blob: adadb994361053ba22389e4c73aa64e42bc0f285 [file] [log] [blame]
Jon Loeligerb8f114d2005-09-21 14:54:51 -05001#ifndef _ASM_POWERPC_DMA_H
2#define _ASM_POWERPC_DMA_H
Arnd Bergmann88ced032005-12-16 22:43:46 +01003#ifdef __KERNEL__
Jon Loeligerb8f114d2005-09-21 14:54:51 -05004
Linus Torvalds1da177e2005-04-16 15:20:36 -07005/*
Jon Loeligerb8f114d2005-09-21 14:54:51 -05006 * Defines for using and allocating dma channels.
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * Written by Hennus Bergman, 1992.
8 * High DMA channel support & info by Hannu Savolainen
9 * and John Boyd, Nov. 1992.
10 * Changes for ppc sound by Christoph Nadig
11 */
12
Linus Torvalds1da177e2005-04-16 15:20:36 -070013/*
14 * Note: Adapted for PowerPC by Gary Thomas
15 * Modified by Cort Dougan <cort@cs.nmt.edu>
16 *
17 * None of this really applies for Power Macintoshes. There is
18 * basically just enough here to get kernel/dma.c to compile.
19 *
20 * There may be some comments or restrictions made here which are
21 * not valid for the PReP platform. Take what you read
22 * with a grain of salt.
23 */
24
Jon Loeligerb8f114d2005-09-21 14:54:51 -050025#include <asm/io.h>
26#include <linux/spinlock.h>
27#include <asm/system.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29#ifndef MAX_DMA_CHANNELS
30#define MAX_DMA_CHANNELS 8
31#endif
32
33/* The maximum address that we can perform a DMA transfer to on this platform */
34/* Doesn't really apply... */
Jon Loeligerb8f114d2005-09-21 14:54:51 -050035#define MAX_DMA_ADDRESS (~0UL)
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
38#define dma_outb outb_p
39#else
40#define dma_outb outb
41#endif
42
43#define dma_inb inb
44
45/*
46 * NOTES about DMA transfers:
47 *
48 * controller 1: channels 0-3, byte operations, ports 00-1F
49 * controller 2: channels 4-7, word operations, ports C0-DF
50 *
51 * - ALL registers are 8 bits only, regardless of transfer size
52 * - channel 4 is not used - cascades 1 into 2.
53 * - channels 0-3 are byte - addresses/counts are for physical bytes
54 * - channels 5-7 are word - addresses/counts are for physical words
55 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
56 * - transfer count loaded to registers is 1 less than actual count
57 * - controller 2 offsets are all even (2x offsets for controller 1)
58 * - page registers for 5-7 don't use data bit 0, represent 128K pages
59 * - page registers for 0-3 use bit 0, represent 64K pages
60 *
61 * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
62 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
63 * Note that addresses loaded into registers must be _physical_ addresses,
64 * not logical addresses (which may differ if paging is active).
65 *
66 * Address mapping for channels 0-3:
67 *
68 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
69 * | ... | | ... | | ... |
70 * | ... | | ... | | ... |
71 * | ... | | ... | | ... |
72 * P7 ... P0 A7 ... A0 A7 ... A0
73 * | Page | Addr MSB | Addr LSB | (DMA registers)
74 *
75 * Address mapping for channels 5-7:
76 *
77 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
78 * | ... | \ \ ... \ \ \ ... \ \
79 * | ... | \ \ ... \ \ \ ... \ (not used)
80 * | ... | \ \ ... \ \ \ ... \
81 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
82 * | Page | Addr MSB | Addr LSB | (DMA registers)
83 *
84 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
85 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
86 * the hardware level, so odd-byte transfers aren't possible).
87 *
88 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
89 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
90 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
91 *
92 */
93
Linus Torvalds1da177e2005-04-16 15:20:36 -070094/* 8237 DMA controllers */
95#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
96#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
97
98/* DMA controller registers */
99#define DMA1_CMD_REG 0x08 /* command register (w) */
100#define DMA1_STAT_REG 0x08 /* status register (r) */
101#define DMA1_REQ_REG 0x09 /* request register (w) */
102#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
103#define DMA1_MODE_REG 0x0B /* mode register (w) */
104#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
105#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
106#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
107#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
108#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
109
110#define DMA2_CMD_REG 0xD0 /* command register (w) */
111#define DMA2_STAT_REG 0xD0 /* status register (r) */
112#define DMA2_REQ_REG 0xD2 /* request register (w) */
113#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
114#define DMA2_MODE_REG 0xD6 /* mode register (w) */
115#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
116#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
117#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
118#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
119#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
120
121#define DMA_ADDR_0 0x00 /* DMA address registers */
122#define DMA_ADDR_1 0x02
123#define DMA_ADDR_2 0x04
124#define DMA_ADDR_3 0x06
125#define DMA_ADDR_4 0xC0
126#define DMA_ADDR_5 0xC4
127#define DMA_ADDR_6 0xC8
128#define DMA_ADDR_7 0xCC
129
130#define DMA_CNT_0 0x01 /* DMA count registers */
131#define DMA_CNT_1 0x03
132#define DMA_CNT_2 0x05
133#define DMA_CNT_3 0x07
134#define DMA_CNT_4 0xC2
135#define DMA_CNT_5 0xC6
136#define DMA_CNT_6 0xCA
137#define DMA_CNT_7 0xCE
138
139#define DMA_LO_PAGE_0 0x87 /* DMA page registers */
140#define DMA_LO_PAGE_1 0x83
141#define DMA_LO_PAGE_2 0x81
142#define DMA_LO_PAGE_3 0x82
143#define DMA_LO_PAGE_5 0x8B
144#define DMA_LO_PAGE_6 0x89
145#define DMA_LO_PAGE_7 0x8A
146
147#define DMA_HI_PAGE_0 0x487 /* DMA page registers */
148#define DMA_HI_PAGE_1 0x483
149#define DMA_HI_PAGE_2 0x481
150#define DMA_HI_PAGE_3 0x482
151#define DMA_HI_PAGE_5 0x48B
152#define DMA_HI_PAGE_6 0x489
153#define DMA_HI_PAGE_7 0x48A
154
155#define DMA1_EXT_REG 0x40B
156#define DMA2_EXT_REG 0x4D6
157
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500158#ifndef __powerpc64__
159 /* in arch/ppc/kernel/setup.c -- Cort */
160 extern unsigned int DMA_MODE_WRITE;
161 extern unsigned int DMA_MODE_READ;
162 extern unsigned long ISA_DMA_THRESHOLD;
163#else
164 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
165 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
166#endif
167
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500169
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170#define DMA_AUTOINIT 0x10
171
172extern spinlock_t dma_spin_lock;
173
174static __inline__ unsigned long claim_dma_lock(void)
175{
176 unsigned long flags;
177 spin_lock_irqsave(&dma_spin_lock, flags);
178 return flags;
179}
180
181static __inline__ void release_dma_lock(unsigned long flags)
182{
183 spin_unlock_irqrestore(&dma_spin_lock, flags);
184}
185
186/* enable/disable a specific DMA channel */
187static __inline__ void enable_dma(unsigned int dmanr)
188{
189 unsigned char ucDmaCmd = 0x00;
190
191 if (dmanr != 4) {
192 dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */
193 dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */
194 }
195 if (dmanr <= 3) {
196 dma_outb(dmanr, DMA1_MASK_REG);
197 dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500198 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199 dma_outb(dmanr & 3, DMA2_MASK_REG);
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500200 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201}
202
203static __inline__ void disable_dma(unsigned int dmanr)
204{
205 if (dmanr <= 3)
206 dma_outb(dmanr | 4, DMA1_MASK_REG);
207 else
208 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
209}
210
211/* Clear the 'DMA Pointer Flip Flop'.
212 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
213 * Use this once to initialize the FF to a known state.
214 * After that, keep track of it. :-)
215 * --- In order to do that, the DMA routines below should ---
216 * --- only be used while interrupts are disabled! ---
217 */
218static __inline__ void clear_dma_ff(unsigned int dmanr)
219{
220 if (dmanr <= 3)
221 dma_outb(0, DMA1_CLEAR_FF_REG);
222 else
223 dma_outb(0, DMA2_CLEAR_FF_REG);
224}
225
226/* set mode (above) for a specific DMA channel */
227static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
228{
229 if (dmanr <= 3)
230 dma_outb(mode | dmanr, DMA1_MODE_REG);
231 else
232 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
233}
234
235/* Set only the page register bits of the transfer address.
236 * This is used for successive transfers when we know the contents of
237 * the lower 16 bits of the DMA current address register, but a 64k boundary
238 * may have been crossed.
239 */
240static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
241{
242 switch (dmanr) {
243 case 0:
244 dma_outb(pagenr, DMA_LO_PAGE_0);
245 dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
246 break;
247 case 1:
248 dma_outb(pagenr, DMA_LO_PAGE_1);
249 dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
250 break;
251 case 2:
252 dma_outb(pagenr, DMA_LO_PAGE_2);
253 dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
254 break;
255 case 3:
256 dma_outb(pagenr, DMA_LO_PAGE_3);
257 dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
258 break;
259 case 5:
Adrian Bunk83bad1d2008-02-06 01:36:36 -0800260 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261 dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
262 break;
263 case 6:
Adrian Bunk83bad1d2008-02-06 01:36:36 -0800264 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700265 dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
266 break;
267 case 7:
Adrian Bunk83bad1d2008-02-06 01:36:36 -0800268 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700269 dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
270 break;
271 }
272}
273
274/* Set transfer address & page bits for specific DMA channel.
275 * Assumes dma flipflop is clear.
276 */
277static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
278{
279 if (dmanr <= 3) {
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500280 dma_outb(phys & 0xff,
281 ((dmanr & 3) << 1) + IO_DMA1_BASE);
282 dma_outb((phys >> 8) & 0xff,
283 ((dmanr & 3) << 1) + IO_DMA1_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284 } else {
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500285 dma_outb((phys >> 1) & 0xff,
286 ((dmanr & 3) << 2) + IO_DMA2_BASE);
287 dma_outb((phys >> 9) & 0xff,
288 ((dmanr & 3) << 2) + IO_DMA2_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 }
290 set_dma_page(dmanr, phys >> 16);
291}
292
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500293
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
295 * a specific DMA channel.
296 * You must ensure the parameters are valid.
297 * NOTE: from a manual: "the number of transfers is one more
298 * than the initial word count"! This is taken into account.
299 * Assumes dma flip-flop is clear.
300 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
301 */
302static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
303{
304 count--;
305 if (dmanr <= 3) {
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500306 dma_outb(count & 0xff,
307 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
308 dma_outb((count >> 8) & 0xff,
309 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310 } else {
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500311 dma_outb((count >> 1) & 0xff,
312 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
313 dma_outb((count >> 9) & 0xff,
314 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315 }
316}
317
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500318
Linus Torvalds1da177e2005-04-16 15:20:36 -0700319/* Get DMA residue count. After a DMA transfer, this
320 * should return zero. Reading this while a DMA transfer is
321 * still in progress will return unpredictable results.
322 * If called before the channel has been used, it may return 1.
323 * Otherwise, it returns the number of _bytes_ left to transfer.
324 *
325 * Assumes DMA flip-flop is clear.
326 */
327static __inline__ int get_dma_residue(unsigned int dmanr)
328{
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500329 unsigned int io_port = (dmanr <= 3)
330 ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
Linus Torvalds1da177e2005-04-16 15:20:36 -0700331 : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
332
333 /* using short to get 16-bit wrap around */
334 unsigned short count;
335
336 count = 1 + dma_inb(io_port);
337 count += dma_inb(io_port) << 8;
338
Adrian Bunk83bad1d2008-02-06 01:36:36 -0800339 return (dmanr <= 3) ? count : (count << 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340}
341
342/* These are in kernel/dma.c: */
343
344/* reserve a DMA channel */
345extern int request_dma(unsigned int dmanr, const char *device_id);
346/* release it again */
347extern void free_dma(unsigned int dmanr);
348
349#ifdef CONFIG_PCI
350extern int isa_dma_bridge_buggy;
351#else
352#define isa_dma_bridge_buggy (0)
353#endif
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500354
Arnd Bergmann88ced032005-12-16 22:43:46 +0100355#endif /* __KERNEL__ */
Jon Loeligerb8f114d2005-09-21 14:54:51 -0500356#endif /* _ASM_POWERPC_DMA_H */