Flags;
1687
1688 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1689#ifndef USE_TX_COMPLETE
1690 FreeTxDescriptors(pAC, pTxPort);
1691#endif
1692 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1693 FreeTxDescriptors(pAC, pTxPort);
1694 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1695 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1696 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1697 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1698 SK_DBGCAT_DRV_TX_PROGRESS,
1699 ("XmitFrameSG failed - Ring full\n"));
1700 /* this message can not be sent now */
1701 return(-1);
1702 }
1703 }
1704
1705 pTxd = pTxPort->pTxdRingHead;
1706 pTxdFst = pTxd;
1707 pTxdLst = pTxd;
1708 BytesSend = 0;
1709 Protocol = 0;
1710
1711 /*
1712 ** Map the first fragment (header) into the DMA-space
1713 */
1714 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1715 virt_to_page(pMessage->data),
1716 ((unsigned long) pMessage->data & ~PAGE_MASK),
1717 skb_headlen(pMessage),
1718 PCI_DMA_TODEVICE);
1719
1720 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1721 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1722
1723 /*
1724 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1725 */
1726 if (pMessage->ip_summed == CHECKSUM_HW) {
1727 pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
1728 /*
1729 ** We have to use the opcode for tcp here, because the
1730 ** opcode for udp is not working in the hardware yet
1731 ** (Revision 2.0)
1732 */
1733 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1734 if ((Protocol == C_PROTO_ID_UDP) &&
1735 (pAC->GIni.GIChipRev == 0) &&
1736 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1737 pTxd->TBControl |= BMU_TCP_CHECK;
1738 } else {
1739 pTxd->TBControl |= BMU_UDP_CHECK;
1740 }
1741
1742 IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
1743 pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
1744 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1745 (Protocol == C_PROTO_ID_UDP ?
1746 C_OFFSET_UDPHEADER_UDPCS :
1747 C_OFFSET_TCPHEADER_TCPCS);
1748 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1749 } else {
1750 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
1751 skb_headlen(pMessage);
1752 }
1753
1754 pTxd = pTxd->pNextTxd;
1755 pTxPort->TxdRingFree--;
1756 BytesSend += skb_headlen(pMessage);
1757
1758 /*
1759 ** Browse over all SG fragments and map each of them into the DMA space
1760 */
1761 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1762 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1763 /*
1764 ** we already have the proper value in entry
1765 */
1766 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1767 sk_frag->page,
1768 sk_frag->page_offset,
1769 sk_frag->size,
1770 PCI_DMA_TODEVICE);
1771
1772 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1773 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1774 pTxd->pMBuf = pMessage;
1775
1776 /*
1777 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1778 */
1779 if (pMessage->ip_summed == CHECKSUM_HW) {
1780 pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
1781 /*
1782 ** We have to use the opcode for tcp here because the
1783 ** opcode for udp is not working in the hardware yet
1784 ** (revision 2.0)
1785 */
1786 if ((Protocol == C_PROTO_ID_UDP) &&
1787 (pAC->GIni.GIChipRev == 0) &&
1788 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1789 pTxd->TBControl |= BMU_TCP_CHECK;
1790 } else {
1791 pTxd->TBControl |= BMU_UDP_CHECK;
1792 }
1793 } else {
1794 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
1795 }
1796
1797 /*
1798 ** Do we have the last fragment?
1799 */
1800 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1801#ifdef USE_TX_COMPLETE
1802 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
1803#else
1804 pTxd->TBControl |= BMU_EOF | sk_frag->size;
1805#endif
1806 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1807
1808 } else {
1809 pTxd->TBControl |= sk_frag->size;
1810 }
1811 pTxdLst = pTxd;
1812 pTxd = pTxd->pNextTxd;
1813 pTxPort->TxdRingFree--;
1814 BytesSend += sk_frag->size;
1815 }
1816
1817 /*
1818 ** If previous descriptor already done, give TX start cmd
1819 */
1820 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1821 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1822 }
1823
1824 pTxPort->pTxdRingPrev = pTxdLst;
1825 pTxPort->pTxdRingHead = pTxd;
1826
1827 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1828
1829 if (pTxPort->TxdRingFree > 0) {
1830 return (BytesSend);
1831 } else {
1832 return (0);
1833 }
1834}
1835
1836/*****************************************************************************
1837 *
1838 * FreeTxDescriptors - release descriptors from the descriptor ring
1839 *
1840 * Description:
1841 * This function releases descriptors from a transmit ring if they
1842 * have been sent by the BMU.
1843 * If a descriptors is sent, it can be freed and the message can
1844 * be freed, too.
1845 * The SOFTWARE controllable bit is used to prevent running around a
1846 * completely free ring for ever. If this bit is no set in the
1847 * frame (by XmitFrame), this frame has never been sent or is
1848 * already freed.
1849 * The Tx descriptor ring lock must be held while calling this function !!!
1850 *
1851 * Returns:
1852 * none
1853 */
1854static void FreeTxDescriptors(
1855SK_AC *pAC, /* pointer to the adapter context */
1856TX_PORT *pTxPort) /* pointer to destination port structure */
1857{
1858TXD *pTxd; /* pointer to the checked descriptor */
1859TXD *pNewTail; /* pointer to 'end' of the ring */
1860SK_U32 Control; /* TBControl field of descriptor */
1861SK_U64 PhysAddr; /* address of DMA mapping */
1862
1863 pNewTail = pTxPort->pTxdRingTail;
1864 pTxd = pNewTail;
1865 /*
1866 ** loop forever; exits if BMU_SW bit not set in start frame
1867 ** or BMU_OWN bit set in any frame
1868 */
1869 while (1) {
1870 Control = pTxd->TBControl;
1871 if ((Control & BMU_SW) == 0) {
1872 /*
1873 ** software controllable bit is set in first
1874 ** fragment when given to BMU. Not set means that
1875 ** this fragment was never sent or is already
1876 ** freed ( -> ring completely free now).
1877 */
1878 pTxPort->pTxdRingTail = pTxd;
1879 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1880 return;
1881 }
1882 if (Control & BMU_OWN) {
1883 pTxPort->pTxdRingTail = pTxd;
1884 if (pTxPort->TxdRingFree > 0) {
1885 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1886 }
1887 return;
1888 }
1889
1890 /*
1891 ** release the DMA mapping, because until not unmapped
1892 ** this buffer is considered being under control of the
1893 ** adapter card!
1894 */
1895 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1896 PhysAddr |= (SK_U64) pTxd->VDataLow;
1897 pci_unmap_page(pAC->PciDev, PhysAddr,
1898 pTxd->pMBuf->len,
1899 PCI_DMA_TODEVICE);
1900
1901 if (Control & BMU_EOF)
1902 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1903
1904 pTxPort->TxdRingFree++;
1905 pTxd->TBControl &= ~BMU_SW;
1906 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1907 } /* while(forever) */
1908} /* FreeTxDescriptors */
1909
1910/*****************************************************************************
1911 *
1912 * FillRxRing - fill the receive ring with valid descriptors
1913 *
1914 * Description:
1915 * This function fills the receive ring descriptors with data
1916 * segments and makes them valid for the BMU.
1917 * The active ring is filled completely, if possible.
1918 * The non-active ring is filled only partial to save memory.
1919 *
1920 * Description of rx ring structure:
1921 * head - points to the descriptor which will be used next by the BMU
1922 * tail - points to the next descriptor to give to the BMU
1923 *
1924 * Returns: N/A
1925 */
1926static void FillRxRing(
1927SK_AC *pAC, /* pointer to the adapter context */
1928RX_PORT *pRxPort) /* ptr to port struct for which the ring
1929 should be filled */
1930{
1931unsigned long Flags;
1932
1933 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1934 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1935 if(!FillRxDescriptor(pAC, pRxPort))
1936 break;
1937 }
1938 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1939} /* FillRxRing */
1940
1941
1942/*****************************************************************************
1943 *
1944 * FillRxDescriptor - fill one buffer into the receive ring
1945 *
1946 * Description:
1947 * The function allocates a new receive buffer and
1948 * puts it into the next descriptor.
1949 *
1950 * Returns:
1951 * SK_TRUE - a buffer was added to the ring
1952 * SK_FALSE - a buffer could not be added
1953 */
1954static SK_BOOL FillRxDescriptor(
1955SK_AC *pAC, /* pointer to the adapter context struct */
1956RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1957{
1958struct sk_buff *pMsgBlock; /* pointer to a new message block */
1959RXD *pRxd; /* the rxd to fill */
1960SK_U16 Length; /* data fragment length */
1961SK_U64 PhysAddr; /* physical address of a rx buffer */
1962
1963 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1964 if (pMsgBlock == NULL) {
1965 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1966 SK_DBGCAT_DRV_ENTRY,
1967 ("%s: Allocation of rx buffer failed !\n",
1968 pAC->dev[pRxPort->PortIndex]->name));
1969 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1970 return(SK_FALSE);
1971 }
1972 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1973 /* skb allocated ok, so add buffer */
1974 pRxd = pRxPort->pRxdRingTail;
1975 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1976 pRxPort->RxdRingFree--;
1977 Length = pAC->RxBufSize;
1978 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1979 virt_to_page(pMsgBlock->data),
1980 ((unsigned long) pMsgBlock->data &
1981 ~PAGE_MASK),
1982 pAC->RxBufSize - 2,
1983 PCI_DMA_FROMDEVICE);
1984
1985 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1986 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1987 pRxd->pMBuf = pMsgBlock;
1988 pRxd->RBControl = BMU_OWN |
1989 BMU_STF |
1990 BMU_IRQ_EOF |
1991 BMU_TCP_CHECK |
1992 Length;
1993 return (SK_TRUE);
1994
1995} /* FillRxDescriptor */
1996
1997
1998/*****************************************************************************
1999 *
2000 * ReQueueRxBuffer - fill one buffer back into the receive ring
2001 *
2002 * Description:
2003 * Fill a given buffer back into the rx ring. The buffer
2004 * has been previously allocated and aligned, and its phys.
2005 * address calculated, so this is no more necessary.
2006 *
2007 * Returns: N/A
2008 */
2009static void ReQueueRxBuffer(
2010SK_AC *pAC, /* pointer to the adapter context struct */
2011RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
2012struct sk_buff *pMsg, /* pointer to the buffer */
2013SK_U32 PhysHigh, /* phys address high dword */
2014SK_U32 PhysLow) /* phys address low dword */
2015{
2016RXD *pRxd; /* the rxd to fill */
2017SK_U16 Length; /* data fragment length */
2018
2019 pRxd = pRxPort->pRxdRingTail;
2020 pRxPort->pRxdRingTail = pRxd->pNextRxd;
2021 pRxPort->RxdRingFree--;
2022 Length = pAC->RxBufSize;
2023
2024 pRxd->VDataLow = PhysLow;
2025 pRxd->VDataHigh = PhysHigh;
2026 pRxd->pMBuf = pMsg;
2027 pRxd->RBControl = BMU_OWN |
2028 BMU_STF |
2029 BMU_IRQ_EOF |
2030 BMU_TCP_CHECK |
2031 Length;
2032 return;
2033} /* ReQueueRxBuffer */
2034
2035/*****************************************************************************
2036 *
2037 * ReceiveIrq - handle a receive IRQ
2038 *
2039 * Description:
2040 * This function is called when a receive IRQ is set.
2041 * It walks the receive descriptor ring and sends up all
2042 * frames that are complete.
2043 *
2044 * Returns: N/A
2045 */
2046static void ReceiveIrq(
2047 SK_AC *pAC, /* pointer to adapter context */
2048 RX_PORT *pRxPort, /* pointer to receive port struct */
2049 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
2050{
2051RXD *pRxd; /* pointer to receive descriptors */
2052SK_U32 Control; /* control field of descriptor */
2053struct sk_buff *pMsg; /* pointer to message holding frame */
2054struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
2055int FrameLength; /* total length of received frame */
2056int IpFrameLength;
2057SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
2058SK_EVPARA EvPara; /* an event parameter union */
2059unsigned long Flags; /* for spin lock */
2060int PortIndex = pRxPort->PortIndex;
2061unsigned int Offset;
2062unsigned int NumBytes;
2063unsigned int ForRlmt;
2064SK_BOOL IsBc;
2065SK_BOOL IsMc;
2066SK_BOOL IsBadFrame; /* Bad frame */
2067
2068SK_U32 FrameStat;
2069unsigned short Csum1;
2070unsigned short Csum2;
2071unsigned short Type;
2072int Result;
2073SK_U64 PhysAddr;
2074
2075rx_start:
2076 /* do forever; exit if BMU_OWN found */
2077 for ( pRxd = pRxPort->pRxdRingHead ;
2078 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2079 pRxd = pRxd->pNextRxd,
2080 pRxPort->pRxdRingHead = pRxd,
2081 pRxPort->RxdRingFree ++) {
2082
2083 /*
2084 * For a better understanding of this loop
2085 * Go through every descriptor beginning at the head
2086 * Please note: the ring might be completely received so the OWN bit
2087 * set is not a good crirteria to leave that loop.
2088 * Therefore the RingFree counter is used.
2089 * On entry of this loop pRxd is a pointer to the Rxd that needs
2090 * to be checked next.
2091 */
2092
2093 Control = pRxd->RBControl;
2094
2095 /* check if this descriptor is ready */
2096 if ((Control & BMU_OWN) != 0) {
2097 /* this descriptor is not yet ready */
2098 /* This is the usual end of the loop */
2099 /* We don't need to start the ring again */
2100 FillRxRing(pAC, pRxPort);
2101 return;
2102 }
2103 pAC->DynIrqModInfo.NbrProcessedDescr++;
2104
2105 /* get length of frame and check it */
2106 FrameLength = Control & BMU_BBC;
2107 if (FrameLength > pAC->RxBufSize) {
2108 goto rx_failed;
2109 }
2110
2111 /* check for STF and EOF */
2112 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2113 goto rx_failed;
2114 }
2115
2116 /* here we have a complete frame in the ring */
2117 pMsg = pRxd->pMBuf;
2118
2119 FrameStat = pRxd->FrameStat;
2120
2121 /* check for frame length mismatch */
2122#define XMR_FS_LEN_SHIFT 18
2123#define GMR_FS_LEN_SHIFT 16
2124 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2125 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2126 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2127 SK_DBGCAT_DRV_RX_PROGRESS,
2128 ("skge: Frame length mismatch (%u/%u).\n",
2129 FrameLength,
2130 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2131 goto rx_failed;
2132 }
2133 }
2134 else {
2135 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2136 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2137 SK_DBGCAT_DRV_RX_PROGRESS,
2138 ("skge: Frame length mismatch (%u/%u).\n",
2139 FrameLength,
2140 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2141 goto rx_failed;
2142 }
2143 }
2144
2145 /* Set Rx Status */
2146 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2147 IsBc = (FrameStat & XMR_FS_BC) != 0;
2148 IsMc = (FrameStat & XMR_FS_MC) != 0;
2149 IsBadFrame = (FrameStat &
2150 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2151 } else {
2152 IsBc = (FrameStat & GMR_FS_BC) != 0;
2153 IsMc = (FrameStat & GMR_FS_MC) != 0;
2154 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2155 ((FrameStat & GMR_FS_RX_OK) == 0));
2156 }
2157
2158 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2159 ("Received frame of length %d on port %d\n",
2160 FrameLength, PortIndex));
2161 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2162 ("Number of free rx descriptors: %d\n",
2163 pRxPort->RxdRingFree));
2164/* DumpMsg(pMsg, "Rx"); */
2165
2166 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2167#if 0
2168 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2169#endif
2170 /* there is a receive error in this frame */
2171 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2172 SK_DBGCAT_DRV_RX_PROGRESS,
2173 ("skge: Error in received frame, dropped!\n"
2174 "Control: %x\nRxStat: %x\n",
2175 Control, FrameStat));
2176
2177 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2178 pRxd->VDataHigh, pRxd->VDataLow);
2179
2180 continue;
2181 }
2182
2183 /*
2184 * if short frame then copy data to reduce memory waste
2185 */
2186 if ((FrameLength < SK_COPY_THRESHOLD) &&
2187 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2188 /*
2189 * Short frame detected and allocation successfull
2190 */
2191 /* use new skb and copy data */
2192 skb_reserve(pNewMsg, 2);
2193 skb_put(pNewMsg, FrameLength);
2194 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2195 PhysAddr |= (SK_U64) pRxd->VDataLow;
2196
2197 pci_dma_sync_single_for_cpu(pAC->PciDev,
2198 (dma_addr_t) PhysAddr,
2199 FrameLength,
2200 PCI_DMA_FROMDEVICE);
2201 eth_copy_and_sum(pNewMsg, pMsg->data,
2202 FrameLength, 0);
2203 pci_dma_sync_single_for_device(pAC->PciDev,
2204 (dma_addr_t) PhysAddr,
2205 FrameLength,
2206 PCI_DMA_FROMDEVICE);
2207 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2208 pRxd->VDataHigh, pRxd->VDataLow);
2209
2210 pMsg = pNewMsg;
2211
2212 }
2213 else {
2214 /*
2215 * if large frame, or SKB allocation failed, pass
2216 * the SKB directly to the networking
2217 */
2218
2219 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2220 PhysAddr |= (SK_U64) pRxd->VDataLow;
2221
2222 /* release the DMA mapping */
2223 pci_unmap_single(pAC->PciDev,
2224 PhysAddr,
2225 pAC->RxBufSize - 2,
2226 PCI_DMA_FROMDEVICE);
2227
2228 /* set length in message */
2229 skb_put(pMsg, FrameLength);
2230 /* hardware checksum */
2231 Type = ntohs(*((short*)&pMsg->data[12]));
2232
2233#ifdef USE_SK_RX_CHECKSUM
2234 if (Type == 0x800) {
2235 Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
2236 Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
2237 IpFrameLength = (int) ntohs((unsigned short)
2238 ((unsigned short *) pMsg->data)[8]);
2239
2240 /*
2241 * Test: If frame is padded, a check is not possible!
2242 * Frame not padded? Length difference must be 14 (0xe)!
2243 */
2244 if ((FrameLength - IpFrameLength) != 0xe) {
2245 /* Frame padded => TCP offload not possible! */
2246 pMsg->ip_summed = CHECKSUM_NONE;
2247 } else {
2248 /* Frame not padded => TCP offload! */
2249 if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
2250 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
2251 (pAC->ChipsetType)) {
2252 Result = SkCsGetReceiveInfo(pAC,
2253 &pMsg->data[14],
2254 Csum1, Csum2, pRxPort->PortIndex);
2255 if (Result ==
2256 SKCS_STATUS_IP_FRAGMENT ||
2257 Result ==
2258 SKCS_STATUS_IP_CSUM_OK ||
2259 Result ==
2260 SKCS_STATUS_TCP_CSUM_OK ||
2261 Result ==
2262 SKCS_STATUS_UDP_CSUM_OK) {
2263 pMsg->ip_summed =
2264 CHECKSUM_UNNECESSARY;
2265 }
2266 else if (Result ==
2267 SKCS_STATUS_TCP_CSUM_ERROR ||
2268 Result ==
2269 SKCS_STATUS_UDP_CSUM_ERROR ||
2270 Result ==
2271 SKCS_STATUS_IP_CSUM_ERROR_UDP ||
2272 Result ==
2273 SKCS_STATUS_IP_CSUM_ERROR_TCP ||
2274 Result ==
2275 SKCS_STATUS_IP_CSUM_ERROR ) {
2276 /* HW Checksum error */
2277 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2278 SK_DBGCAT_DRV_RX_PROGRESS,
2279 ("skge: CRC error. Frame dropped!\n"));
2280 goto rx_failed;
2281 } else {
2282 pMsg->ip_summed =
2283 CHECKSUM_NONE;
2284 }
2285 }/* checksumControl calculation valid */
2286 } /* Frame length check */
2287 } /* IP frame */
2288#else
2289 pMsg->ip_summed = CHECKSUM_NONE;
2290#endif
2291 } /* frame > SK_COPY_TRESHOLD */
2292
2293 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2294 ForRlmt = SK_RLMT_RX_PROTOCOL;
2295#if 0
2296 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2297#endif
2298 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2299 IsBc, &Offset, &NumBytes);
2300 if (NumBytes != 0) {
2301#if 0
2302 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2303#endif
2304 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2305 &pMsg->data[Offset],
2306 IsBc, IsMc, &ForRlmt);
2307 }
2308 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2309 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2310 /* send up only frames from active port */
2311 if ((PortIndex == pAC->ActivePort) ||
2312 (pAC->RlmtNets == 2)) {
2313 /* frame for upper layer */
2314 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2315#ifdef xDEBUG
2316 DumpMsg(pMsg, "Rx");
2317#endif
2318 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2319 FrameLength, pRxPort->PortIndex);
2320
2321 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2322 pMsg->protocol = eth_type_trans(pMsg,
2323 pAC->dev[pRxPort->PortIndex]);
2324 netif_rx(pMsg);
2325 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2326 }
2327 else {
2328 /* drop frame */
2329 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2330 SK_DBGCAT_DRV_RX_PROGRESS,
2331 ("D"));
2332 DEV_KFREE_SKB(pMsg);
2333 }
2334
2335 } /* if not for rlmt */
2336 else {
2337 /* packet for rlmt */
2338 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2339 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2340 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2341 pAC->IoBase, FrameLength);
2342 if (pRlmtMbuf != NULL) {
2343 pRlmtMbuf->pNext = NULL;
2344 pRlmtMbuf->Length = FrameLength;
2345 pRlmtMbuf->PortIdx = PortIndex;
2346 EvPara.pParaPtr = pRlmtMbuf;
2347 memcpy((char*)(pRlmtMbuf->pData),
2348 (char*)(pMsg->data),
2349 FrameLength);
2350
2351 /* SlowPathLock needed? */
2352 if (SlowPathLock == SK_TRUE) {
2353 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2354 SkEventQueue(pAC, SKGE_RLMT,
2355 SK_RLMT_PACKET_RECEIVED,
2356 EvPara);
2357 pAC->CheckQueue = SK_TRUE;
2358 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2359 } else {
2360 SkEventQueue(pAC, SKGE_RLMT,
2361 SK_RLMT_PACKET_RECEIVED,
2362 EvPara);
2363 pAC->CheckQueue = SK_TRUE;
2364 }
2365
2366 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2367 SK_DBGCAT_DRV_RX_PROGRESS,
2368 ("Q"));
2369 }
2370 if ((pAC->dev[pRxPort->PortIndex]->flags &
2371 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2372 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2373 SK_RLMT_RX_PROTOCOL) {
2374 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2375 pMsg->protocol = eth_type_trans(pMsg,
2376 pAC->dev[pRxPort->PortIndex]);
2377 netif_rx(pMsg);
2378 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2379 }
2380 else {
2381 DEV_KFREE_SKB(pMsg);
2382 }
2383
2384 } /* if packet for rlmt */
2385 } /* for ... scanning the RXD ring */
2386
2387 /* RXD ring is empty -> fill and restart */
2388 FillRxRing(pAC, pRxPort);
2389 /* do not start if called from Close */
2390 if (pAC->BoardLevel > SK_INIT_DATA) {
2391 ClearAndStartRx(pAC, PortIndex);
2392 }
2393 return;
2394
2395rx_failed:
2396 /* remove error frame */
2397 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2398 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2399
2400 /* release the DMA mapping */
2401
2402 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2403 PhysAddr |= (SK_U64) pRxd->VDataLow;
2404 pci_unmap_page(pAC->PciDev,
2405 PhysAddr,
2406 pAC->RxBufSize - 2,
2407 PCI_DMA_FROMDEVICE);
2408 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2409 pRxd->pMBuf = NULL;
2410 pRxPort->RxdRingFree++;
2411 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2412 goto rx_start;
2413
2414} /* ReceiveIrq */
2415
2416
2417/*****************************************************************************
2418 *
2419 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2420 *
2421 * Description:
2422 * This function sends a start command and a clear interrupt
2423 * command for one receive queue to the BMU.
2424 *
2425 * Returns: N/A
2426 * none
2427 */
2428static void ClearAndStartRx(
2429SK_AC *pAC, /* pointer to the adapter context */
2430int PortIndex) /* index of the receive port (XMAC) */
2431{
2432 SK_OUT8(pAC->IoBase,
2433 RxQueueAddr[PortIndex]+Q_CSR,
2434 CSR_START | CSR_IRQ_CL_F);
2435} /* ClearAndStartRx */
2436
2437
2438/*****************************************************************************
2439 *
2440 * ClearTxIrq - give a clear transmit IRQ command to BMU
2441 *
2442 * Description:
2443 * This function sends a clear tx IRQ command for one
2444 * transmit queue to the BMU.
2445 *
2446 * Returns: N/A
2447 */
2448static void ClearTxIrq(
2449SK_AC *pAC, /* pointer to the adapter context */
2450int PortIndex, /* index of the transmit port (XMAC) */
2451int Prio) /* priority or normal queue */
2452{
2453 SK_OUT8(pAC->IoBase,
2454 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2455 CSR_IRQ_CL_F);
2456} /* ClearTxIrq */
2457
2458
2459/*****************************************************************************
2460 *
2461 * ClearRxRing - remove all buffers from the receive ring
2462 *
2463 * Description:
2464 * This function removes all receive buffers from the ring.
2465 * The receive BMU must be stopped before calling this function.
2466 *
2467 * Returns: N/A
2468 */
2469static void ClearRxRing(
2470SK_AC *pAC, /* pointer to adapter context */
2471RX_PORT *pRxPort) /* pointer to rx port struct */
2472{
2473RXD *pRxd; /* pointer to the current descriptor */
2474unsigned long Flags;
2475SK_U64 PhysAddr;
2476
2477 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2478 return;
2479 }
2480 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2481 pRxd = pRxPort->pRxdRingHead;
2482 do {
2483 if (pRxd->pMBuf != NULL) {
2484
2485 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2486 PhysAddr |= (SK_U64) pRxd->VDataLow;
2487 pci_unmap_page(pAC->PciDev,
2488 PhysAddr,
2489 pAC->RxBufSize - 2,
2490 PCI_DMA_FROMDEVICE);
2491 DEV_KFREE_SKB(pRxd->pMBuf);
2492 pRxd->pMBuf = NULL;
2493 }
2494 pRxd->RBControl &= BMU_OWN;
2495 pRxd = pRxd->pNextRxd;
2496 pRxPort->RxdRingFree++;
2497 } while (pRxd != pRxPort->pRxdRingTail);
2498 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2499 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2500} /* ClearRxRing */
2501
2502/*****************************************************************************
2503 *
2504 * ClearTxRing - remove all buffers from the transmit ring
2505 *
2506 * Description:
2507 * This function removes all transmit buffers from the ring.
2508 * The transmit BMU must be stopped before calling this function
2509 * and transmitting at the upper level must be disabled.
2510 * The BMU own bit of all descriptors is cleared, the rest is
2511 * done by calling FreeTxDescriptors.
2512 *
2513 * Returns: N/A
2514 */
2515static void ClearTxRing(
2516SK_AC *pAC, /* pointer to adapter context */
2517TX_PORT *pTxPort) /* pointer to tx prt struct */
2518{
2519TXD *pTxd; /* pointer to the current descriptor */
2520int i;
2521unsigned long Flags;
2522
2523 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2524 pTxd = pTxPort->pTxdRingHead;
2525 for (i=0; i<pAC->TxDescrPerRing; i++) {
2526 pTxd->TBControl &= ~BMU_OWN;
2527 pTxd = pTxd->pNextTxd;
2528 }
2529 FreeTxDescriptors(pAC, pTxPort);
2530 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2531} /* ClearTxRing */
2532
2533/*****************************************************************************
2534 *
2535 * SkGeSetMacAddr - Set the hardware MAC address
2536 *
2537 * Description:
2538 * This function sets the MAC address used by the adapter.
2539 *
2540 * Returns:
2541 * 0, if everything is ok
2542 * !=0, on error
2543 */
2544static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2545{
2546
2547DEV_NET *pNet = netdev_priv(dev);
2548SK_AC *pAC = pNet->pAC;
2549
2550struct sockaddr *addr = p;
2551unsigned long Flags;
2552
2553 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2554 ("SkGeSetMacAddr starts now...\n"));
2555 if(netif_running(dev))
2556 return -EBUSY;
2557
2558 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2559
2560 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2561
2562 if (pAC->RlmtNets == 2)
2563 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2564 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2565 else
2566 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2567 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2568
2569
2570
2571 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2572 return 0;
2573} /* SkGeSetMacAddr */
2574
2575
2576/*****************************************************************************
2577 *
2578 * SkGeSetRxMode - set receive mode
2579 *
2580 * Description:
2581 * This function sets the receive mode of an adapter. The adapter
2582 * supports promiscuous mode, allmulticast mode and a number of
2583 * multicast addresses. If more multicast addresses the available
2584 * are selected, a hash function in the hardware is used.
2585 *
2586 * Returns:
2587 * 0, if everything is ok
2588 * !=0, on error
2589 */
2590static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2591{
2592
2593DEV_NET *pNet;
2594SK_AC *pAC;
2595
2596struct dev_mc_list *pMcList;
2597int i;
2598int PortIdx;
2599unsigned long Flags;
2600
2601 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2602 ("SkGeSetRxMode starts now... "));
2603
2604 pNet = netdev_priv(dev);
2605 pAC = pNet->pAC;
2606 if (pAC->RlmtNets == 1)
2607 PortIdx = pAC->ActivePort;
2608 else
2609 PortIdx = pNet->NetNr;
2610
2611 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2612 if (dev->flags & IFF_PROMISC) {
2613 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2614 ("PROMISCUOUS mode\n"));
2615 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2616 SK_PROM_MODE_LLC);
2617 } else if (dev->flags & IFF_ALLMULTI) {
2618 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2619 ("ALLMULTI mode\n"));
2620 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2621 SK_PROM_MODE_ALL_MC);
2622 } else {
2623 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2624 SK_PROM_MODE_NONE);
2625 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2626
2627 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2628 ("Number of MC entries: %d ", dev->mc_count));
2629
2630 pMcList = dev->mc_list;
2631 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2632 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2633 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2634 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2635 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2636 pMcList->dmi_addr[0],
2637 pMcList->dmi_addr[1],
2638 pMcList->dmi_addr[2],
2639 pMcList->dmi_addr[3],
2640 pMcList->dmi_addr[4],
2641 pMcList->dmi_addr[5]));
2642 }
2643 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2644 }
2645 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2646
2647 return;
2648} /* SkGeSetRxMode */
2649
2650
2651/*****************************************************************************
2652 *
2653 * SkGeChangeMtu - set the MTU to another value
2654 *
2655 * Description:
2656 * This function sets is called whenever the MTU size is changed
2657 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2658 * ethernet MTU size, long frame support is activated.
2659 *
2660 * Returns:
2661 * 0, if everything is ok
2662 * !=0, on error
2663 */
2664static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2665{
2666DEV_NET *pNet;
2667DEV_NET *pOtherNet;
2668SK_AC *pAC;
2669unsigned long Flags;
2670int i;
2671SK_EVPARA EvPara;
2672
2673 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2674 ("SkGeChangeMtu starts now...\n"));
2675
2676 pNet = netdev_priv(dev);
2677 pAC = pNet->pAC;
2678
2679 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2680 return -EINVAL;
2681 }
2682
2683 if(pAC->BoardLevel != SK_INIT_RUN) {
2684 return -EINVAL;
2685 }
2686
2687#ifdef SK_DIAG_SUPPORT
2688 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2689 if (pAC->DiagFlowCtrl == SK_FALSE) {
2690 return -1; /* still in use, deny any actions of MTU */
2691 } else {
2692 pAC->DiagFlowCtrl = SK_FALSE;
2693 }
2694 }
2695#endif
2696
2697 pNet->Mtu = NewMtu;
2698 pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
2699 if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
2700 return(0);
2701 }
2702
2703 pAC->RxBufSize = NewMtu + 32;
2704 dev->mtu = NewMtu;
2705
2706 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2707 ("New MTU: %d\n", NewMtu));
2708
2709 /*
2710 ** Prevent any reconfiguration while changing the MTU
2711 ** by disabling any interrupts
2712 */
2713 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2714 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2715
2716 /*
2717 ** Notify RLMT that any ports are to be stopped
2718 */
2719 EvPara.Para32[0] = 0;
2720 EvPara.Para32[1] = -1;
2721 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2722 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2723 EvPara.Para32[0] = 1;
2724 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2725 } else {
2726 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2727 }
2728
2729 /*
2730 ** After calling the SkEventDispatcher(), RLMT is aware about
2731 ** the stopped ports -> configuration can take place!
2732 */
2733 SkEventDispatcher(pAC, pAC->IoBase);
2734
2735 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2736 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2737 netif_stop_queue(pAC->dev[i]);
2738
2739 }
2740
2741 /*
2742 ** Depending on the desired MTU size change, a different number of
2743 ** RX buffers need to be allocated
2744 */
2745 if (NewMtu > 1500) {
2746 /*
2747 ** Use less rx buffers
2748 */
2749 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2750 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2751 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2752 (pAC->RxDescrPerRing / 4);
2753 } else {
2754 if (i == pAC->ActivePort) {
2755 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2756 (pAC->RxDescrPerRing / 4);
2757 } else {
2758 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2759 (pAC->RxDescrPerRing / 10);
2760 }
2761 }
2762 }
2763 } else {
2764 /*
2765 ** Use the normal amount of rx buffers
2766 */
2767 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2768 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2769 pAC->RxPort[i].RxFillLimit = 1;
2770 } else {
2771 if (i == pAC->ActivePort) {
2772 pAC->RxPort[i].RxFillLimit = 1;
2773 } else {
2774 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2775 (pAC->RxDescrPerRing / 4);
2776 }
2777 }
2778 }
2779 }
2780
2781 SkGeDeInit(pAC, pAC->IoBase);
2782
2783 /*
2784 ** enable/disable hardware support for long frames
2785 */
2786 if (NewMtu > 1500) {
2787// pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2788 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2789 } else {
2790 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2791 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2792 } else {
2793 pAC->GIni.GIPortUsage = SK_RED_LINK;
2794 }
2795 }
2796
2797 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2798 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2799 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2800 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2801 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2802 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2803 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2804
2805 /*
2806 ** tschilling:
2807 ** Speed and others are set back to default in level 1 init!
2808 */
2809 GetConfiguration(pAC);
2810
2811 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2812 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2813 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2814 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2815 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2816 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2817 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2818
2819 /*
2820 ** clear and reinit the rx rings here
2821 */
2822 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2823 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2824 ClearRxRing(pAC, &pAC->RxPort[i]);
2825 FillRxRing(pAC, &pAC->RxPort[i]);
2826
2827 /*
2828 ** Enable transmit descriptor polling
2829 */
2830 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2831 FillRxRing(pAC, &pAC->RxPort[i]);
2832 };
2833
2834 SkGeYellowLED(pAC, pAC->IoBase, 1);
2835 SkDimEnableModerationIfNeeded(pAC);
2836 SkDimDisplayModerationSettings(pAC);
2837
2838 netif_start_queue(pAC->dev[pNet->PortNr]);
2839 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2840 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2841 }
2842
2843 /*
2844 ** Enable Interrupts again
2845 */
2846 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2847 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2848
2849 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2850 SkEventDispatcher(pAC, pAC->IoBase);
2851
2852 /*
2853 ** Notify RLMT about the changing and restarting one (or more) ports
2854 */
2855 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2856 EvPara.Para32[0] = pAC->RlmtNets;
2857 EvPara.Para32[1] = -1;
2858 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2859 EvPara.Para32[0] = pNet->PortNr;
2860 EvPara.Para32[1] = -1;
2861 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2862
2863 if (pOtherNet->Up) {
2864 EvPara.Para32[0] = pOtherNet->PortNr;
2865 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2866 }
2867 } else {
2868 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2869 }
2870
2871 SkEventDispatcher(pAC, pAC->IoBase);
2872 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2873
2874 /*
2875 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2876 ** seems as if upper layers have a problem to handle a successful
2877 ** return value of '0'. If such a zero is returned, the complete
2878 ** system hangs for several minutes (!), which is in acceptable.
2879 **
2880 ** Currently it is not clear, what the exact reason for this problem
2881 ** is. The implemented workaround for 2.5 is to return the desired
2882 ** new MTU size if all needed changes for the new MTU size where
2883 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2884 ** which indicates the successful change of the mtu-size.
2885 */
2886 return NewMtu;
2887
2888} /* SkGeChangeMtu */
2889
2890
2891/*****************************************************************************
2892 *
2893 * SkGeStats - return ethernet device statistics
2894 *
2895 * Description:
2896 * This function return statistic data about the ethernet device
2897 * to the operating system.
2898 *
2899 * Returns:
2900 * pointer to the statistic structure.
2901 */
2902static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2903{
2904DEV_NET *pNet = netdev_priv(dev);
2905SK_AC *pAC = pNet->pAC;
2906SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2907SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2908SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2909unsigned int Size; /* size of pnmi struct */
2910unsigned long Flags; /* for spin lock */
2911
2912 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2913 ("SkGeStats starts now...\n"));
2914 pPnmiStruct = &pAC->PnmiStruct;
2915
2916#ifdef SK_DIAG_SUPPORT
2917 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2918 (pAC->BoardLevel == SK_INIT_RUN)) {
2919#endif
2920 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2921 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2922 Size = SK_PNMI_STRUCT_SIZE;
2923 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2924 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2925#ifdef SK_DIAG_SUPPORT
2926 }
2927#endif
2928
2929 pPnmiStat = &pPnmiStruct->Stat[0];
2930 pPnmiConf = &pPnmiStruct->Conf[0];
2931
2932 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2933 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2934 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2935 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2936
2937 if (pNet->Mtu <= 1500) {
2938 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2939 } else {
2940 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2941 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2942 }
2943
2944
2945 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2946 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2947
2948 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2949 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2950 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2951 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2952 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2953
2954 /* detailed rx_errors: */
2955 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2956 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2957 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2958 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2959 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2960 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2961
2962 /* detailed tx_errors */
2963 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2964 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2965 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2966 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2967 pAC->stats.tx_window_errors = (SK_U32) 0;
2968
2969 return(&pAC->stats);
2970} /* SkGeStats */
2971
2972
2973/*****************************************************************************
2974 *
2975 * SkGeIoctl - IO-control function
2976 *
2977 * Description:
2978 * This function is called if an ioctl is issued on the device.
2979 * There are three subfunction for reading, writing and test-writing
2980 * the private MIB data structure (usefull for SysKonnect-internal tools).
2981 *
2982 * Returns:
2983 * 0, if everything is ok
2984 * !=0, on error
2985 */
2986static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2987{
2988DEV_NET *pNet;
2989SK_AC *pAC;
2990void *pMemBuf;
2991struct pci_dev *pdev = NULL;
2992SK_GE_IOCTL Ioctl;
2993unsigned int Err = 0;
2994int Size = 0;
2995int Ret = 0;
2996unsigned int Length = 0;
2997int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2998
2999 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3000 ("SkGeIoctl starts now...\n"));
3001
3002 pNet = netdev_priv(dev);
3003 pAC = pNet->pAC;
3004
3005 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
3006 return -EFAULT;
3007 }
3008
3009 switch(cmd) {
3010 case SK_IOCTL_SETMIB:
3011 case SK_IOCTL_PRESETMIB:
3012 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3013 case SK_IOCTL_GETMIB:
3014 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
3015 Ioctl.Len<sizeof(pAC->PnmiStruct)?
3016 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
3017 return -EFAULT;
3018 }
3019 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
3020 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
3021 Ioctl.Len<Size? Ioctl.Len : Size)) {
3022 return -EFAULT;
3023 }
3024 Ioctl.Len = Size;
3025 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3026 return -EFAULT;
3027 }
3028 break;
3029 case SK_IOCTL_GEN:
3030 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3031 Length = Ioctl.Len;
3032 } else {
3033 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3034 }
3035 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3036 return -ENOMEM;
3037 }
3038 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3039 Err = -EFAULT;
3040 goto fault_gen;
3041 }
3042 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
3043 Err = -EFAULT;
3044 goto fault_gen;
3045 }
3046 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3047 Err = -EFAULT;
3048 goto fault_gen;
3049 }
3050 Ioctl.Len = Length;
3051 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3052 Err = -EFAULT;
3053 goto fault_gen;
3054 }
3055fault_gen:
3056 kfree(pMemBuf); /* cleanup everything */
3057 break;
3058#ifdef SK_DIAG_SUPPORT
3059 case SK_IOCTL_DIAG:
3060 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3061 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3062 Length = Ioctl.Len;
3063 } else {
3064 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3065 }
3066 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3067 return -ENOMEM;
3068 }
3069 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3070 Err = -EFAULT;
3071 goto fault_diag;
3072 }
3073 pdev = pAC->PciDev;
3074 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3075 /*
3076 ** While coding this new IOCTL interface, only a few lines of code
3077 ** are to to be added. Therefore no dedicated function has been
3078 ** added. If more functionality is added, a separate function
3079 ** should be used...
3080 */
3081 * ((SK_U32 *)pMemBuf) = 0;
3082 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3083 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3084 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3085 Err = -EFAULT;
3086 goto fault_diag;
3087 }
3088 Ioctl.Len = Length;
3089 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3090 Err = -EFAULT;
3091 goto fault_diag;
3092 }
3093fault_diag:
3094 kfree(pMemBuf); /* cleanup everything */
3095 break;
3096#endif
3097 default:
3098 Err = -EOPNOTSUPP;
3099 }
3100
3101 return(Err);
3102
3103} /* SkGeIoctl */
3104
3105
3106/*****************************************************************************
3107 *
3108 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3109 *
3110 * Description:
3111 * This function reads/writes the MIB data using PNMI (Private Network
3112 * Management Interface).
3113 * The destination for the data must be provided with the
3114 * ioctl call and is given to the driver in the form of
3115 * a user space address.
3116 * Copying from the user-provided data area into kernel messages
3117 * and back is done by copy_from_user and copy_to_user calls in
3118 * SkGeIoctl.
3119 *
3120 * Returns:
3121 * returned size from PNMI call
3122 */
3123static int SkGeIocMib(
3124DEV_NET *pNet, /* pointer to the adapter context */
3125unsigned int Size, /* length of ioctl data */
3126int mode) /* flag for set/preset */
3127{
3128unsigned long Flags; /* for spin lock */
3129SK_AC *pAC;
3130
3131 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3132 ("SkGeIocMib starts now...\n"));
3133 pAC = pNet->pAC;
3134 /* access MIB */
3135 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3136 switch(mode) {
3137 case SK_IOCTL_GETMIB:
3138 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3139 pNet->NetNr);
3140 break;
3141 case SK_IOCTL_PRESETMIB:
3142 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3143 pNet->NetNr);
3144 break;
3145 case SK_IOCTL_SETMIB:
3146 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3147 pNet->NetNr);
3148 break;
3149 default:
3150 break;
3151 }
3152 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3153 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3154 ("MIB data access succeeded\n"));
3155 return (Size);
3156} /* SkGeIocMib */
3157
3158
3159/*****************************************************************************
3160 *
3161 * GetConfiguration - read configuration information
3162 *
3163 * Description:
3164 * This function reads per-adapter configuration information from
3165 * the options provided on the command line.
3166 *
3167 * Returns:
3168 * none
3169 */
3170static void GetConfiguration(
3171SK_AC *pAC) /* pointer to the adapter context structure */
3172{
3173SK_I32 Port; /* preferred port */
3174SK_BOOL AutoSet;
3175SK_BOOL DupSet;
3176int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3177int AutoNeg = 1; /* autoneg off (0) or on (1) */
3178int DuplexCap = 0; /* 0=both,1=full,2=half */
3179int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3180int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3181
3182SK_BOOL IsConTypeDefined = SK_TRUE;
3183SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3184SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3185SK_BOOL IsRoleDefined = SK_TRUE;
3186SK_BOOL IsModeDefined = SK_TRUE;
3187/*
3188 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3189 * parameter. The mapping is described by this table:
3190 * DuplexCap -> | both | full | half |
3191 * AutoNeg | | | |
3192 * -----------------------------------------------------------------
3193 * Off | illegal | Full | Half |
3194 * -----------------------------------------------------------------
3195 * On | AutoBoth | AutoFull | AutoHalf |
3196 * -----------------------------------------------------------------
3197 * Sense | AutoSense | AutoSense | AutoSense |
3198 */
3199int Capabilities[3][3] =
3200 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3201 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3202 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3203
3204#define DC_BOTH 0
3205#define DC_FULL 1
3206#define DC_HALF 2
3207#define AN_OFF 0
3208#define AN_ON 1
3209#define AN_SENS 2
3210#define M_CurrPort pAC->GIni.GP[Port]
3211
3212
3213 /*
3214 ** Set the default values first for both ports!
3215 */
3216 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3217 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3218 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3219 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3220 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3221 }
3222
3223 /*
3224 ** Check merged parameter ConType. If it has not been used,
3225 ** verify any other parameter (e.g. AutoNeg) and use default values.
3226 **
3227 ** Stating both ConType and other lowlevel link parameters is also
3228 ** possible. If this is the case, the passed ConType-parameter is
3229 ** overwritten by the lowlevel link parameter.
3230 **
3231 ** The following settings are used for a merged ConType-parameter:
3232 **
3233 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3234 ** ------- ------ ------- -------- ---------- -----
3235 ** Auto Both On SymOrRem Auto Auto
3236 ** 100FD Full Off None <ignored> 100
3237 ** 100HD Half Off None <ignored> 100
3238 ** 10FD Full Off None <ignored> 10
3239 ** 10HD Half Off None <ignored> 10
3240 **
3241 ** This ConType parameter is used for all ports of the adapter!
3242 */
3243 if ( (ConType != NULL) &&
3244 (pAC->Index < SK_MAX_CARD_PARAM) &&
3245 (ConType[pAC->Index] != NULL) ) {
3246
3247 /* Check chipset family */
3248 if ((!pAC->ChipsetType) &&
3249 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3250 (strcmp(ConType[pAC->Index],"")!=0)) {
3251 /* Set the speed parameter back */
3252 printk("sk98lin: Illegal value \"%s\" "
3253 "for ConType."
3254 " Using Auto.\n",
3255 ConType[pAC->Index]);
3256
3257 sprintf(ConType[pAC->Index], "Auto");
3258 }
3259
3260 if (strcmp(ConType[pAC->Index],"")==0) {
3261 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3262 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3263 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3264 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3265 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3266 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3267 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3268 }
3269 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3270 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3271 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3272 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3273 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3274 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3275 }
3276 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3277 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3278 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3279 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3280 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3281 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3282 }
3283 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3284 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3285 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3286 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3287 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3288 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3289 }
3290 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3291 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3292 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3293 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3294 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3295 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3296 }
3297 } else {
3298 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3299 ConType[pAC->Index]);
3300 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3301 }
3302 } else {
3303 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3304 }
3305
3306 /*
3307 ** Parse any parameter settings for port A:
3308 ** a) any LinkSpeed stated?
3309 */
3310 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3311 Speed_A[pAC->Index] != NULL) {
3312 if (strcmp(Speed_A[pAC->Index],"")==0) {
3313 IsLinkSpeedDefined = SK_FALSE;
3314 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3315 LinkSpeed = SK_LSPEED_AUTO;
3316 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3317 LinkSpeed = SK_LSPEED_10MBPS;
3318 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3319 LinkSpeed = SK_LSPEED_100MBPS;
3320 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3321 LinkSpeed = SK_LSPEED_1000MBPS;
3322 } else {
3323 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3324 Speed_A[pAC->Index]);
3325 IsLinkSpeedDefined = SK_FALSE;
3326 }
3327 } else {
3328 IsLinkSpeedDefined = SK_FALSE;
3329 }
3330
3331 /*
3332 ** Check speed parameter:
3333 ** Only copper type adapter and GE V2 cards
3334 */
3335 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3336 ((LinkSpeed != SK_LSPEED_AUTO) &&
3337 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3338 printk("sk98lin: Illegal value for Speed_A. "
3339 "Not a copper card or GE V2 card\n Using "
3340 "speed 1000\n");
3341 LinkSpeed = SK_LSPEED_1000MBPS;
3342 }
3343
3344 /*
3345 ** Decide whether to set new config value if somethig valid has
3346 ** been received.
3347 */
3348 if (IsLinkSpeedDefined) {
3349 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3350 }
3351
3352 /*
3353 ** b) Any Autonegotiation and DuplexCapabilities set?
3354 ** Please note that both belong together...
3355 */
3356 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3357 AutoSet = SK_FALSE;
3358 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3359 AutoNeg_A[pAC->Index] != NULL) {
3360 AutoSet = SK_TRUE;
3361 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3362 AutoSet = SK_FALSE;
3363 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3364 AutoNeg = AN_ON;
3365 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3366 AutoNeg = AN_OFF;
3367 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3368 AutoNeg = AN_SENS;
3369 } else {
3370 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3371 AutoNeg_A[pAC->Index]);
3372 }
3373 }
3374
3375 DuplexCap = DC_BOTH;
3376 DupSet = SK_FALSE;
3377 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3378 DupCap_A[pAC->Index] != NULL) {
3379 DupSet = SK_TRUE;
3380 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3381 DupSet = SK_FALSE;
3382 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3383 DuplexCap = DC_BOTH;
3384 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3385 DuplexCap = DC_FULL;
3386 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3387 DuplexCap = DC_HALF;
3388 } else {
3389 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3390 DupCap_A[pAC->Index]);
3391 }
3392 }
3393
3394 /*
3395 ** Check for illegal combinations
3396 */
3397 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3398 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3399 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3400 (pAC->ChipsetType)) {
3401 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3402 " Using Full Duplex.\n");
3403 DuplexCap = DC_FULL;
3404 }
3405
3406 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3407 printk("sk98lin, Port A: DuplexCapabilities"
3408 " ignored using Sense mode\n");
3409 }
3410
3411 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3412 printk("sk98lin: Port A: Illegal combination"
3413 " of values AutoNeg. and DuplexCap.\n Using "
3414 "Full Duplex\n");
3415 DuplexCap = DC_FULL;
3416 }
3417
3418 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3419 DuplexCap = DC_FULL;
3420 }
3421
3422 if (!AutoSet && DupSet) {
3423 printk("sk98lin: Port A: Duplex setting not"
3424 " possible in\n default AutoNegotiation mode"
3425 " (Sense).\n Using AutoNegotiation On\n");
3426 AutoNeg = AN_ON;
3427 }
3428
3429 /*
3430 ** set the desired mode
3431 */
3432 if (AutoSet || DupSet) {
3433 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3434 }
3435
3436 /*
3437 ** c) Any Flowcontrol-parameter set?
3438 */
3439 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3440 FlowCtrl_A[pAC->Index] != NULL) {
3441 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3442 IsFlowCtrlDefined = SK_FALSE;
3443 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3444 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3445 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3446 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3447 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3448 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3449 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3450 FlowCtrl = SK_FLOW_MODE_NONE;
3451 } else {
3452 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3453 FlowCtrl_A[pAC->Index]);
3454 IsFlowCtrlDefined = SK_FALSE;
3455 }
3456 } else {
3457 IsFlowCtrlDefined = SK_FALSE;
3458 }
3459
3460 if (IsFlowCtrlDefined) {
3461 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3462 printk("sk98lin: Port A: FlowControl"
3463 " impossible without AutoNegotiation,"
3464 " disabled\n");
3465 FlowCtrl = SK_FLOW_MODE_NONE;
3466 }
3467 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3468 }
3469
3470 /*
3471 ** d) What is with the RoleParameter?
3472 */
3473 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3474 Role_A[pAC->Index] != NULL) {
3475 if (strcmp(Role_A[pAC->Index],"")==0) {
3476 IsRoleDefined = SK_FALSE;
3477 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3478 MSMode = SK_MS_MODE_AUTO;
3479 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3480 MSMode = SK_MS_MODE_MASTER;
3481 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3482 MSMode = SK_MS_MODE_SLAVE;
3483 } else {
3484 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3485 Role_A[pAC->Index]);
3486 IsRoleDefined = SK_FALSE;
3487 }
3488 } else {
3489 IsRoleDefined = SK_FALSE;
3490 }
3491
3492 if (IsRoleDefined == SK_TRUE) {
3493 pAC->GIni.GP[0].PMSMode = MSMode;
3494 }
3495
3496
3497
3498 /*
3499 ** Parse any parameter settings for port B:
3500 ** a) any LinkSpeed stated?
3501 */
3502 IsConTypeDefined = SK_TRUE;
3503 IsLinkSpeedDefined = SK_TRUE;
3504 IsFlowCtrlDefined = SK_TRUE;
3505 IsModeDefined = SK_TRUE;
3506
3507 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3508 Speed_B[pAC->Index] != NULL) {
3509 if (strcmp(Speed_B[pAC->Index],"")==0) {
3510 IsLinkSpeedDefined = SK_FALSE;
3511 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3512 LinkSpeed = SK_LSPEED_AUTO;
3513 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3514 LinkSpeed = SK_LSPEED_10MBPS;
3515 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3516 LinkSpeed = SK_LSPEED_100MBPS;
3517 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3518 LinkSpeed = SK_LSPEED_1000MBPS;
3519 } else {
3520 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3521 Speed_B[pAC->Index]);
3522 IsLinkSpeedDefined = SK_FALSE;
3523 }
3524 } else {
3525 IsLinkSpeedDefined = SK_FALSE;
3526 }
3527
3528 /*
3529 ** Check speed parameter:
3530 ** Only copper type adapter and GE V2 cards
3531 */
3532 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3533 ((LinkSpeed != SK_LSPEED_AUTO) &&
3534 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3535 printk("sk98lin: Illegal value for Speed_B. "
3536 "Not a copper card or GE V2 card\n Using "
3537 "speed 1000\n");
3538 LinkSpeed = SK_LSPEED_1000MBPS;
3539 }
3540
3541 /*
3542 ** Decide whether to set new config value if somethig valid has
3543 ** been received.
3544 */
3545 if (IsLinkSpeedDefined) {
3546 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3547 }
3548
3549 /*
3550 ** b) Any Autonegotiation and DuplexCapabilities set?
3551 ** Please note that both belong together...
3552 */
3553 AutoNeg = AN_SENS; /* default: do auto Sense */
3554 AutoSet = SK_FALSE;
3555 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3556 AutoNeg_B[pAC->Index] != NULL) {
3557 AutoSet = SK_TRUE;
3558 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3559 AutoSet = SK_FALSE;
3560 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3561 AutoNeg = AN_ON;
3562 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3563 AutoNeg = AN_OFF;
3564 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3565 AutoNeg = AN_SENS;
3566 } else {
3567 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3568 AutoNeg_B[pAC->Index]);
3569 }
3570 }
3571
3572 DuplexCap = DC_BOTH;
3573 DupSet = SK_FALSE;
3574 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3575 DupCap_B[pAC->Index] != NULL) {
3576 DupSet = SK_TRUE;
3577 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3578 DupSet = SK_FALSE;
3579 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3580 DuplexCap = DC_BOTH;
3581 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3582 DuplexCap = DC_FULL;
3583 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3584 DuplexCap = DC_HALF;
3585 } else {
3586 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3587 DupCap_B[pAC->Index]);
3588 }
3589 }
3590
3591
3592 /*
3593 ** Check for illegal combinations
3594 */
3595 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3596 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3597 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3598 (pAC->ChipsetType)) {
3599 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3600 " Using Full Duplex.\n");
3601 DuplexCap = DC_FULL;
3602 }
3603
3604 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3605 printk("sk98lin, Port B: DuplexCapabilities"
3606 " ignored using Sense mode\n");
3607 }
3608
3609 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3610 printk("sk98lin: Port B: Illegal combination"
3611 " of values AutoNeg. and DuplexCap.\n Using "
3612 "Full Duplex\n");
3613 DuplexCap = DC_FULL;
3614 }
3615
3616 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3617 DuplexCap = DC_FULL;
3618 }
3619
3620 if (!AutoSet && DupSet) {
3621 printk("sk98lin: Port B: Duplex setting not"
3622 " possible in\n default AutoNegotiation mode"
3623 " (Sense).\n Using AutoNegotiation On\n");
3624 AutoNeg = AN_ON;
3625 }
3626
3627 /*
3628 ** set the desired mode
3629 */
3630 if (AutoSet || DupSet) {
3631 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3632 }
3633
3634 /*
3635 ** c) Any FlowCtrl parameter set?
3636 */
3637 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3638 FlowCtrl_B[pAC->Index] != NULL) {
3639 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3640 IsFlowCtrlDefined = SK_FALSE;
3641 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3642 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3643 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3644 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3645 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3646 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3647 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3648 FlowCtrl = SK_FLOW_MODE_NONE;
3649 } else {
3650 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3651 FlowCtrl_B[pAC->Index]);
3652 IsFlowCtrlDefined = SK_FALSE;
3653 }
3654 } else {
3655 IsFlowCtrlDefined = SK_FALSE;
3656 }
3657
3658 if (IsFlowCtrlDefined) {
3659 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3660 printk("sk98lin: Port B: FlowControl"
3661 " impossible without AutoNegotiation,"
3662 " disabled\n");
3663 FlowCtrl = SK_FLOW_MODE_NONE;
3664 }
3665 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3666 }
3667
3668 /*
3669 ** d) What is the RoleParameter?
3670 */
3671 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3672 Role_B[pAC->Index] != NULL) {
3673 if (strcmp(Role_B[pAC->Index],"")==0) {
3674 IsRoleDefined = SK_FALSE;
3675 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3676 MSMode = SK_MS_MODE_AUTO;
3677 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3678 MSMode = SK_MS_MODE_MASTER;
3679 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3680 MSMode = SK_MS_MODE_SLAVE;
3681 } else {
3682 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3683 Role_B[pAC->Index]);
3684 IsRoleDefined = SK_FALSE;
3685 }
3686 } else {
3687 IsRoleDefined = SK_FALSE;
3688 }
3689
3690 if (IsRoleDefined) {
3691 pAC->GIni.GP[1].PMSMode = MSMode;
3692 }
3693
3694 /*
3695 ** Evaluate settings for both ports
3696 */
3697 pAC->ActivePort = 0;
3698 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3699 PrefPort[pAC->Index] != NULL) {
3700 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3701 pAC->ActivePort = 0;
3702 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3703 pAC->Rlmt.Net[0].PrefPort = 0;
3704 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3705 /*
3706 ** do not set ActivePort here, thus a port
3707 ** switch is issued after net up.
3708 */
3709 Port = 0;
3710 pAC->Rlmt.Net[0].Preference = Port;
3711 pAC->Rlmt.Net[0].PrefPort = Port;
3712 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3713 /*
3714 ** do not set ActivePort here, thus a port
3715 ** switch is issued after net up.
3716 */
3717 if (pAC->GIni.GIMacsFound == 1) {
3718 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3719 " Port B not available on single port adapters.\n");
3720
3721 pAC->ActivePort = 0;
3722 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3723 pAC->Rlmt.Net[0].PrefPort = 0;
3724 } else {
3725 Port = 1;
3726 pAC->Rlmt.Net[0].Preference = Port;
3727 pAC->Rlmt.Net[0].PrefPort = Port;
3728 }
3729 } else {
3730 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3731 PrefPort[pAC->Index]);
3732 }
3733 }
3734
3735 pAC->RlmtNets = 1;
3736
3737 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3738 RlmtMode[pAC->Index] != NULL) {
3739 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3740 pAC->RlmtMode = 0;
3741 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3742 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3743 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3744 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3745 SK_RLMT_CHECK_LOC_LINK;
3746 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3747 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3748 SK_RLMT_CHECK_LOC_LINK |
3749 SK_RLMT_CHECK_SEG;
3750 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3751 (pAC->GIni.GIMacsFound == 2)) {
3752 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3753 pAC->RlmtNets = 2;
3754 } else {
3755 printk("sk98lin: Illegal value \"%s\" for"
3756 " RlmtMode, using default\n",
3757 RlmtMode[pAC->Index]);
3758 pAC->RlmtMode = 0;
3759 }
3760 } else {
3761 pAC->RlmtMode = 0;
3762 }
3763
3764 /*
3765 ** Check the interrupt moderation parameters
3766 */
3767 if (Moderation[pAC->Index] != NULL) {
3768 if (strcmp(Moderation[pAC->Index], "") == 0) {
3769 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3770 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3771 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3772 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3773 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3774 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3775 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3776 } else {
3777 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3778 " Disable interrupt moderation.\n",
3779 Moderation[pAC->Index]);
3780 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3781 }
3782 } else {
3783 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3784 }
3785
3786 if (Stats[pAC->Index] != NULL) {
3787 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3788 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3789 } else {
3790 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3791 }
3792 } else {
3793 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3794 }
3795
3796 if (ModerationMask[pAC->Index] != NULL) {
3797 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3798 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3799 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3800 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3801 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3802 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3803 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3804 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3805 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3806 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3807 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3808 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3809 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3810 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3811 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3812 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3813 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3814 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3815 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3816 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3817 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3818 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3819 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3820 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3821 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3822 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3823 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3824 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3825 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3826 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3827 } else { /* some rubbish */
3828 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3829 }
3830 } else { /* operator has stated nothing */
3831 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3832 }
3833
3834 if (AutoSizing[pAC->Index] != NULL) {
3835 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3836 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3837 } else {
3838 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3839 }
3840 } else { /* operator has stated nothing */
3841 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3842 }
3843
3844 if (IntsPerSec[pAC->Index] != 0) {
3845 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3846 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3847 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3848 " Using default value of %i.\n",
3849 IntsPerSec[pAC->Index],
3850 C_INT_MOD_IPS_LOWER_RANGE,
3851 C_INT_MOD_IPS_UPPER_RANGE,
3852 C_INTS_PER_SEC_DEFAULT);
3853 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3854 } else {
3855 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3856 }
3857 } else {
3858 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3859 }
3860
3861 /*
3862 ** Evaluate upper and lower moderation threshold
3863 */
3864 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3865 pAC->DynIrqModInfo.MaxModIntsPerSec +
3866 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3867
3868 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3869 pAC->DynIrqModInfo.MaxModIntsPerSec -
3870 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3871
3872 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3873
3874
3875} /* GetConfiguration */
3876
3877
3878/*****************************************************************************
3879 *
3880 * ProductStr - return a adapter identification string from vpd
3881 *
3882 * Description:
3883 * This function reads the product name string from the vpd area
3884 * and puts it the field pAC->DeviceString.
3885 *
3886 * Returns: N/A
3887 */
3888static void ProductStr(
3889SK_AC *pAC /* pointer to adapter context */
3890)
3891{
3892int StrLen = 80; /* length of the string, defined in SK_AC */
3893char Keyword[] = VPD_NAME; /* vpd productname identifier */
3894int ReturnCode; /* return code from vpd_read */
3895unsigned long Flags;
3896
3897 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3898 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
3899 &StrLen);
3900 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3901 if (ReturnCode != 0) {
3902 /* there was an error reading the vpd data */
3903 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
3904 ("Error reading VPD data: %d\n", ReturnCode));
3905 pAC->DeviceStr[0] = '\0';
3906 }
3907} /* ProductStr */
3908
3909/*****************************************************************************
3910 *
3911 * StartDrvCleanupTimer - Start timer to check for descriptors which
3912 * might be placed in descriptor ring, but
3913 * havent been handled up to now
3914 *
3915 * Description:
3916 * This function requests a HW-timer fo the Yukon card. The actions to
3917 * perform when this timer expires, are located in the SkDrvEvent().
3918 *
3919 * Returns: N/A
3920 */
3921static void
3922StartDrvCleanupTimer(SK_AC *pAC) {
3923 SK_EVPARA EventParam; /* Event struct for timer event */
3924
3925 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3926 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3927 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3928 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3929 SKGE_DRV, SK_DRV_TIMER, EventParam);
3930}
3931
3932/*****************************************************************************
3933 *
3934 * StopDrvCleanupTimer - Stop timer to check for descriptors
3935 *
3936 * Description:
3937 * This function requests a HW-timer fo the Yukon card. The actions to
3938 * perform when this timer expires, are located in the SkDrvEvent().
3939 *
3940 * Returns: N/A
3941 */
3942static void
3943StopDrvCleanupTimer(SK_AC *pAC) {
3944 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3945 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3946}
3947
3948/****************************************************************************/
3949/* functions for common modules *********************************************/
3950/****************************************************************************/
3951
3952
3953/*****************************************************************************
3954 *
3955 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3956 *
3957 * Description:
3958 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3959 * is embedded into a socket buff data area.
3960 *
3961 * Context:
3962 * runtime
3963 *
3964 * Returns:
3965 * NULL or pointer to Mbuf.
3966 */
3967SK_MBUF *SkDrvAllocRlmtMbuf(
3968SK_AC *pAC, /* pointer to adapter context */
3969SK_IOC IoC, /* the IO-context */
3970unsigned BufferSize) /* size of the requested buffer */
3971{
3972SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3973struct sk_buff *pMsgBlock; /* pointer to a new message block */
3974
3975 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3976 if (pMsgBlock == NULL) {
3977 return (NULL);
3978 }
3979 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3980 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3981 pRlmtMbuf->pNext = NULL;
3982 pRlmtMbuf->pOs = pMsgBlock;
3983 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3984 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3985 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3986 return (pRlmtMbuf);
3987
3988} /* SkDrvAllocRlmtMbuf */
3989
3990
3991/*****************************************************************************
3992 *
3993 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3994 *
3995 * Description:
3996 * This routine frees one or more RLMT mbuf(s).
3997 *
3998 * Context:
3999 * runtime
4000 *
4001 * Returns:
4002 * Nothing
4003 */
4004void SkDrvFreeRlmtMbuf(
4005SK_AC *pAC, /* pointer to adapter context */
4006SK_IOC IoC, /* the IO-context */
4007SK_MBUF *pMbuf) /* size of the requested buffer */
4008{
4009SK_MBUF *pFreeMbuf;
4010SK_MBUF *pNextMbuf;
4011
4012 pFreeMbuf = pMbuf;
4013 do {
4014 pNextMbuf = pFreeMbuf->pNext;
4015 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
4016 pFreeMbuf = pNextMbuf;
4017 } while ( pFreeMbuf != NULL );
4018} /* SkDrvFreeRlmtMbuf */
4019
4020
4021/*****************************************************************************
4022 *
4023 * SkOsGetTime - provide a time value
4024 *
4025 * Description:
4026 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
4027 * It is not used for absolute time, but only for time differences.
4028 *
4029 *
4030 * Returns:
4031 * Time value
4032 */
4033SK_U64 SkOsGetTime(SK_AC *pAC)
4034{
4035 SK_U64 PrivateJiffies;
4036 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
4037 return PrivateJiffies;
4038} /* SkOsGetTime */
4039
4040
4041/*****************************************************************************
4042 *
4043 * SkPciReadCfgDWord - read a 32 bit value from pci config space
4044 *
4045 * Description:
4046 * This routine reads a 32 bit value from the pci configuration
4047 * space.
4048 *
4049 * Returns:
4050 * 0 - indicate everything worked ok.
4051 * != 0 - error indication
4052 */
4053int SkPciReadCfgDWord(
4054SK_AC *pAC, /* Adapter Control structure pointer */
4055int PciAddr, /* PCI register address */
4056SK_U32 *pVal) /* pointer to store the read value */
4057{
4058 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
4059 return(0);
4060} /* SkPciReadCfgDWord */
4061
4062
4063/*****************************************************************************
4064 *
4065 * SkPciReadCfgWord - read a 16 bit value from pci config space
4066 *
4067 * Description:
4068 * This routine reads a 16 bit value from the pci configuration
4069 * space.
4070 *
4071 * Returns:
4072 * 0 - indicate everything worked ok.
4073 * != 0 - error indication
4074 */
4075int SkPciReadCfgWord(
4076SK_AC *pAC, /* Adapter Control structure pointer */
4077int PciAddr, /* PCI register address */
4078SK_U16 *pVal) /* pointer to store the read value */
4079{
4080 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4081 return(0);
4082} /* SkPciReadCfgWord */
4083
4084
4085/*****************************************************************************
4086 *
4087 * SkPciReadCfgByte - read a 8 bit value from pci config space
4088 *
4089 * Description:
4090 * This routine reads a 8 bit value from the pci configuration
4091 * space.
4092 *
4093 * Returns:
4094 * 0 - indicate everything worked ok.
4095 * != 0 - error indication
4096 */
4097int SkPciReadCfgByte(
4098SK_AC *pAC, /* Adapter Control structure pointer */
4099int PciAddr, /* PCI register address */
4100SK_U8 *pVal) /* pointer to store the read value */
4101{
4102 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4103 return(0);
4104} /* SkPciReadCfgByte */
4105
4106
4107/*****************************************************************************
4108 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4110 *
4111 * Description:
4112 * This routine writes a 16 bit value to the pci configuration
4113 * space. The flag PciConfigUp indicates whether the config space
4114 * is accesible or must be set up first.
4115 *
4116 * Returns:
4117 * 0 - indicate everything worked ok.
4118 * != 0 - error indication
4119 */
4120int SkPciWriteCfgWord(
4121SK_AC *pAC, /* Adapter Control structure pointer */
4122int PciAddr, /* PCI register address */
4123SK_U16 Val) /* pointer to store the read value */
4124{
4125 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4126 return(0);
4127} /* SkPciWriteCfgWord */
4128
4129
4130/*****************************************************************************
4131 *
4132 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4133 *
4134 * Description:
4135 * This routine writes a 8 bit value to the pci configuration
4136 * space. The flag PciConfigUp indicates whether the config space
4137 * is accesible or must be set up first.
4138 *
4139 * Returns:
4140 * 0 - indicate everything worked ok.
4141 * != 0 - error indication
4142 */
4143int SkPciWriteCfgByte(
4144SK_AC *pAC, /* Adapter Control structure pointer */
4145int PciAddr, /* PCI register address */
4146SK_U8 Val) /* pointer to store the read value */
4147{
4148 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4149 return(0);
4150} /* SkPciWriteCfgByte */
4151
4152
4153/*****************************************************************************
4154 *
4155 * SkDrvEvent - handle driver events
4156 *
4157 * Description:
4158 * This function handles events from all modules directed to the driver
4159 *
4160 * Context:
4161 * Is called under protection of slow path lock.
4162 *
4163 * Returns:
4164 * 0 if everything ok
4165 * < 0 on error
4166 *
4167 */
4168int SkDrvEvent(
4169SK_AC *pAC, /* pointer to adapter context */
4170SK_IOC IoC, /* io-context */
4171SK_U32 Event, /* event-id */
4172SK_EVPARA Param) /* event-parameter */
4173{
4174SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4175struct sk_buff *pMsg; /* pointer to a message block */
4176int FromPort; /* the port from which we switch away */
4177int ToPort; /* the port we switch to */
4178SK_EVPARA NewPara; /* parameter for further events */
4179int Stat;
4180unsigned long Flags;
4181SK_BOOL DualNet;
4182
4183 switch (Event) {
4184 case SK_DRV_ADAP_FAIL:
4185 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4186 ("ADAPTER FAIL EVENT\n"));
4187 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4188 /* disable interrupts */
4189 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4190 /* cgoos */
4191 break;
4192 case SK_DRV_PORT_FAIL:
4193 FromPort = Param.Para32[0];
4194 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4195 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4196 if (FromPort == 0) {
4197 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4198 } else {
4199 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4200 }
4201 /* cgoos */
4202 break;
4203 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4204 /* action list 4 */
4205 FromPort = Param.Para32[0];
4206 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4207 ("PORT RESET EVENT, Port: %d ", FromPort));
4208 NewPara.Para64 = FromPort;
4209 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4210 spin_lock_irqsave(
4211 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4212 Flags);
4213
4214 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
7d17c1d2005-05-12 19:45:25 -04004215 netif_carrier_off(pAC->dev[Param.Para32[0]]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216 spin_unlock_irqrestore(
4217 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4218 Flags);
4219
4220 /* clear rx ring from received frames */
4221 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4222
4223 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4224 spin_lock_irqsave(
4225 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4226 Flags);
4227
4228 /* tschilling: Handling of return value inserted. */
4229 if (SkGeInitPort(pAC, IoC, FromPort)) {
4230 if (FromPort == 0) {
4231 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4232 } else {
4233 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4234 }
4235 }
4236 SkAddrMcUpdate(pAC,IoC, FromPort);
4237 PortReInitBmu(pAC, FromPort);
4238 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4239 ClearAndStartRx(pAC, FromPort);
4240 spin_unlock_irqrestore(
4241 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4242 Flags);
4243 break;
4244 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4245 /* action list 5 */
4246 FromPort = Param.Para32[0];
4247 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4248 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4249 /* Mac update */
4250 SkAddrMcUpdate(pAC,IoC, FromPort);
4251
4252 if (DoPrintInterfaceChange) {
4253 printk("%s: network connection up using"
4254 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4255
4256 /* tschilling: Values changed according to LinkSpeedUsed. */
4257 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4258 if (Stat == SK_LSPEED_STAT_10MBPS) {
4259 printk(" speed: 10\n");
4260 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4261 printk(" speed: 100\n");
4262 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4263 printk(" speed: 1000\n");
4264 } else {
4265 printk(" speed: unknown\n");
4266 }
4267
4268
4269 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4270 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4271 Stat == SK_LMODE_STAT_AUTOFULL) {
4272 printk(" autonegotiation: yes\n");
4273 }
4274 else {
4275 printk(" autonegotiation: no\n");
4276 }
4277 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4278 Stat == SK_LMODE_STAT_HALF) {
4279 printk(" duplex mode: half\n");
4280 }
4281 else {
4282 printk(" duplex mode: full\n");
4283 }
4284 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4285 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4286 printk(" flowctrl: remote send\n");
4287 }
4288 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4289 printk(" flowctrl: local send\n");
4290 }
4291 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4292 printk(" flowctrl: symmetric\n");
4293 }
4294 else {
4295 printk(" flowctrl: none\n");
4296 }
4297
4298 /* tschilling: Check against CopperType now. */
4299 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4300 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4301 SK_LSPEED_STAT_1000MBPS)) {
4302 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4303 if (Stat == SK_MS_STAT_MASTER ) {
4304 printk(" role: master\n");
4305 }
4306 else if (Stat == SK_MS_STAT_SLAVE ) {
4307 printk(" role: slave\n");
4308 }
4309 else {
4310 printk(" role: ???\n");
4311 }
4312 }
4313
4314 /*
4315 Display dim (dynamic interrupt moderation)
4316 informations
4317 */
4318 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4319 printk(" irq moderation: static (%d ints/sec)\n",
4320 pAC->DynIrqModInfo.MaxModIntsPerSec);
4321 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4322 printk(" irq moderation: dynamic (%d ints/sec)\n",
4323 pAC->DynIrqModInfo.MaxModIntsPerSec);
4324 else
4325 printk(" irq moderation: disabled\n");
4326
4327
4328#ifdef SK_ZEROCOPY
4329 if (pAC->ChipsetType)
4330#ifdef USE_SK_TX_CHECKSUM
4331 printk(" scatter-gather: enabled\n");
4332#else
4333 printk(" tx-checksum: disabled\n");
4334#endif
4335 else
4336 printk(" scatter-gather: disabled\n");
4337#else
4338 printk(" scatter-gather: disabled\n");
4339#endif
4340
4341#ifndef USE_SK_RX_CHECKSUM
4342 printk(" rx-checksum: disabled\n");
4343#endif
4344
4345 } else {
4346 DoPrintInterfaceChange = SK_TRUE;
4347 }
4348
4349 if ((Param.Para32[0] != pAC->ActivePort) &&
4350 (pAC->RlmtNets == 1)) {
4351 NewPara.Para32[0] = pAC->ActivePort;
4352 NewPara.Para32[1] = Param.Para32[0];
4353 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4354 NewPara);
4355 }
4356
4357 /* Inform the world that link protocol is up. */
7d17c1d2005-05-12 19:45:25 -04004358 netif_carrier_on(pAC->dev[Param.Para32[0]]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004359
4360 break;
4361 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4362 /* action list 7 */
4363 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4364 ("NET DOWN EVENT "));
4365 if (DoPrintInterfaceChange) {
4366 printk("%s: network connection down\n",
4367 pAC->dev[Param.Para32[1]]->name);
4368 } else {
4369 DoPrintInterfaceChange = SK_TRUE;
4370 }
7d17c1d2005-05-12 19:45:25 -04004371 netif_carrier_off(pAC->dev[Param.Para32[1]]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004372 break;
4373 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4374 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4375 ("PORT SWITCH HARD "));
4376 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4377 /* action list 6 */
4378 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4379 'A'+Param.Para32[1]);
4380 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4381 FromPort = Param.Para32[0];
4382 ToPort = Param.Para32[1];
4383 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4384 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4385 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4386 NewPara.Para64 = FromPort;
4387 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4388 NewPara.Para64 = ToPort;
4389 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4390 spin_lock_irqsave(
4391 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4392 Flags);
4393 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4394 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4395 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4396 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4397 spin_unlock_irqrestore(
4398 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4399 Flags);
4400
4401 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4402 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4403
4404 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4405 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4406 spin_lock_irqsave(
4407 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4408 Flags);
4409 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4410 pAC->ActivePort = ToPort;
4411#if 0
4412 SetQueueSizes(pAC);
4413#else
4414 /* tschilling: New common function with minimum size check. */
4415 DualNet = SK_FALSE;
4416 if (pAC->RlmtNets == 2) {
4417 DualNet = SK_TRUE;
4418 }
4419
4420 if (SkGeInitAssignRamToQueues(
4421 pAC,
4422 pAC->ActivePort,
4423 DualNet)) {
4424 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4425 spin_unlock_irqrestore(
4426 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4427 Flags);
4428 printk("SkGeInitAssignRamToQueues failed.\n");
4429 break;
4430 }
4431#endif
4432 /* tschilling: Handling of return values inserted. */
4433 if (SkGeInitPort(pAC, IoC, FromPort) ||
4434 SkGeInitPort(pAC, IoC, ToPort)) {
4435 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4436 }
4437 if (Event == SK_DRV_SWITCH_SOFT) {
4438 SkMacRxTxEnable(pAC, IoC, FromPort);
4439 }
4440 SkMacRxTxEnable(pAC, IoC, ToPort);
4441 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4442 SkAddrMcUpdate(pAC, IoC, FromPort);
4443 SkAddrMcUpdate(pAC, IoC, ToPort);
4444 PortReInitBmu(pAC, FromPort);
4445 PortReInitBmu(pAC, ToPort);
4446 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4447 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4448 ClearAndStartRx(pAC, FromPort);
4449 ClearAndStartRx(pAC, ToPort);
4450 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4451 spin_unlock_irqrestore(
4452 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4453 Flags);
4454 break;
4455 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4456 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4457 ("RLS "));
4458 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4459 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4460 skb_put(pMsg, pRlmtMbuf->Length);
4461 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4462 pMsg) < 0)
4463
4464 DEV_KFREE_SKB_ANY(pMsg);
4465 break;
4466 case SK_DRV_TIMER:
4467 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4468 /*
4469 ** expiration of the moderation timer implies that
4470 ** dynamic moderation is to be applied
4471 */
4472 SkDimStartModerationTimer(pAC);
4473 SkDimModerate(pAC);
4474 if (pAC->DynIrqModInfo.DisplayStats) {
4475 SkDimDisplayModerationSettings(pAC);
4476 }
4477 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4478 /*
4479 ** check if we need to check for descriptors which
4480 ** haven't been handled the last millisecs
4481 */
4482 StartDrvCleanupTimer(pAC);
4483 if (pAC->GIni.GIMacsFound == 2) {
4484 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4485 }
4486 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4487 } else {
4488 printk("Expiration of unknown timer\n");
4489 }
4490 break;
4491 default:
4492 break;
4493 }
4494 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4495 ("END EVENT "));
4496
4497 return (0);
4498} /* SkDrvEvent */
4499
4500
4501/*****************************************************************************
4502 *
4503 * SkErrorLog - log errors
4504 *
4505 * Description:
4506 * This function logs errors to the system buffer and to the console
4507 *
4508 * Returns:
4509 * 0 if everything ok
4510 * < 0 on error
4511 *
4512 */
4513void SkErrorLog(
4514SK_AC *pAC,
4515int ErrClass,
4516int ErrNum,
4517char *pErrorMsg)
4518{
4519char ClassStr[80];
4520
4521 switch (ErrClass) {
4522 case SK_ERRCL_OTHER:
4523 strcpy(ClassStr, "Other error");
4524 break;
4525 case SK_ERRCL_CONFIG:
4526 strcpy(ClassStr, "Configuration error");
4527 break;
4528 case SK_ERRCL_INIT:
4529 strcpy(ClassStr, "Initialization error");
4530 break;
4531 case SK_ERRCL_NORES:
4532 strcpy(ClassStr, "Out of resources error");
4533 break;
4534 case SK_ERRCL_SW:
4535 strcpy(ClassStr, "internal Software error");
4536 break;
4537 case SK_ERRCL_HW:
4538 strcpy(ClassStr, "Hardware failure");
4539 break;
4540 case SK_ERRCL_COMM:
4541 strcpy(ClassStr, "Communication error");
4542 break;
4543 }
4544 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4545 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4546 ClassStr, ErrNum, pErrorMsg);
4547
4548} /* SkErrorLog */
4549
4550#ifdef SK_DIAG_SUPPORT
4551
4552/*****************************************************************************
4553 *
4554 * SkDrvEnterDiagMode - handles DIAG attach request
4555 *
4556 * Description:
4557 * Notify the kernel to NOT access the card any longer due to DIAG
4558 * Deinitialize the Card
4559 *
4560 * Returns:
4561 * int
4562 */
4563int SkDrvEnterDiagMode(
4564SK_AC *pAc) /* pointer to adapter context */
4565{
4566 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4567 SK_AC *pAC = pNet->pAC;
4568
4569 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4570 sizeof(SK_PNMI_STRUCT_DATA));
4571
4572 pAC->DiagModeActive = DIAG_ACTIVE;
4573 if (pAC->BoardLevel > SK_INIT_DATA) {
4574 if (pNet->Up) {
4575 pAC->WasIfUp[0] = SK_TRUE;
4576 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4577 DoPrintInterfaceChange = SK_FALSE;
4578 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4579 } else {
4580 pAC->WasIfUp[0] = SK_FALSE;
4581 }
4582 if (pNet != netdev_priv(pAC->dev[1])) {
4583 pNet = netdev_priv(pAC->dev[1]);
4584 if (pNet->Up) {
4585 pAC->WasIfUp[1] = SK_TRUE;
4586 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4587 DoPrintInterfaceChange = SK_FALSE;
4588 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4589 } else {
4590 pAC->WasIfUp[1] = SK_FALSE;
4591 }
4592 }
4593 pAC->BoardLevel = SK_INIT_DATA;
4594 }
4595 return(0);
4596}
4597
4598/*****************************************************************************
4599 *
4600 * SkDrvLeaveDiagMode - handles DIAG detach request
4601 *
4602 * Description:
4603 * Notify the kernel to may access the card again after use by DIAG
4604 * Initialize the Card
4605 *
4606 * Returns:
4607 * int
4608 */
4609int SkDrvLeaveDiagMode(
4610SK_AC *pAc) /* pointer to adapter control context */
4611{
4612 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4613 sizeof(SK_PNMI_STRUCT_DATA));
4614 pAc->DiagModeActive = DIAG_NOTACTIVE;
4615 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4616 if (pAc->WasIfUp[0] == SK_TRUE) {
4617 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4618 DoPrintInterfaceChange = SK_FALSE;
4619 SkDrvInitAdapter(pAc, 0); /* first device */
4620 }
4621 if (pAc->WasIfUp[1] == SK_TRUE) {
4622 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4623 DoPrintInterfaceChange = SK_FALSE;
4624 SkDrvInitAdapter(pAc, 1); /* second device */
4625 }
4626 return(0);
4627}
4628
4629/*****************************************************************************
4630 *
4631 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4632 *
4633 * Description:
4634 * This function parses the PCI slot name information string and will
4635 * retrieve the devcie number out of it. The slot_name maintianed by
4636 * linux is in the form of '02:0a.0', whereas the first two characters
4637 * represent the bus number in hex (in the sample above this is
4638 * pci bus 0x02) and the next two characters the device number (0x0a).
4639 *
4640 * Returns:
4641 * SK_U32: The device number from the PCI slot name
4642 */
4643
4644static SK_U32 ParseDeviceNbrFromSlotName(
4645const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4646{
4647 char *CurrCharPos = (char *) SlotName;
4648 int FirstNibble = -1;
4649 int SecondNibble = -1;
4650 SK_U32 Result = 0;
4651
4652 while (*CurrCharPos != '\0') {
4653 if (*CurrCharPos == ':') {
4654 while (*CurrCharPos != '.') {
4655 CurrCharPos++;
4656 if ( (*CurrCharPos >= '0') &&
4657 (*CurrCharPos <= '9')) {
4658 if (FirstNibble == -1) {
4659 /* dec. value for '0' */
4660 FirstNibble = *CurrCharPos - 48;
4661 } else {
4662 SecondNibble = *CurrCharPos - 48;
4663 }
4664 } else if ( (*CurrCharPos >= 'a') &&
4665 (*CurrCharPos <= 'f') ) {
4666 if (FirstNibble == -1) {
4667 FirstNibble = *CurrCharPos - 87;
4668 } else {
4669 SecondNibble = *CurrCharPos - 87;
4670 }
4671 } else {
4672 Result = 0;
4673 }
4674 }
4675
4676 Result = FirstNibble;
4677 Result = Result << 4; /* first nibble is higher one */
4678 Result = Result | SecondNibble;
4679 }
4680 CurrCharPos++; /* next character */
4681 }
4682 return (Result);
4683}
4684
4685/****************************************************************************
4686 *
4687 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4688 * called if Diag attaches to that card)
4689 *
4690 * Description:
4691 * Close initialized adapter.
4692 *
4693 * Returns:
4694 * 0 - on success
4695 * error code - on error
4696 */
4697static int SkDrvDeInitAdapter(
4698SK_AC *pAC, /* pointer to adapter context */
4699int devNbr) /* what device is to be handled */
4700{
4701 struct SK_NET_DEVICE *dev;
4702
4703 dev = pAC->dev[devNbr];
4704
4705 /* On Linux 2.6 the network driver does NOT mess with reference
4706 ** counts. The driver MUST be able to be unloaded at any time
4707 ** due to the possibility of hotplug.
4708 */
4709 if (SkGeClose(dev) != 0) {
4710 return (-1);
4711 }
4712 return (0);
4713
4714} /* SkDrvDeInitAdapter() */
4715
4716/****************************************************************************
4717 *
4718 * SkDrvInitAdapter - Initialize adapter (this function is only
4719 * called if Diag deattaches from that card)
4720 *
4721 * Description:
4722 * Close initialized adapter.
4723 *
4724 * Returns:
4725 * 0 - on success
4726 * error code - on error
4727 */
4728static int SkDrvInitAdapter(
4729SK_AC *pAC, /* pointer to adapter context */
4730int devNbr) /* what device is to be handled */
4731{
4732 struct SK_NET_DEVICE *dev;
4733
4734 dev = pAC->dev[devNbr];
4735
4736 if (SkGeOpen(dev) != 0) {
4737 return (-1);
4738 }
4739
4740 /*
4741 ** Use correct MTU size and indicate to kernel TX queue can be started
4742 */
4743 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4744 return (-1);
4745 }
4746 return (0);
4747
4748} /* SkDrvInitAdapter */
4749
4750#endif
4751
4752#ifdef DEBUG
4753/****************************************************************************/
4754/* "debug only" section *****************************************************/
4755/****************************************************************************/
4756
4757
4758/*****************************************************************************
4759 *
4760 * DumpMsg - print a frame
4761 *
4762 * Description:
4763 * This function prints frames to the system logfile/to the console.
4764 *
4765 * Returns: N/A
4766 *
4767 */
4768static void DumpMsg(struct sk_buff *skb, char *str)
4769{
4770 int msglen;
4771
4772 if (skb == NULL) {
4773 printk("DumpMsg(): NULL-Message\n");
4774 return;
4775 }
4776
4777 if (skb->data == NULL) {
4778 printk("DumpMsg(): Message empty\n");
4779 return;
4780 }
4781
4782 msglen = skb->len;
4783 if (msglen > 64)
4784 msglen = 64;
4785
4786 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4787
4788 DumpData((char *)skb->data, msglen);
4789
4790 printk("------- End of message ---------\n");
4791} /* DumpMsg */
4792
4793
4794
4795/*****************************************************************************
4796 *
4797 * DumpData - print a data area
4798 *
4799 * Description:
4800 * This function prints a area of data to the system logfile/to the
4801 * console.
4802 *
4803 * Returns: N/A
4804 *
4805 */
4806static void DumpData(char *p, int size)
4807{
4808register int i;
4809int haddr, addr;
4810char hex_buffer[180];
4811char asc_buffer[180];
4812char HEXCHAR[] = "0123456789ABCDEF";
4813
4814 addr = 0;
4815 haddr = 0;
4816 hex_buffer[0] = 0;
4817 asc_buffer[0] = 0;
4818 for (i=0; i < size; ) {
4819 if (*p >= '0' && *p <='z')
4820 asc_buffer[addr] = *p;
4821 else
4822 asc_buffer[addr] = '.';
4823 addr++;
4824 asc_buffer[addr] = 0;
4825 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4826 haddr++;
4827 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4828 haddr++;
4829 hex_buffer[haddr] = ' ';
4830 haddr++;
4831 hex_buffer[haddr] = 0;
4832 p++;
4833 i++;
4834 if (i%16 == 0) {
4835 printk("%s %s\n", hex_buffer, asc_buffer);
4836 addr = 0;
4837 haddr = 0;
4838 }
4839 }
4840} /* DumpData */
4841
4842
4843/*****************************************************************************
4844 *
4845 * DumpLong - print a data area as long values
4846 *
4847 * Description:
4848 * This function prints a area of data to the system logfile/to the
4849 * console.
4850 *
4851 * Returns: N/A
4852 *
4853 */
4854static void DumpLong(char *pc, int size)
4855{
4856register int i;
4857int haddr, addr;
4858char hex_buffer[180];
4859char asc_buffer[180];
4860char HEXCHAR[] = "0123456789ABCDEF";
4861long *p;
4862int l;
4863
4864 addr = 0;
4865 haddr = 0;
4866 hex_buffer[0] = 0;
4867 asc_buffer[0] = 0;
4868 p = (long*) pc;
4869 for (i=0; i < size; ) {
4870 l = (long) *p;
4871 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4872 haddr++;
4873 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4874 haddr++;
4875 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4876 haddr++;
4877 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4878 haddr++;
4879 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4880 haddr++;
4881 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4882 haddr++;
4883 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4884 haddr++;
4885 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4886 haddr++;
4887 hex_buffer[haddr] = ' ';
4888 haddr++;
4889 hex_buffer[haddr] = 0;
4890 p++;
4891 i++;
4892 if (i%8 == 0) {
4893 printk("%4x %s\n", (i-8)*4, hex_buffer);
4894 haddr = 0;
4895 }
4896 }
4897 printk("------------------------\n");
4898} /* DumpLong */
4899
4900#endif
4901
4902static int __devinit skge_probe_one(struct pci_dev *pdev,
4903 const struct pci_device_id *ent)
4904{
4905 SK_AC *pAC;
4906 DEV_NET *pNet = NULL;
4907 struct net_device *dev = NULL;
4908 static int boards_found = 0;
4909 int error = -ENODEV;
4910
4911 if (pci_enable_device(pdev))
4912 goto out;
4913
4914 /* Configure DMA attributes. */
Domen Puncer1e7f0bd2005-06-26 18:22:14 -04004915 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
4916 pci_set_dma_mask(pdev, DMA_32BIT_MASK))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004917 goto out_disable_device;
4918
4919
4920 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4921 printk(KERN_ERR "Unable to allocate etherdev "
4922 "structure!\n");
4923 goto out_disable_device;
4924 }
4925
4926 pNet = netdev_priv(dev);
4927 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4928 if (!pNet->pAC) {
4929 printk(KERN_ERR "Unable to allocate adapter "
4930 "structure!\n");
4931 goto out_free_netdev;
4932 }
4933
4934 memset(pNet->pAC, 0, sizeof(SK_AC));
4935 pAC = pNet->pAC;
4936 pAC->PciDev = pdev;
4937 pAC->PciDevId = pdev->device;
4938 pAC->dev[0] = dev;
4939 pAC->dev[1] = dev;
4940 sprintf(pAC->Name, "SysKonnect SK-98xx");
4941 pAC->CheckQueue = SK_FALSE;
4942
4943 pNet->Mtu = 1500;
4944 pNet->Up = 0;
4945 dev->irq = pdev->irq;
4946 error = SkGeInitPCI(pAC);
4947 if (error) {
4948 printk("SKGE: PCI setup failed: %i\n", error);
4949 goto out_free_netdev;
4950 }
4951
4952 SET_MODULE_OWNER(dev);
4953 dev->open = &SkGeOpen;
4954 dev->stop = &SkGeClose;
4955 dev->hard_start_xmit = &SkGeXmit;
4956 dev->get_stats = &SkGeStats;
4957 dev->set_multicast_list = &SkGeSetRxMode;
4958 dev->set_mac_address = &SkGeSetMacAddr;
4959 dev->do_ioctl = &SkGeIoctl;
4960 dev->change_mtu = &SkGeChangeMtu;
4961#ifdef CONFIG_NET_POLL_CONTROLLER
4962 dev->poll_controller = &SkGePollController;
4963#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004964 SET_NETDEV_DEV(dev, &pdev->dev);
4965 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4966
4967#ifdef SK_ZEROCOPY
4968#ifdef USE_SK_TX_CHECKSUM
4969 if (pAC->ChipsetType) {
4970 /* Use only if yukon hardware */
4971 /* SK and ZEROCOPY - fly baby... */
4972 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4973 }
4974#endif
4975#endif
4976
4977 pAC->Index = boards_found++;
4978
4979 if (SkGeBoardInit(dev, pAC))
4980 goto out_free_netdev;
4981
4982 /* Register net device */
4983 if (register_netdev(dev)) {
4984 printk(KERN_ERR "SKGE: Could not register device.\n");
4985 goto out_free_resources;
4986 }
4987
4988 /* Print adapter specific string from vpd */
4989 ProductStr(pAC);
4990 printk("%s: %s\n", dev->name, pAC->DeviceStr);
4991
4992 /* Print configuration settings */
4993 printk(" PrefPort:%c RlmtMode:%s\n",
4994 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4995 (pAC->RlmtMode==0) ? "Check Link State" :
4996 ((pAC->RlmtMode==1) ? "Check Link State" :
4997 ((pAC->RlmtMode==3) ? "Check Local Port" :
4998 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4999 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
5000
5001 SkGeYellowLED(pAC, pAC->IoBase, 1);
5002
5003
5004 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
5005
5006 SkGeProcCreate(dev);
5007
5008 pNet->PortNr = 0;
5009 pNet->NetNr = 0;
5010
5011 boards_found++;
5012
5013 /* More then one port found */
5014 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
5015 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
5016 printk(KERN_ERR "Unable to allocate etherdev "
5017 "structure!\n");
5018 goto out;
5019 }
5020
5021 pAC->dev[1] = dev;
5022 pNet = netdev_priv(dev);
5023 pNet->PortNr = 1;
5024 pNet->NetNr = 1;
5025 pNet->pAC = pAC;
5026 pNet->Mtu = 1500;
5027 pNet->Up = 0;
5028
5029 dev->open = &SkGeOpen;
5030 dev->stop = &SkGeClose;
5031 dev->hard_start_xmit = &SkGeXmit;
5032 dev->get_stats = &SkGeStats;
5033 dev->set_multicast_list = &SkGeSetRxMode;
5034 dev->set_mac_address = &SkGeSetMacAddr;
5035 dev->do_ioctl = &SkGeIoctl;
5036 dev->change_mtu = &SkGeChangeMtu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005037 SET_NETDEV_DEV(dev, &pdev->dev);
5038 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
5039
5040#ifdef SK_ZEROCOPY
5041#ifdef USE_SK_TX_CHECKSUM
5042 if (pAC->ChipsetType) {
5043 /* SG and ZEROCOPY - fly baby... */
5044 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5045 }
5046#endif
5047#endif
5048
5049 if (register_netdev(dev)) {
5050 printk(KERN_ERR "SKGE: Could not register device.\n");
5051 free_netdev(dev);
5052 pAC->dev[1] = pAC->dev[0];
5053 } else {
5054 SkGeProcCreate(dev);
5055 memcpy(&dev->dev_addr,
5056 &pAC->Addr.Net[1].CurrentMacAddress, 6);
5057
5058 printk("%s: %s\n", dev->name, pAC->DeviceStr);
5059 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
5060 }
5061 }
5062
5063 /* Save the hardware revision */
5064 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5065 (pAC->GIni.GIPciHwRev & 0x0F);
5066
5067 /* Set driver globals */
5068 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
5069 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5070
5071 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5072 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5073
5074 pci_set_drvdata(pdev, dev);
5075 return 0;
5076
5077 out_free_resources:
5078 FreeResources(dev);
5079 out_free_netdev:
5080 free_netdev(dev);
5081 out_disable_device:
5082 pci_disable_device(pdev);
5083 out:
5084 return error;
5085}
5086
5087static void __devexit skge_remove_one(struct pci_dev *pdev)
5088{
5089 struct net_device *dev = pci_get_drvdata(pdev);
5090 DEV_NET *pNet = netdev_priv(dev);
5091 SK_AC *pAC = pNet->pAC;
5092 struct net_device *otherdev = pAC->dev[1];
5093
5094 SkGeProcRemove(dev);
5095 unregister_netdev(dev);
5096 if (otherdev != dev)
5097 SkGeProcRemove(otherdev);
5098
5099 SkGeYellowLED(pAC, pAC->IoBase, 0);
5100
5101 if (pAC->BoardLevel == SK_INIT_RUN) {
5102 SK_EVPARA EvPara;
5103 unsigned long Flags;
5104
5105 /* board is still alive */
5106 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5107 EvPara.Para32[0] = 0;
5108 EvPara.Para32[1] = -1;
5109 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5110 EvPara.Para32[0] = 1;
5111 EvPara.Para32[1] = -1;
5112 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5113 SkEventDispatcher(pAC, pAC->IoBase);
5114 /* disable interrupts */
5115 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5116 SkGeDeInit(pAC, pAC->IoBase);
5117 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5118 pAC->BoardLevel = SK_INIT_DATA;
5119 /* We do NOT check here, if IRQ was pending, of course*/
5120 }
5121
5122 if (pAC->BoardLevel == SK_INIT_IO) {
5123 /* board is still alive */
5124 SkGeDeInit(pAC, pAC->IoBase);
5125 pAC->BoardLevel = SK_INIT_DATA;
5126 }
5127
5128 FreeResources(dev);
5129 free_netdev(dev);
5130 if (otherdev != dev)
5131 free_netdev(otherdev);
5132 kfree(pAC);
5133}
5134
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005135#ifdef CONFIG_PM
5136static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5137{
5138 struct net_device *dev = pci_get_drvdata(pdev);
5139 DEV_NET *pNet = netdev_priv(dev);
5140 SK_AC *pAC = pNet->pAC;
5141 struct net_device *otherdev = pAC->dev[1];
5142
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005143 if (netif_running(dev)) {
5144 netif_carrier_off(dev);
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005145 DoPrintInterfaceChange = SK_FALSE;
5146 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005147 netif_device_detach(dev);
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005148 }
5149 if (otherdev != dev) {
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005150 if (netif_running(otherdev)) {
5151 netif_carrier_off(otherdev);
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005152 DoPrintInterfaceChange = SK_FALSE;
5153 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005154 netif_device_detach(otherdev);
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005155 }
5156 }
5157
5158 pci_save_state(pdev);
5159 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5160 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5161 free_irq(dev->irq, dev);
5162 }
5163 pci_disable_device(pdev);
5164 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5165
5166 return 0;
5167}
5168
5169static int skge_resume(struct pci_dev *pdev)
5170{
5171 struct net_device *dev = pci_get_drvdata(pdev);
5172 DEV_NET *pNet = netdev_priv(dev);
5173 SK_AC *pAC = pNet->pAC;
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005174 struct net_device *otherdev = pAC->dev[1];
5175 int ret;
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005176
5177 pci_set_power_state(pdev, PCI_D0);
5178 pci_restore_state(pdev);
5179 pci_enable_device(pdev);
5180 pci_set_master(pdev);
5181 if (pAC->GIni.GIMacsFound == 2)
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005182 ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005183 else
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005184 ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, pAC->Name, dev);
5185 if (ret) {
5186 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5187 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5188 dev->irq = 0;
5189 pci_disable_device(pdev);
5190 return -EBUSY;
5191 }
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005192
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005193 netif_device_attach(dev);
5194 if (netif_running(dev)) {
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005195 DoPrintInterfaceChange = SK_FALSE;
5196 SkDrvInitAdapter(pAC, 0); /* first device */
Rafael J. Wysocki035a4a42005-07-30 13:12:18 -07005197 }
5198 if (otherdev != dev) {
5199 netif_device_attach(otherdev);
5200 if (netif_running(otherdev)) {
5201 DoPrintInterfaceChange = SK_FALSE;
5202 SkDrvInitAdapter(pAC, 1); /* second device */
5203 }
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005204 }
5205
5206 return 0;
5207}
Andrew Morton3fef3fa2005-07-31 22:34:40 -07005208#else
5209#define skge_suspend NULL
5210#define skge_resume NULL
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005211#endif
5212
Linus Torvalds1da177e2005-04-16 15:20:36 -07005213static struct pci_device_id skge_pci_tbl[] = {
5214 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5215 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5216 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5217 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
Stephen Hemminger9734c3f2005-09-13 10:02:44 -07005218/* DLink card does not have valid VPD so this driver gags
5219 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5220 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005221 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07005222 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5223 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
Stephen Hemminger9734c3f2005-09-13 10:02:44 -07005224 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
Linus Torvalds1da177e2005-04-16 15:20:36 -07005225 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
Stephen Hemminger9734c3f2005-09-13 10:02:44 -07005226 { 0 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005227};
5228
5229MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5230
5231static struct pci_driver skge_driver = {
5232 .name = "sk98lin",
5233 .id_table = skge_pci_tbl,
5234 .probe = skge_probe_one,
5235 .remove = __devexit_p(skge_remove_one),
Rafael J. Wysocki90158b82005-07-24 14:22:00 -04005236 .suspend = skge_suspend,
5237 .resume = skge_resume,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005238};
5239
5240static int __init skge_init(void)
5241{
5242 int error;
5243
Al Viro66600222005-09-28 22:32:57 +01005244 pSkRootDir = proc_mkdir(SKRootName, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005245 if (pSkRootDir)
5246 pSkRootDir->owner = THIS_MODULE;
5247
5248 error = pci_register_driver(&skge_driver);
5249 if (error)
Al Viro66600222005-09-28 22:32:57 +01005250 remove_proc_entry(SKRootName, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005251 return error;
5252}
5253
5254static void __exit skge_exit(void)
5255{
5256 pci_unregister_driver(&skge_driver);
Al Viro66600222005-09-28 22:32:57 +01005257 remove_proc_entry(SKRootName, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005258
5259}
5260
5261module_init(skge_init);
5262module_exit(skge_exit);