blob: 10c35585a2bd4d09bde465be25426cea9f75f8c5 [file] [log] [blame]
Paul Zimmerman7359d482013-03-11 17:47:59 -07001/*
2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36#ifndef __DWC2_HCD_H__
37#define __DWC2_HCD_H__
38
39/*
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
42 *
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
46 * API to the USBD.
47 */
48
49struct dwc2_qh;
50
51/**
52 * struct dwc2_host_chan - Software host channel descriptor
53 *
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
59 * - USB_SPEED_LOW
60 * - USB_SPEED_FULL
61 * - USB_SPEED_HIGH
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
69 * 0: DATA0
70 * 1: DATA2
71 * 2: DATA1
72 * 3: MDATA (non-Control EP),
73 * SETUP (Control EP)
74 * @multi_count: Number of additional periodic transactions per
75 * (micro)frame
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
Paul Zimmerman7359d482013-03-11 17:47:59 -070078 * @xfer_len: Total number of bytes to transfer
79 * @xfer_count: Number of bytes transferred so far
80 * @start_pkt_count: Packet count at start of transfer
81 * @xfer_started: True if the transfer has been started
82 * @ping: True if a PING request should be issued on this channel
83 * @error_state: True if the error count for this transaction is non-zero
84 * @halt_on_queue: True if this channel should be halted the next time a
85 * request is queued for the channel. This is necessary in
86 * slave mode if no request queue space is available when
87 * an attempt is made to halt the channel.
88 * @halt_pending: True if the host channel has been halted, but the core
89 * is not finished flushing queued requests
90 * @do_split: Enable split for the channel
91 * @complete_split: Enable complete split
92 * @hub_addr: Address of high speed hub for the split
93 * @hub_port: Port of the low/full speed device for the split
94 * @xact_pos: Split transaction position. One of the following values:
95 * - DWC2_HCSPLT_XACTPOS_MID
96 * - DWC2_HCSPLT_XACTPOS_BEGIN
97 * - DWC2_HCSPLT_XACTPOS_END
98 * - DWC2_HCSPLT_XACTPOS_ALL
99 * @requests: Number of requests issued for this channel since it was
100 * assigned to the current transfer (not counting PINGs)
101 * @schinfo: Scheduling micro-frame bitmap
102 * @ntd: Number of transfer descriptors for the transfer
103 * @halt_status: Reason for halting the host channel
104 * @hcint Contents of the HCINT register when the interrupt came
105 * @qh: QH for the transfer being processed by this channel
106 * @hc_list_entry: For linking to list of host channels
107 * @desc_list_addr: Current QH's descriptor list DMA address
Gregory Herrero95105a92015-11-20 11:49:29 +0100108 * @desc_list_sz: Current QH's descriptor list size
Douglas Andersonc9c8ac02016-01-28 18:19:57 -0800109 * @split_order_list_entry: List entry for keeping track of the order of splits
Paul Zimmerman7359d482013-03-11 17:47:59 -0700110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116 u8 hc_num;
117
118 unsigned dev_addr:7;
119 unsigned ep_num:4;
120 unsigned ep_is_in:1;
121 unsigned speed:4;
122 unsigned ep_type:2;
123 unsigned max_packet:11;
124 unsigned data_pid_start:2;
Matthijs Kooijmanf9234632013-08-30 18:45:13 +0200125#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
Paul Zimmerman7359d482013-03-11 17:47:59 -0700130
131 unsigned multi_count:2;
132
133 u8 *xfer_buf;
134 dma_addr_t xfer_dma;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700135 u32 xfer_len;
136 u32 xfer_count;
137 u16 start_pkt_count;
138 u8 xfer_started;
139 u8 do_ping;
140 u8 error_state;
141 u8 halt_on_queue;
142 u8 halt_pending;
143 u8 do_split;
144 u8 complete_split;
145 u8 hub_addr;
146 u8 hub_port;
147 u8 xact_pos;
Matthijs Kooijmanf9234632013-08-30 18:45:13 +0200148#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
149#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
150#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
Paul Zimmerman7359d482013-03-11 17:47:59 -0700152
153 u8 requests;
154 u8 schinfo;
155 u16 ntd;
156 enum dwc2_halt_status halt_status;
157 u32 hcint;
158 struct dwc2_qh *qh;
159 struct list_head hc_list_entry;
160 dma_addr_t desc_list_addr;
Gregory Herrero95105a92015-11-20 11:49:29 +0100161 u32 desc_list_sz;
Douglas Andersonc9c8ac02016-01-28 18:19:57 -0800162 struct list_head split_order_list_entry;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700163};
164
165struct dwc2_hcd_pipe_info {
166 u8 dev_addr;
167 u8 ep_num;
168 u8 pipe_type;
169 u8 pipe_dir;
170 u16 mps;
171};
172
173struct dwc2_hcd_iso_packet_desc {
174 u32 offset;
175 u32 length;
176 u32 actual_length;
177 u32 status;
178};
179
180struct dwc2_qtd;
181
182struct dwc2_hcd_urb {
183 void *priv;
184 struct dwc2_qtd *qtd;
185 void *buf;
186 dma_addr_t dma;
187 void *setup_packet;
188 dma_addr_t setup_dma;
189 u32 length;
190 u32 actual_length;
191 u32 status;
192 u32 error_count;
193 u32 packet_count;
194 u32 flags;
195 u16 interval;
196 struct dwc2_hcd_pipe_info pipe_info;
197 struct dwc2_hcd_iso_packet_desc iso_descs[0];
198};
199
200/* Phases for control transfers */
201enum dwc2_control_phase {
202 DWC2_CONTROL_SETUP,
203 DWC2_CONTROL_DATA,
204 DWC2_CONTROL_STATUS,
205};
206
207/* Transaction types */
208enum dwc2_transaction_type {
209 DWC2_TRANSACTION_NONE,
210 DWC2_TRANSACTION_PERIODIC,
211 DWC2_TRANSACTION_NON_PERIODIC,
212 DWC2_TRANSACTION_ALL,
213};
214
215/**
216 * struct dwc2_qh - Software queue head structure
217 *
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800218 * @hsotg: The HCD state structure for the DWC OTG controller
Paul Zimmerman7359d482013-03-11 17:47:59 -0700219 * @ep_type: Endpoint type. One of the following values:
220 * - USB_ENDPOINT_XFER_CONTROL
221 * - USB_ENDPOINT_XFER_BULK
222 * - USB_ENDPOINT_XFER_INT
223 * - USB_ENDPOINT_XFER_ISOC
224 * @ep_is_in: Endpoint direction
225 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
226 * @dev_speed: Device speed. One of the following values:
227 * - USB_SPEED_LOW
228 * - USB_SPEED_FULL
229 * - USB_SPEED_HIGH
230 * @data_toggle: Determines the PID of the next data packet for
231 * non-controltransfers. Ignored for control transfers.
232 * One of the following values:
233 * - DWC2_HC_PID_DATA0
234 * - DWC2_HC_PID_DATA1
235 * @ping_state: Ping state
236 * @do_split: Full/low speed endpoint on high-speed hub requires split
Paul Zimmerman725acc82013-08-11 12:50:17 -0700237 * @td_first: Index of first activated isochronous transfer descriptor
238 * @td_last: Index of last activated isochronous transfer descriptor
Douglas Andersonced9eee2016-01-28 18:20:04 -0800239 * @host_us: Bandwidth in microseconds per transfer as seen by host
240 * @host_interval: Interval between transfers as seen by the host. If
241 * the host is high speed and the device is low speed this
242 * will be 8 times device interval.
243 * @next_active_frame: (Micro)frame before we next need to put something on
244 * the bus. We'll move the qh to active here. If the
245 * host is in high speed mode this will be a uframe. If
246 * the host is in low speed mode this will be a full frame.
Dom Cobley20f2eb92013-09-23 14:23:34 -0700247 * @frame_usecs: Internal variable used by the microframe scheduler
Paul Zimmerman7359d482013-03-11 17:47:59 -0700248 * @start_split_frame: (Micro)frame at which last start split was initialized
Paul Zimmerman725acc82013-08-11 12:50:17 -0700249 * @ntd: Actual number of transfer descriptors in a list
Paul Zimmerman725acc82013-08-11 12:50:17 -0700250 * @qtd_list: List of QTDs for this QH
251 * @channel: Host channel currently processing transfers for this QH
Paul Zimmerman7359d482013-03-11 17:47:59 -0700252 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
253 * schedule
254 * @desc_list: List of transfer descriptors
255 * @desc_list_dma: Physical address of desc_list
Gregory Herrero95105a92015-11-20 11:49:29 +0100256 * @desc_list_sz: Size of descriptors list
Paul Zimmerman7359d482013-03-11 17:47:59 -0700257 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
258 * descriptor and indicates original XferSize value for the
259 * descriptor
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800260 * @unreserve_timer: Timer for releasing periodic reservation.
Paul Zimmerman7359d482013-03-11 17:47:59 -0700261 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800262 * @unreserve_pending: True if we planned to unreserve but haven't yet.
Paul Zimmerman7359d482013-03-11 17:47:59 -0700263 *
264 * A Queue Head (QH) holds the static characteristics of an endpoint and
265 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
266 * be entered in either the non-periodic or periodic schedule.
267 */
268struct dwc2_qh {
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800269 struct dwc2_hsotg *hsotg;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700270 u8 ep_type;
271 u8 ep_is_in;
272 u16 maxp;
273 u8 dev_speed;
274 u8 data_toggle;
275 u8 ping_state;
276 u8 do_split;
Paul Zimmerman725acc82013-08-11 12:50:17 -0700277 u8 td_first;
278 u8 td_last;
Douglas Andersonced9eee2016-01-28 18:20:04 -0800279 u16 host_us;
280 u16 host_interval;
281 u16 next_active_frame;
Dom Cobley20f2eb92013-09-23 14:23:34 -0700282 u16 frame_usecs[8];
Paul Zimmerman7359d482013-03-11 17:47:59 -0700283 u16 start_split_frame;
Paul Zimmerman725acc82013-08-11 12:50:17 -0700284 u16 ntd;
Paul Zimmerman725acc82013-08-11 12:50:17 -0700285 struct list_head qtd_list;
286 struct dwc2_host_chan *channel;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700287 struct list_head qh_list_entry;
288 struct dwc2_hcd_dma_desc *desc_list;
289 dma_addr_t desc_list_dma;
Gregory Herrero95105a92015-11-20 11:49:29 +0100290 u32 desc_list_sz;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700291 u32 *n_bytes;
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800292 struct timer_list unreserve_timer;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700293 unsigned tt_buffer_dirty:1;
Douglas Anderson17dd5b62016-01-28 18:19:59 -0800294 unsigned unreserve_pending:1;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700295};
296
297/**
298 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
299 *
300 * @control_phase: Current phase for control transfers (Setup, Data, or
301 * Status)
302 * @in_process: Indicates if this QTD is currently processed by HW
303 * @data_toggle: Determines the PID of the next data packet for the
304 * data phase of control transfers. Ignored for other
305 * transfer types. One of the following values:
306 * - DWC2_HC_PID_DATA0
307 * - DWC2_HC_PID_DATA1
308 * @complete_split: Keeps track of the current split type for FS/LS
309 * endpoints on a HS Hub
310 * @isoc_split_pos: Position of the ISOC split in full/low speed
311 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
312 * transfer. A frame descriptor describes the buffer
313 * position and length of the data to be transferred in the
314 * next scheduled (micro)frame of an isochronous transfer.
315 * It also holds status for that transaction. The frame
316 * index starts at 0.
317 * @isoc_split_offset: Position of the ISOC split in the buffer for the
318 * current frame
319 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
320 * @error_count: Holds the number of bus errors that have occurred for
321 * a transaction within this transfer
322 * @n_desc: Number of DMA descriptors for this QTD
323 * @isoc_frame_index_last: Last activated frame (packet) index, used in
324 * descriptor DMA mode only
325 * @urb: URB for this transfer
326 * @qh: Queue head for this QTD
327 * @qtd_list_entry: For linking to the QH's list of QTDs
328 *
329 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
330 * interrupt, or isochronous transfer. A single QTD is created for each URB
331 * (of one of these types) submitted to the HCD. The transfer associated with
332 * a QTD may require one or multiple transactions.
333 *
334 * A QTD is linked to a Queue Head, which is entered in either the
335 * non-periodic or periodic schedule for execution. When a QTD is chosen for
336 * execution, some or all of its transactions may be executed. After
337 * execution, the state of the QTD is updated. The QTD may be retired if all
338 * its transactions are complete or if an error occurred. Otherwise, it
339 * remains in the schedule so more transactions can be executed later.
340 */
341struct dwc2_qtd {
342 enum dwc2_control_phase control_phase;
343 u8 in_process;
344 u8 data_toggle;
345 u8 complete_split;
346 u8 isoc_split_pos;
347 u16 isoc_frame_index;
348 u16 isoc_split_offset;
Gregory Herreroc17b3372015-11-05 09:41:43 +0100349 u16 isoc_td_last;
350 u16 isoc_td_first;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700351 u32 ssplit_out_xfer_count;
352 u8 error_count;
353 u8 n_desc;
354 u16 isoc_frame_index_last;
355 struct dwc2_hcd_urb *urb;
356 struct dwc2_qh *qh;
357 struct list_head qtd_list_entry;
358};
359
360#ifdef DEBUG
361struct hc_xfer_info {
362 struct dwc2_hsotg *hsotg;
363 struct dwc2_host_chan *chan;
364};
365#endif
366
367/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
368static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
369{
370 return (struct usb_hcd *)hsotg->priv;
371}
372
373/*
374 * Inline used to disable one channel interrupt. Channel interrupts are
375 * disabled when the channel is halted or released by the interrupt handler.
376 * There is no need to handle further interrupts of that type until the
377 * channel is re-assigned. In fact, subsequent handling may cause crashes
378 * because the channel structures are cleaned up when the channel is released.
379 */
380static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
381{
Antti Seppälä95c8bc32015-08-20 21:41:07 +0300382 u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
Paul Zimmerman7359d482013-03-11 17:47:59 -0700383
384 mask &= ~intr;
Antti Seppälä95c8bc32015-08-20 21:41:07 +0300385 dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
Paul Zimmerman7359d482013-03-11 17:47:59 -0700386}
387
388/*
Paul Zimmerman7359d482013-03-11 17:47:59 -0700389 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
390 * are read as 1, they won't clear when written back.
391 */
392static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
393{
Antti Seppälä95c8bc32015-08-20 21:41:07 +0300394 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700395
396 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
397 return hprt0;
398}
399
400static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
401{
402 return pipe->ep_num;
403}
404
405static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
406{
407 return pipe->pipe_type;
408}
409
410static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
411{
412 return pipe->mps;
413}
414
415static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
416{
417 return pipe->dev_addr;
418}
419
420static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
421{
422 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
423}
424
425static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
426{
427 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
428}
429
430static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
431{
432 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
433}
434
435static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
436{
437 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
438}
439
440static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
441{
442 return pipe->pipe_dir == USB_DIR_IN;
443}
444
445static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
446{
447 return !dwc2_hcd_is_pipe_in(pipe);
448}
449
Mian Yousaf Kaukabecb176c2015-04-29 22:09:05 +0200450extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
Paul Zimmermane62662c2013-03-25 17:03:35 -0700451extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700452
453/* Transaction Execution Functions */
454extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
455 struct dwc2_hsotg *hsotg);
456extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
457 enum dwc2_transaction_type tr_type);
458
459/* Schedule Queue Functions */
460/* Implemented in hcd_queue.c */
Dom Cobley20f2eb92013-09-23 14:23:34 -0700461extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
Mian Yousaf Kaukabb58e6ce2015-06-29 11:05:28 +0200462extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
463 struct dwc2_hcd_urb *urb,
464 gfp_t mem_flags);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700465extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
466extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
467extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
468extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
469 int sched_csplit);
470
471extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
472extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
Mian Yousaf Kaukabb58e6ce2015-06-29 11:05:28 +0200473 struct dwc2_qh *qh);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700474
475/* Unlinks and frees a QTD */
476static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
477 struct dwc2_qtd *qtd,
478 struct dwc2_qh *qh)
479{
480 list_del(&qtd->qtd_list_entry);
481 kfree(qtd);
482}
483
484/* Descriptor DMA support functions */
485extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
486 struct dwc2_qh *qh);
487extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
488 struct dwc2_host_chan *chan, int chnum,
489 enum dwc2_halt_status halt_status);
490
491extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
492 gfp_t mem_flags);
493extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
494
495/* Check if QH is non-periodic */
496#define dwc2_qh_is_non_per(_qh_ptr_) \
497 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
498 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
499
Matthijs Kooijmanb49977a2013-04-10 09:55:50 +0200500#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
501static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
502static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
503static inline bool dbg_urb(struct urb *urb) { return true; }
504static inline bool dbg_perio(void) { return true; }
505#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
506static inline bool dbg_hc(struct dwc2_host_chan *hc)
507{
508 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
509 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
510}
511
512static inline bool dbg_qh(struct dwc2_qh *qh)
513{
514 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
515 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
516}
517
518static inline bool dbg_urb(struct urb *urb)
519{
520 return usb_pipetype(urb->pipe) == PIPE_BULK ||
521 usb_pipetype(urb->pipe) == PIPE_CONTROL;
522}
523
524static inline bool dbg_perio(void) { return false; }
525#endif
526
Paul Zimmerman7359d482013-03-11 17:47:59 -0700527/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
528#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
529
530/* Packet size for any kind of endpoint descriptor */
531#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
532
533/*
Gregory Herrerob9392d92015-11-05 09:41:42 +0100534 * Returns true if frame1 index is greater than frame2 index. The comparison
535 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
536 * frame number when the max index frame number is reached.
537 */
538static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
539{
540 u16 diff = fr_idx1 - fr_idx2;
541 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
542
543 return diff && !sign;
544}
545
546/*
Paul Zimmerman7359d482013-03-11 17:47:59 -0700547 * Returns true if frame1 is less than or equal to frame2. The comparison is
548 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
549 * frame number when the max frame number is reached.
550 */
551static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
552{
553 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
554}
555
556/*
557 * Returns true if frame1 is greater than frame2. The comparison is done
558 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
559 * number when the max frame number is reached.
560 */
561static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
562{
563 return (frame1 != frame2) &&
564 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
565}
566
567/*
568 * Increments frame by the amount specified by inc. The addition is done
569 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
570 */
571static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
572{
573 return (frame + inc) & HFNUM_MAX_FRNUM;
574}
575
Douglas Anderson74fc4a72016-01-28 18:19:58 -0800576static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
577{
578 return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
579}
580
Paul Zimmerman7359d482013-03-11 17:47:59 -0700581static inline u16 dwc2_full_frame_num(u16 frame)
582{
583 return (frame & HFNUM_MAX_FRNUM) >> 3;
584}
585
586static inline u16 dwc2_micro_frame_num(u16 frame)
587{
588 return frame & 0x7;
589}
590
591/*
592 * Returns the Core Interrupt Status register contents, ANDed with the Core
593 * Interrupt Mask register contents
594 */
595static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
596{
Antti Seppälä95c8bc32015-08-20 21:41:07 +0300597 return dwc2_readl(hsotg->regs + GINTSTS) &
598 dwc2_readl(hsotg->regs + GINTMSK);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700599}
600
601static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
602{
603 return dwc2_urb->status;
604}
605
606static inline u32 dwc2_hcd_urb_get_actual_length(
607 struct dwc2_hcd_urb *dwc2_urb)
608{
609 return dwc2_urb->actual_length;
610}
611
612static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
613{
614 return dwc2_urb->error_count;
615}
616
617static inline void dwc2_hcd_urb_set_iso_desc_params(
618 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
619 u32 length)
620{
621 dwc2_urb->iso_descs[desc_num].offset = offset;
622 dwc2_urb->iso_descs[desc_num].length = length;
623}
624
625static inline u32 dwc2_hcd_urb_get_iso_desc_status(
626 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
627{
628 return dwc2_urb->iso_descs[desc_num].status;
629}
630
631static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
632 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
633{
634 return dwc2_urb->iso_descs[desc_num].actual_length;
635}
636
637static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
638 struct usb_host_endpoint *ep)
639{
640 struct dwc2_qh *qh = ep->hcpriv;
641
642 if (qh && !list_empty(&qh->qh_list_entry))
643 return 1;
644
645 return 0;
646}
647
648static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
649 struct usb_host_endpoint *ep)
650{
651 struct dwc2_qh *qh = ep->hcpriv;
652
653 if (!qh) {
654 WARN_ON(1);
655 return 0;
656 }
657
Douglas Andersonced9eee2016-01-28 18:20:04 -0800658 return qh->host_us;
Paul Zimmerman7359d482013-03-11 17:47:59 -0700659}
660
661extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
662 struct dwc2_host_chan *chan, int chnum,
663 struct dwc2_qtd *qtd);
664
665/* HCD Core API */
666
667/**
Matthijs Kooijmanca18f4a2013-04-25 23:39:15 +0200668 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
Paul Zimmerman7359d482013-03-11 17:47:59 -0700669 *
670 * @hsotg: The DWC2 HCD
671 *
Matthijs Kooijman6aafb002013-04-25 23:39:14 +0200672 * Returns IRQ_HANDLED if interrupt is handled
673 * Return IRQ_NONE if interrupt is not handled
Paul Zimmerman7359d482013-03-11 17:47:59 -0700674 */
Matthijs Kooijmanca18f4a2013-04-25 23:39:15 +0200675extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700676
677/**
678 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
679 *
680 * @hsotg: The DWC2 HCD
681 */
682extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
683
Paul Zimmerman7359d482013-03-11 17:47:59 -0700684/**
685 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
686 * and 0 otherwise
687 *
688 * @hsotg: The DWC2 HCD
689 */
690extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
691
692/**
Paul Zimmerman7359d482013-03-11 17:47:59 -0700693 * dwc2_hcd_dump_state() - Dumps hsotg state
694 *
695 * @hsotg: The DWC2 HCD
696 *
697 * NOTE: This function will be removed once the peripheral controller code
698 * is integrated and the driver is stable
699 */
700extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
701
702/**
703 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
704 *
705 * @hsotg: The DWC2 HCD
706 *
707 * This can be used to determine average interrupt latency. Frame remaining is
708 * also shown for start transfer and two additional sample points.
709 *
710 * NOTE: This function will be removed once the peripheral controller code
711 * is integrated and the driver is stable
712 */
713extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
714
715/* URB interface */
716
717/* Transfer flags */
718#define URB_GIVEBACK_ASAP 0x1
719#define URB_SEND_ZERO_PACKET 0x2
720
721/* Host driver callbacks */
722
723extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
724extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
725extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
726 int *hub_addr, int *hub_port);
727extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
Paul Zimmerman0d012b92013-07-13 14:53:48 -0700728extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
729 int status);
Paul Zimmerman7359d482013-03-11 17:47:59 -0700730
731#ifdef DEBUG
732/*
733 * Macro to sample the remaining PHY clocks left in the current frame. This
734 * may be used during debugging to determine the average time it takes to
735 * execute sections of code. There are two possible sample points, "a" and
736 * "b", so the _letter_ argument must be one of these values.
737 *
738 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
739 * example, "cat /sys/devices/lm0/hcd_frrem".
740 */
741#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
742do { \
743 struct hfnum_data _hfnum_; \
744 struct dwc2_qtd *_qtd_; \
745 \
746 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
747 qtd_list_entry); \
748 if (usb_pipeint(_qtd_->urb->pipe) && \
749 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
Antti Seppälä95c8bc32015-08-20 21:41:07 +0300750 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
Paul Zimmerman7359d482013-03-11 17:47:59 -0700751 switch (_hfnum_.b.frnum & 0x7) { \
752 case 7: \
753 (_hcd_)->hfnum_7_samples_##_letter_++; \
754 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
755 _hfnum_.b.frrem; \
756 break; \
757 case 0: \
758 (_hcd_)->hfnum_0_samples_##_letter_++; \
759 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
760 _hfnum_.b.frrem; \
761 break; \
762 default: \
763 (_hcd_)->hfnum_other_samples_##_letter_++; \
764 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
765 _hfnum_.b.frrem; \
766 break; \
767 } \
768 } \
769} while (0)
770#else
771#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
772#endif
773
774#endif /* __DWC2_HCD_H__ */