blob: 3d35b28aaac7140affeedd874c4e9e3093b82204 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/video/sa1100fb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 * linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
20 *
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
37 *
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
43 *
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
64 *
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@cam.org>
70 * - Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
88 *
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memzero.
118 * - remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
161 */
162
163#include <linux/config.h>
164#include <linux/module.h>
165#include <linux/kernel.h>
166#include <linux/sched.h>
167#include <linux/errno.h>
168#include <linux/string.h>
169#include <linux/interrupt.h>
170#include <linux/slab.h>
171#include <linux/fb.h>
172#include <linux/delay.h>
173#include <linux/init.h>
174#include <linux/ioport.h>
175#include <linux/cpufreq.h>
Russell Kingd052d1b2005-10-29 19:07:23 +0100176#include <linux/platform_device.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#include <linux/dma-mapping.h>
178
179#include <asm/hardware.h>
180#include <asm/io.h>
181#include <asm/irq.h>
182#include <asm/mach-types.h>
183#include <asm/uaccess.h>
184#include <asm/arch/assabet.h>
185#include <asm/arch/shannon.h>
186
187/*
188 * debugging?
189 */
190#define DEBUG 0
191/*
192 * Complain if VAR is out of range.
193 */
194#define DEBUG_VAR 1
195
196#undef ASSABET_PAL_VIDEO
197
198#include "sa1100fb.h"
199
200extern void (*sa1100fb_backlight_power)(int on);
201extern void (*sa1100fb_lcd_power)(int on);
202
203/*
204 * IMHO this looks wrong. In 8BPP, length should be 8.
205 */
206static struct sa1100fb_rgb rgb_8 = {
207 .red = { .offset = 0, .length = 4, },
208 .green = { .offset = 0, .length = 4, },
209 .blue = { .offset = 0, .length = 4, },
210 .transp = { .offset = 0, .length = 0, },
211};
212
213static struct sa1100fb_rgb def_rgb_16 = {
214 .red = { .offset = 11, .length = 5, },
215 .green = { .offset = 5, .length = 6, },
216 .blue = { .offset = 0, .length = 5, },
217 .transp = { .offset = 0, .length = 0, },
218};
219
220#ifdef CONFIG_SA1100_ASSABET
221#ifndef ASSABET_PAL_VIDEO
222/*
223 * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually
224 * takes an RGB666 signal, but we provide it with an RGB565 signal
225 * instead (def_rgb_16).
226 */
227static struct sa1100fb_mach_info lq039q2ds54_info __initdata = {
228 .pixclock = 171521, .bpp = 16,
229 .xres = 320, .yres = 240,
230
231 .hsync_len = 5, .vsync_len = 1,
232 .left_margin = 61, .upper_margin = 3,
233 .right_margin = 9, .lower_margin = 0,
234
235 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
236
237 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
238 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
239};
240#else
241static struct sa1100fb_mach_info pal_info __initdata = {
242 .pixclock = 67797, .bpp = 16,
243 .xres = 640, .yres = 512,
244
245 .hsync_len = 64, .vsync_len = 6,
246 .left_margin = 125, .upper_margin = 70,
247 .right_margin = 115, .lower_margin = 36,
248
249 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
250 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
251};
252#endif
253#endif
254
255#ifdef CONFIG_SA1100_H3800
256static struct sa1100fb_mach_info h3800_info __initdata = {
257 .pixclock = 174757, .bpp = 16,
258 .xres = 320, .yres = 240,
259
260 .hsync_len = 3, .vsync_len = 3,
261 .left_margin = 12, .upper_margin = 10,
262 .right_margin = 17, .lower_margin = 1,
263
264 .cmap_static = 1,
265
266 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
267 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
268};
269#endif
270
271#ifdef CONFIG_SA1100_H3600
272static struct sa1100fb_mach_info h3600_info __initdata = {
273 .pixclock = 174757, .bpp = 16,
274 .xres = 320, .yres = 240,
275
276 .hsync_len = 3, .vsync_len = 3,
277 .left_margin = 12, .upper_margin = 10,
278 .right_margin = 17, .lower_margin = 1,
279
280 .cmap_static = 1,
281
282 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
283 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
284};
285
286static struct sa1100fb_rgb h3600_rgb_16 = {
287 .red = { .offset = 12, .length = 4, },
288 .green = { .offset = 7, .length = 4, },
289 .blue = { .offset = 1, .length = 4, },
290 .transp = { .offset = 0, .length = 0, },
291};
292#endif
293
294#ifdef CONFIG_SA1100_H3100
295static struct sa1100fb_mach_info h3100_info __initdata = {
296 .pixclock = 406977, .bpp = 4,
297 .xres = 320, .yres = 240,
298
299 .hsync_len = 26, .vsync_len = 41,
300 .left_margin = 4, .upper_margin = 0,
301 .right_margin = 4, .lower_margin = 0,
302
303 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
304 .cmap_greyscale = 1,
305 .cmap_inverse = 1,
306
307 .lccr0 = LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas,
308 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
309};
310#endif
311
312#ifdef CONFIG_SA1100_COLLIE
313static struct sa1100fb_mach_info collie_info __initdata = {
314 .pixclock = 171521, .bpp = 16,
315 .xres = 320, .yres = 240,
316
317 .hsync_len = 5, .vsync_len = 1,
318 .left_margin = 11, .upper_margin = 2,
319 .right_margin = 30, .lower_margin = 0,
320
321 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
322
323 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
324 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
325};
326#endif
327
328#ifdef LART_GREY_LCD
329static struct sa1100fb_mach_info lart_grey_info __initdata = {
330 .pixclock = 150000, .bpp = 4,
331 .xres = 320, .yres = 240,
332
333 .hsync_len = 1, .vsync_len = 1,
334 .left_margin = 4, .upper_margin = 0,
335 .right_margin = 2, .lower_margin = 0,
336
337 .cmap_greyscale = 1,
338 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
339
340 .lccr0 = LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono,
341 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
342};
343#endif
344#ifdef LART_COLOR_LCD
345static struct sa1100fb_mach_info lart_color_info __initdata = {
346 .pixclock = 150000, .bpp = 16,
347 .xres = 320, .yres = 240,
348
349 .hsync_len = 2, .vsync_len = 3,
350 .left_margin = 69, .upper_margin = 14,
351 .right_margin = 8, .lower_margin = 4,
352
353 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
354 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
355};
356#endif
357#ifdef LART_VIDEO_OUT
358static struct sa1100fb_mach_info lart_video_info __initdata = {
359 .pixclock = 39721, .bpp = 16,
360 .xres = 640, .yres = 480,
361
362 .hsync_len = 95, .vsync_len = 2,
363 .left_margin = 40, .upper_margin = 32,
364 .right_margin = 24, .lower_margin = 11,
365
366 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
367
368 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
369 .lccr3 = LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
370};
371#endif
372
373#ifdef LART_KIT01_LCD
374static struct sa1100fb_mach_info lart_kit01_info __initdata = {
375 .pixclock = 63291, .bpp = 16,
376 .xres = 640, .yres = 480,
377
378 .hsync_len = 64, .vsync_len = 3,
379 .left_margin = 122, .upper_margin = 45,
380 .right_margin = 10, .lower_margin = 10,
381
382 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
383 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg
384};
385#endif
386
387#ifdef CONFIG_SA1100_SHANNON
388static struct sa1100fb_mach_info shannon_info __initdata = {
389 .pixclock = 152500, .bpp = 8,
390 .xres = 640, .yres = 480,
391
392 .hsync_len = 4, .vsync_len = 3,
393 .left_margin = 2, .upper_margin = 0,
394 .right_margin = 1, .lower_margin = 0,
395
396 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
397
398 .lccr0 = LCCR0_Color | LCCR0_Dual | LCCR0_Pas,
399 .lccr3 = LCCR3_ACBsDiv(512),
400};
401#endif
402
403
404
405static struct sa1100fb_mach_info * __init
406sa1100fb_get_machine_info(struct sa1100fb_info *fbi)
407{
408 struct sa1100fb_mach_info *inf = NULL;
409
410 /*
411 * R G B T
412 * default {11,5}, { 5,6}, { 0,5}, { 0,0}
413 * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0}
414 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
415 */
416#ifdef CONFIG_SA1100_ASSABET
417 if (machine_is_assabet()) {
418#ifndef ASSABET_PAL_VIDEO
419 inf = &lq039q2ds54_info;
420#else
421 inf = &pal_info;
422#endif
423 }
424#endif
425#ifdef CONFIG_SA1100_H3100
426 if (machine_is_h3100()) {
427 inf = &h3100_info;
428 }
429#endif
430#ifdef CONFIG_SA1100_H3600
431 if (machine_is_h3600()) {
432 inf = &h3600_info;
433 fbi->rgb[RGB_16] = &h3600_rgb_16;
434 }
435#endif
436#ifdef CONFIG_SA1100_H3800
437 if (machine_is_h3800()) {
438 inf = &h3800_info;
439 }
440#endif
441#ifdef CONFIG_SA1100_COLLIE
442 if (machine_is_collie()) {
443 inf = &collie_info;
444 }
445#endif
446#ifdef CONFIG_SA1100_LART
447 if (machine_is_lart()) {
448#ifdef LART_GREY_LCD
449 inf = &lart_grey_info;
450#endif
451#ifdef LART_COLOR_LCD
452 inf = &lart_color_info;
453#endif
454#ifdef LART_VIDEO_OUT
455 inf = &lart_video_info;
456#endif
457#ifdef LART_KIT01_LCD
458 inf = &lart_kit01_info;
459#endif
460 }
461#endif
462#ifdef CONFIG_SA1100_SHANNON
463 if (machine_is_shannon()) {
464 inf = &shannon_info;
465 }
466#endif
467 return inf;
468}
469
470static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
471static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
472
473static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
474{
475 unsigned long flags;
476
477 local_irq_save(flags);
478 /*
479 * We need to handle two requests being made at the same time.
480 * There are two important cases:
481 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
482 * We must perform the unblanking, which will do our REENABLE for us.
483 * 2. When we are blanking, but immediately unblank before we have
484 * blanked. We do the "REENABLE" thing here as well, just to be sure.
485 */
486 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
487 state = (u_int) -1;
488 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
489 state = C_REENABLE;
490
491 if (state != (u_int)-1) {
492 fbi->task_state = state;
493 schedule_work(&fbi->task);
494 }
495 local_irq_restore(flags);
496}
497
498static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
499{
500 chan &= 0xffff;
501 chan >>= 16 - bf->length;
502 return chan << bf->offset;
503}
504
505/*
506 * Convert bits-per-pixel to a hardware palette PBS value.
507 */
508static inline u_int palette_pbs(struct fb_var_screeninfo *var)
509{
510 int ret = 0;
511 switch (var->bits_per_pixel) {
512 case 4: ret = 0 << 12; break;
513 case 8: ret = 1 << 12; break;
514 case 16: ret = 2 << 12; break;
515 }
516 return ret;
517}
518
519static int
520sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
521 u_int trans, struct fb_info *info)
522{
523 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
524 u_int val, ret = 1;
525
526 if (regno < fbi->palette_size) {
527 val = ((red >> 4) & 0xf00);
528 val |= ((green >> 8) & 0x0f0);
529 val |= ((blue >> 12) & 0x00f);
530
531 if (regno == 0)
532 val |= palette_pbs(&fbi->fb.var);
533
534 fbi->palette_cpu[regno] = val;
535 ret = 0;
536 }
537 return ret;
538}
539
540static int
541sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
542 u_int trans, struct fb_info *info)
543{
544 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
545 unsigned int val;
546 int ret = 1;
547
548 /*
549 * If inverse mode was selected, invert all the colours
550 * rather than the register number. The register number
551 * is what you poke into the framebuffer to produce the
552 * colour you requested.
553 */
554 if (fbi->cmap_inverse) {
555 red = 0xffff - red;
556 green = 0xffff - green;
557 blue = 0xffff - blue;
558 }
559
560 /*
561 * If greyscale is true, then we convert the RGB value
562 * to greyscale no mater what visual we are using.
563 */
564 if (fbi->fb.var.grayscale)
565 red = green = blue = (19595 * red + 38470 * green +
566 7471 * blue) >> 16;
567
568 switch (fbi->fb.fix.visual) {
569 case FB_VISUAL_TRUECOLOR:
570 /*
571 * 12 or 16-bit True Colour. We encode the RGB value
572 * according to the RGB bitfield information.
573 */
574 if (regno < 16) {
575 u32 *pal = fbi->fb.pseudo_palette;
576
577 val = chan_to_field(red, &fbi->fb.var.red);
578 val |= chan_to_field(green, &fbi->fb.var.green);
579 val |= chan_to_field(blue, &fbi->fb.var.blue);
580
581 pal[regno] = val;
582 ret = 0;
583 }
584 break;
585
586 case FB_VISUAL_STATIC_PSEUDOCOLOR:
587 case FB_VISUAL_PSEUDOCOLOR:
588 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
589 break;
590 }
591
592 return ret;
593}
594
Pavel Machek6edb7462005-10-14 15:59:01 -0700595#ifdef CONFIG_CPU_FREQ
Linus Torvalds1da177e2005-04-16 15:20:36 -0700596/*
597 * sa1100fb_display_dma_period()
598 * Calculate the minimum period (in picoseconds) between two DMA
599 * requests for the LCD controller. If we hit this, it means we're
600 * doing nothing but LCD DMA.
601 */
Russell Kingfc1df37e32005-08-07 14:20:26 +0100602static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700603{
604 /*
605 * Period = pixclock * bits_per_byte * bytes_per_transfer
606 * / memory_bits_per_pixel;
607 */
608 return var->pixclock * 8 * 16 / var->bits_per_pixel;
609}
Pavel Machek6edb7462005-10-14 15:59:01 -0700610#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
612/*
613 * sa1100fb_check_var():
614 * Round up in the following order: bits_per_pixel, xres,
615 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
616 * bitfields, horizontal timing, vertical timing.
617 */
618static int
619sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
620{
621 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
622 int rgbidx;
623
624 if (var->xres < MIN_XRES)
625 var->xres = MIN_XRES;
626 if (var->yres < MIN_YRES)
627 var->yres = MIN_YRES;
628 if (var->xres > fbi->max_xres)
629 var->xres = fbi->max_xres;
630 if (var->yres > fbi->max_yres)
631 var->yres = fbi->max_yres;
632 var->xres_virtual = max(var->xres_virtual, var->xres);
633 var->yres_virtual = max(var->yres_virtual, var->yres);
634
635 DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel);
636 switch (var->bits_per_pixel) {
637 case 4:
638 rgbidx = RGB_8;
639 break;
640 case 8:
641 rgbidx = RGB_8;
642 break;
643 case 16:
644 rgbidx = RGB_16;
645 break;
646 default:
647 return -EINVAL;
648 }
649
650 /*
651 * Copy the RGB parameters for this display
652 * from the machine specific parameters.
653 */
654 var->red = fbi->rgb[rgbidx]->red;
655 var->green = fbi->rgb[rgbidx]->green;
656 var->blue = fbi->rgb[rgbidx]->blue;
657 var->transp = fbi->rgb[rgbidx]->transp;
658
659 DPRINTK("RGBT length = %d:%d:%d:%d\n",
660 var->red.length, var->green.length, var->blue.length,
661 var->transp.length);
662
663 DPRINTK("RGBT offset = %d:%d:%d:%d\n",
664 var->red.offset, var->green.offset, var->blue.offset,
665 var->transp.offset);
666
667#ifdef CONFIG_CPU_FREQ
668 printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n",
669 sa1100fb_display_dma_period(var),
670 cpufreq_get(smp_processor_id()));
671#endif
672
673 return 0;
674}
675
676static inline void sa1100fb_set_truecolor(u_int is_true_color)
677{
678 if (machine_is_assabet()) {
679#if 1 // phase 4 or newer Assabet's
680 if (is_true_color)
681 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
682 else
683 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
684#else
685 // older Assabet's
686 if (is_true_color)
687 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
688 else
689 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
690#endif
691 }
692}
693
694/*
695 * sa1100fb_set_par():
696 * Set the user defined part of the display for the specified console
697 */
698static int sa1100fb_set_par(struct fb_info *info)
699{
700 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
701 struct fb_var_screeninfo *var = &info->var;
702 unsigned long palette_mem_size;
703
704 DPRINTK("set_par\n");
705
706 if (var->bits_per_pixel == 16)
707 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
708 else if (!fbi->cmap_static)
709 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
710 else {
711 /*
712 * Some people have weird ideas about wanting static
713 * pseudocolor maps. I suspect their user space
714 * applications are broken.
715 */
716 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
717 }
718
719 fbi->fb.fix.line_length = var->xres_virtual *
720 var->bits_per_pixel / 8;
721 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
722
723 palette_mem_size = fbi->palette_size * sizeof(u16);
724
725 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
726
727 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
728 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
729
730 /*
731 * Set (any) board control register to handle new color depth
732 */
733 sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
734 sa1100fb_activate_var(var, fbi);
735
736 return 0;
737}
738
739#if 0
740static int
741sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
742 struct fb_info *info)
743{
744 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
745
746 /*
747 * Make sure the user isn't doing something stupid.
748 */
749 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static))
750 return -EINVAL;
751
752 return gen_set_cmap(cmap, kspc, con, info);
753}
754#endif
755
756/*
757 * Formal definition of the VESA spec:
758 * On
759 * This refers to the state of the display when it is in full operation
760 * Stand-By
761 * This defines an optional operating state of minimal power reduction with
762 * the shortest recovery time
763 * Suspend
764 * This refers to a level of power management in which substantial power
765 * reduction is achieved by the display. The display can have a longer
766 * recovery time from this state than from the Stand-by state
767 * Off
768 * This indicates that the display is consuming the lowest level of power
769 * and is non-operational. Recovery from this state may optionally require
770 * the user to manually power on the monitor
771 *
772 * Now, the fbdev driver adds an additional state, (blank), where they
773 * turn off the video (maybe by colormap tricks), but don't mess with the
774 * video itself: think of it semantically between on and Stand-By.
775 *
776 * So here's what we should do in our fbdev blank routine:
777 *
778 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
779 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
780 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
781 * VESA_POWERDOWN (mode 3) Video off, front/back light off
782 *
783 * This will match the matrox implementation.
784 */
785/*
786 * sa1100fb_blank():
787 * Blank the display by setting all palette values to zero. Note, the
788 * 12 and 16 bpp modes don't really use the palette, so this will not
789 * blank the display in all modes.
790 */
791static int sa1100fb_blank(int blank, struct fb_info *info)
792{
793 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
794 int i;
795
796 DPRINTK("sa1100fb_blank: blank=%d\n", blank);
797
798 switch (blank) {
799 case FB_BLANK_POWERDOWN:
800 case FB_BLANK_VSYNC_SUSPEND:
801 case FB_BLANK_HSYNC_SUSPEND:
802 case FB_BLANK_NORMAL:
803 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
804 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
805 for (i = 0; i < fbi->palette_size; i++)
806 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
807 sa1100fb_schedule_work(fbi, C_DISABLE);
808 break;
809
810 case FB_BLANK_UNBLANK:
811 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
812 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
813 fb_set_cmap(&fbi->fb.cmap, info);
814 sa1100fb_schedule_work(fbi, C_ENABLE);
815 }
816 return 0;
817}
818
819static int sa1100fb_mmap(struct fb_info *info, struct file *file,
820 struct vm_area_struct *vma)
821{
822 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
823 unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
824
825 if (off < info->fix.smem_len) {
826 vma->vm_pgoff += 1; /* skip over the palette */
827 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
828 fbi->map_dma, fbi->map_size);
829 }
830
831 start = info->fix.mmio_start;
832 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
833
834 if ((vma->vm_end - vma->vm_start + off) > len)
835 return -EINVAL;
836
837 off += start & PAGE_MASK;
838 vma->vm_pgoff = off >> PAGE_SHIFT;
839 vma->vm_flags |= VM_IO;
840 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
841 return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
842 vma->vm_end - vma->vm_start,
843 vma->vm_page_prot);
844}
845
846static struct fb_ops sa1100fb_ops = {
847 .owner = THIS_MODULE,
848 .fb_check_var = sa1100fb_check_var,
849 .fb_set_par = sa1100fb_set_par,
850// .fb_set_cmap = sa1100fb_set_cmap,
851 .fb_setcolreg = sa1100fb_setcolreg,
852 .fb_fillrect = cfb_fillrect,
853 .fb_copyarea = cfb_copyarea,
854 .fb_imageblit = cfb_imageblit,
855 .fb_blank = sa1100fb_blank,
856 .fb_cursor = soft_cursor,
857 .fb_mmap = sa1100fb_mmap,
858};
859
860/*
861 * Calculate the PCD value from the clock rate (in picoseconds).
862 * We take account of the PPCR clock setting.
863 */
864static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
865{
866 unsigned int pcd = cpuclock / 100;
867
868 pcd *= pixclock;
869 pcd /= 10000000;
870
871 return pcd + 1; /* make up for integer math truncations */
872}
873
874/*
875 * sa1100fb_activate_var():
876 * Configures LCD Controller based on entries in var parameter. Settings are
877 * only written to the controller if changes were made.
878 */
879static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
880{
881 struct sa1100fb_lcd_reg new_regs;
882 u_int half_screen_size, yres, pcd;
883 u_long flags;
884
885 DPRINTK("Configuring SA1100 LCD\n");
886
887 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
888 var->xres, var->hsync_len,
889 var->left_margin, var->right_margin);
890 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
891 var->yres, var->vsync_len,
892 var->upper_margin, var->lower_margin);
893
894#if DEBUG_VAR
895 if (var->xres < 16 || var->xres > 1024)
896 printk(KERN_ERR "%s: invalid xres %d\n",
897 fbi->fb.fix.id, var->xres);
898 if (var->hsync_len < 1 || var->hsync_len > 64)
899 printk(KERN_ERR "%s: invalid hsync_len %d\n",
900 fbi->fb.fix.id, var->hsync_len);
901 if (var->left_margin < 1 || var->left_margin > 255)
902 printk(KERN_ERR "%s: invalid left_margin %d\n",
903 fbi->fb.fix.id, var->left_margin);
904 if (var->right_margin < 1 || var->right_margin > 255)
905 printk(KERN_ERR "%s: invalid right_margin %d\n",
906 fbi->fb.fix.id, var->right_margin);
907 if (var->yres < 1 || var->yres > 1024)
908 printk(KERN_ERR "%s: invalid yres %d\n",
909 fbi->fb.fix.id, var->yres);
910 if (var->vsync_len < 1 || var->vsync_len > 64)
911 printk(KERN_ERR "%s: invalid vsync_len %d\n",
912 fbi->fb.fix.id, var->vsync_len);
913 if (var->upper_margin < 0 || var->upper_margin > 255)
914 printk(KERN_ERR "%s: invalid upper_margin %d\n",
915 fbi->fb.fix.id, var->upper_margin);
916 if (var->lower_margin < 0 || var->lower_margin > 255)
917 printk(KERN_ERR "%s: invalid lower_margin %d\n",
918 fbi->fb.fix.id, var->lower_margin);
919#endif
920
921 new_regs.lccr0 = fbi->lccr0 |
922 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
923 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
924
925 new_regs.lccr1 =
926 LCCR1_DisWdth(var->xres) +
927 LCCR1_HorSnchWdth(var->hsync_len) +
928 LCCR1_BegLnDel(var->left_margin) +
929 LCCR1_EndLnDel(var->right_margin);
930
931 /*
932 * If we have a dual scan LCD, then we need to halve
933 * the YRES parameter.
934 */
935 yres = var->yres;
936 if (fbi->lccr0 & LCCR0_Dual)
937 yres /= 2;
938
939 new_regs.lccr2 =
940 LCCR2_DisHght(yres) +
941 LCCR2_VrtSnchWdth(var->vsync_len) +
942 LCCR2_BegFrmDel(var->upper_margin) +
943 LCCR2_EndFrmDel(var->lower_margin);
944
945 pcd = get_pcd(var->pixclock, cpufreq_get(0));
946 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 |
947 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
948 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
949
950 DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0);
951 DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1);
952 DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2);
953 DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3);
954
955 half_screen_size = var->bits_per_pixel;
956 half_screen_size = half_screen_size * var->xres * var->yres / 16;
957
958 /* Update shadow copy atomically */
959 local_irq_save(flags);
960 fbi->dbar1 = fbi->palette_dma;
961 fbi->dbar2 = fbi->screen_dma + half_screen_size;
962
963 fbi->reg_lccr0 = new_regs.lccr0;
964 fbi->reg_lccr1 = new_regs.lccr1;
965 fbi->reg_lccr2 = new_regs.lccr2;
966 fbi->reg_lccr3 = new_regs.lccr3;
967 local_irq_restore(flags);
968
969 /*
970 * Only update the registers if the controller is enabled
971 * and something has changed.
972 */
973 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
974 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
975 (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2))
976 sa1100fb_schedule_work(fbi, C_REENABLE);
977
978 return 0;
979}
980
981/*
982 * NOTE! The following functions are purely helpers for set_ctrlr_state.
983 * Do not call them directly; set_ctrlr_state does the correct serialisation
984 * to ensure that things happen in the right way 100% of time time.
985 * -- rmk
986 */
987static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
988{
989 DPRINTK("backlight o%s\n", on ? "n" : "ff");
990
991 if (sa1100fb_backlight_power)
992 sa1100fb_backlight_power(on);
993}
994
995static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
996{
997 DPRINTK("LCD power o%s\n", on ? "n" : "ff");
998
999 if (sa1100fb_lcd_power)
1000 sa1100fb_lcd_power(on);
1001}
1002
1003static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
1004{
1005 u_int mask = 0;
1006
1007 /*
1008 * Enable GPIO<9:2> for LCD use if:
1009 * 1. Active display, or
1010 * 2. Color Dual Passive display
1011 *
1012 * see table 11.8 on page 11-27 in the SA1100 manual
1013 * -- Erik.
1014 *
1015 * SA1110 spec update nr. 25 says we can and should
1016 * clear LDD15 to 12 for 4 or 8bpp modes with active
1017 * panels.
1018 */
1019 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
1020 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
1021 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
1022
1023 if (fbi->fb.var.bits_per_pixel > 8 ||
1024 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
1025 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
1026
1027 }
1028
1029 if (mask) {
1030 GPDR |= mask;
1031 GAFR |= mask;
1032 }
1033}
1034
1035static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
1036{
1037 DPRINTK("Enabling LCD controller\n");
1038
1039 /*
1040 * Make sure the mode bits are present in the first palette entry
1041 */
1042 fbi->palette_cpu[0] &= 0xcfff;
1043 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
1044
1045 /* Sequence from 11.7.10 */
1046 LCCR3 = fbi->reg_lccr3;
1047 LCCR2 = fbi->reg_lccr2;
1048 LCCR1 = fbi->reg_lccr1;
1049 LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN;
1050 DBAR1 = fbi->dbar1;
1051 DBAR2 = fbi->dbar2;
1052 LCCR0 |= LCCR0_LEN;
1053
1054 if (machine_is_shannon()) {
1055 GPDR |= SHANNON_GPIO_DISP_EN;
1056 GPSR |= SHANNON_GPIO_DISP_EN;
1057 }
1058
1059 DPRINTK("DBAR1 = 0x%08x\n", DBAR1);
1060 DPRINTK("DBAR2 = 0x%08x\n", DBAR2);
1061 DPRINTK("LCCR0 = 0x%08x\n", LCCR0);
1062 DPRINTK("LCCR1 = 0x%08x\n", LCCR1);
1063 DPRINTK("LCCR2 = 0x%08x\n", LCCR2);
1064 DPRINTK("LCCR3 = 0x%08x\n", LCCR3);
1065}
1066
1067static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
1068{
1069 DECLARE_WAITQUEUE(wait, current);
1070
1071 DPRINTK("Disabling LCD controller\n");
1072
1073 if (machine_is_shannon()) {
1074 GPCR |= SHANNON_GPIO_DISP_EN;
1075 }
1076
1077 set_current_state(TASK_UNINTERRUPTIBLE);
1078 add_wait_queue(&fbi->ctrlr_wait, &wait);
1079
1080 LCSR = 0xffffffff; /* Clear LCD Status Register */
1081 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
1082 LCCR0 &= ~LCCR0_LEN; /* Disable LCD Controller */
1083
1084 schedule_timeout(20 * HZ / 1000);
1085 remove_wait_queue(&fbi->ctrlr_wait, &wait);
1086}
1087
1088/*
1089 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1090 */
1091static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id, struct pt_regs *regs)
1092{
1093 struct sa1100fb_info *fbi = dev_id;
1094 unsigned int lcsr = LCSR;
1095
1096 if (lcsr & LCSR_LDD) {
1097 LCCR0 |= LCCR0_LDM;
1098 wake_up(&fbi->ctrlr_wait);
1099 }
1100
1101 LCSR = lcsr;
1102 return IRQ_HANDLED;
1103}
1104
1105/*
1106 * This function must be called from task context only, since it will
1107 * sleep when disabling the LCD controller, or if we get two contending
1108 * processes trying to alter state.
1109 */
1110static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
1111{
1112 u_int old_state;
1113
1114 down(&fbi->ctrlr_sem);
1115
1116 old_state = fbi->state;
1117
1118 /*
1119 * Hack around fbcon initialisation.
1120 */
1121 if (old_state == C_STARTUP && state == C_REENABLE)
1122 state = C_ENABLE;
1123
1124 switch (state) {
1125 case C_DISABLE_CLKCHANGE:
1126 /*
1127 * Disable controller for clock change. If the
1128 * controller is already disabled, then do nothing.
1129 */
1130 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1131 fbi->state = state;
1132 sa1100fb_disable_controller(fbi);
1133 }
1134 break;
1135
1136 case C_DISABLE_PM:
1137 case C_DISABLE:
1138 /*
1139 * Disable controller
1140 */
1141 if (old_state != C_DISABLE) {
1142 fbi->state = state;
1143
1144 __sa1100fb_backlight_power(fbi, 0);
1145 if (old_state != C_DISABLE_CLKCHANGE)
1146 sa1100fb_disable_controller(fbi);
1147 __sa1100fb_lcd_power(fbi, 0);
1148 }
1149 break;
1150
1151 case C_ENABLE_CLKCHANGE:
1152 /*
1153 * Enable the controller after clock change. Only
1154 * do this if we were disabled for the clock change.
1155 */
1156 if (old_state == C_DISABLE_CLKCHANGE) {
1157 fbi->state = C_ENABLE;
1158 sa1100fb_enable_controller(fbi);
1159 }
1160 break;
1161
1162 case C_REENABLE:
1163 /*
1164 * Re-enable the controller only if it was already
1165 * enabled. This is so we reprogram the control
1166 * registers.
1167 */
1168 if (old_state == C_ENABLE) {
1169 sa1100fb_disable_controller(fbi);
1170 sa1100fb_setup_gpio(fbi);
1171 sa1100fb_enable_controller(fbi);
1172 }
1173 break;
1174
1175 case C_ENABLE_PM:
1176 /*
1177 * Re-enable the controller after PM. This is not
1178 * perfect - think about the case where we were doing
1179 * a clock change, and we suspended half-way through.
1180 */
1181 if (old_state != C_DISABLE_PM)
1182 break;
1183 /* fall through */
1184
1185 case C_ENABLE:
1186 /*
1187 * Power up the LCD screen, enable controller, and
1188 * turn on the backlight.
1189 */
1190 if (old_state != C_ENABLE) {
1191 fbi->state = C_ENABLE;
1192 sa1100fb_setup_gpio(fbi);
1193 __sa1100fb_lcd_power(fbi, 1);
1194 sa1100fb_enable_controller(fbi);
1195 __sa1100fb_backlight_power(fbi, 1);
1196 }
1197 break;
1198 }
1199 up(&fbi->ctrlr_sem);
1200}
1201
1202/*
1203 * Our LCD controller task (which is called when we blank or unblank)
1204 * via keventd.
1205 */
1206static void sa1100fb_task(void *dummy)
1207{
1208 struct sa1100fb_info *fbi = dummy;
1209 u_int state = xchg(&fbi->task_state, -1);
1210
1211 set_ctrlr_state(fbi, state);
1212}
1213
1214#ifdef CONFIG_CPU_FREQ
1215/*
1216 * Calculate the minimum DMA period over all displays that we own.
1217 * This, together with the SDRAM bandwidth defines the slowest CPU
1218 * frequency that can be selected.
1219 */
1220static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
1221{
1222#if 0
1223 unsigned int min_period = (unsigned int)-1;
1224 int i;
1225
1226 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1227 struct display *disp = &fb_display[i];
1228 unsigned int period;
1229
1230 /*
1231 * Do we own this display?
1232 */
1233 if (disp->fb_info != &fbi->fb)
1234 continue;
1235
1236 /*
1237 * Ok, calculate its DMA period
1238 */
1239 period = sa1100fb_display_dma_period(&disp->var);
1240 if (period < min_period)
1241 min_period = period;
1242 }
1243
1244 return min_period;
1245#else
1246 /*
1247 * FIXME: we need to verify _all_ consoles.
1248 */
1249 return sa1100fb_display_dma_period(&fbi->fb.var);
1250#endif
1251}
1252
1253/*
1254 * CPU clock speed change handler. We need to adjust the LCD timing
1255 * parameters when the CPU clock is adjusted by the power management
1256 * subsystem.
1257 */
1258static int
1259sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1260 void *data)
1261{
1262 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1263 struct cpufreq_freqs *f = data;
1264 u_int pcd;
1265
1266 switch (val) {
1267 case CPUFREQ_PRECHANGE:
1268 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1269 break;
1270
1271 case CPUFREQ_POSTCHANGE:
1272 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1273 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1274 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1275 break;
1276 }
1277 return 0;
1278}
1279
1280static int
1281sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1282 void *data)
1283{
1284 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1285 struct cpufreq_policy *policy = data;
1286
1287 switch (val) {
1288 case CPUFREQ_ADJUST:
1289 case CPUFREQ_INCOMPATIBLE:
1290 printk(KERN_DEBUG "min dma period: %d ps, "
1291 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1292 policy->max);
1293 /* todo: fill in min/max values */
1294 break;
1295 case CPUFREQ_NOTIFY:
1296 do {} while(0);
1297 /* todo: panic if min/max values aren't fulfilled
1298 * [can't really happen unless there's a bug in the
1299 * CPU policy verififcation process *
1300 */
1301 break;
1302 }
1303 return 0;
1304}
1305#endif
1306
1307#ifdef CONFIG_PM
1308/*
1309 * Power management hooks. Note that we won't be called from IRQ context,
1310 * unlike the blank functions above, so we may sleep.
1311 */
Russell King9480e302005-10-28 09:52:56 -07001312static int sa1100fb_suspend(struct device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313{
1314 struct sa1100fb_info *fbi = dev_get_drvdata(dev);
1315
Russell King9480e302005-10-28 09:52:56 -07001316 set_ctrlr_state(fbi, C_DISABLE_PM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317 return 0;
1318}
1319
Russell King9480e302005-10-28 09:52:56 -07001320static int sa1100fb_resume(struct device *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001321{
1322 struct sa1100fb_info *fbi = dev_get_drvdata(dev);
1323
Russell King9480e302005-10-28 09:52:56 -07001324 set_ctrlr_state(fbi, C_ENABLE_PM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001325 return 0;
1326}
1327#else
1328#define sa1100fb_suspend NULL
1329#define sa1100fb_resume NULL
1330#endif
1331
1332/*
1333 * sa1100fb_map_video_memory():
1334 * Allocates the DRAM memory for the frame buffer. This buffer is
1335 * remapped into a non-cached, non-buffered, memory region to
1336 * allow palette and pixel writes to occur without flushing the
1337 * cache. Once this area is remapped, all virtual memory
1338 * access to the video memory should occur at the new region.
1339 */
1340static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1341{
1342 /*
1343 * We reserve one page for the palette, plus the size
1344 * of the framebuffer.
1345 */
1346 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1347 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1348 &fbi->map_dma, GFP_KERNEL);
1349
1350 if (fbi->map_cpu) {
1351 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1352 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1353 /*
1354 * FIXME: this is actually the wrong thing to place in
1355 * smem_start. But fbdev suffers from the problem that
1356 * it needs an API which doesn't exist (in this case,
1357 * dma_writecombine_mmap)
1358 */
1359 fbi->fb.fix.smem_start = fbi->screen_dma;
1360 }
1361
1362 return fbi->map_cpu ? 0 : -ENOMEM;
1363}
1364
1365/* Fake monspecs to fill in fbinfo structure */
1366static struct fb_monspecs monspecs __initdata = {
1367 .hfmin = 30000,
1368 .hfmax = 70000,
1369 .vfmin = 50,
1370 .vfmax = 65,
1371};
1372
1373
1374static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev)
1375{
1376 struct sa1100fb_mach_info *inf;
1377 struct sa1100fb_info *fbi;
1378
1379 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1380 GFP_KERNEL);
1381 if (!fbi)
1382 return NULL;
1383
1384 memset(fbi, 0, sizeof(struct sa1100fb_info));
1385 fbi->dev = dev;
1386
1387 strcpy(fbi->fb.fix.id, SA1100_NAME);
1388
1389 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1390 fbi->fb.fix.type_aux = 0;
1391 fbi->fb.fix.xpanstep = 0;
1392 fbi->fb.fix.ypanstep = 0;
1393 fbi->fb.fix.ywrapstep = 0;
1394 fbi->fb.fix.accel = FB_ACCEL_NONE;
1395
1396 fbi->fb.var.nonstd = 0;
1397 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1398 fbi->fb.var.height = -1;
1399 fbi->fb.var.width = -1;
1400 fbi->fb.var.accel_flags = 0;
1401 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1402
1403 fbi->fb.fbops = &sa1100fb_ops;
1404 fbi->fb.flags = FBINFO_DEFAULT;
1405 fbi->fb.monspecs = monspecs;
1406 fbi->fb.pseudo_palette = (fbi + 1);
1407
1408 fbi->rgb[RGB_8] = &rgb_8;
1409 fbi->rgb[RGB_16] = &def_rgb_16;
1410
1411 inf = sa1100fb_get_machine_info(fbi);
1412
1413 /*
1414 * People just don't seem to get this. We don't support
1415 * anything but correct entries now, so panic if someone
1416 * does something stupid.
1417 */
1418 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1419 inf->pixclock == 0)
1420 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1421 "pixclock.");
1422
1423 fbi->max_xres = inf->xres;
1424 fbi->fb.var.xres = inf->xres;
1425 fbi->fb.var.xres_virtual = inf->xres;
1426 fbi->max_yres = inf->yres;
1427 fbi->fb.var.yres = inf->yres;
1428 fbi->fb.var.yres_virtual = inf->yres;
1429 fbi->max_bpp = inf->bpp;
1430 fbi->fb.var.bits_per_pixel = inf->bpp;
1431 fbi->fb.var.pixclock = inf->pixclock;
1432 fbi->fb.var.hsync_len = inf->hsync_len;
1433 fbi->fb.var.left_margin = inf->left_margin;
1434 fbi->fb.var.right_margin = inf->right_margin;
1435 fbi->fb.var.vsync_len = inf->vsync_len;
1436 fbi->fb.var.upper_margin = inf->upper_margin;
1437 fbi->fb.var.lower_margin = inf->lower_margin;
1438 fbi->fb.var.sync = inf->sync;
1439 fbi->fb.var.grayscale = inf->cmap_greyscale;
1440 fbi->cmap_inverse = inf->cmap_inverse;
1441 fbi->cmap_static = inf->cmap_static;
1442 fbi->lccr0 = inf->lccr0;
1443 fbi->lccr3 = inf->lccr3;
1444 fbi->state = C_STARTUP;
1445 fbi->task_state = (u_char)-1;
1446 fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
1447 fbi->max_bpp / 8;
1448
1449 init_waitqueue_head(&fbi->ctrlr_wait);
1450 INIT_WORK(&fbi->task, sa1100fb_task, fbi);
1451 init_MUTEX(&fbi->ctrlr_sem);
1452
1453 return fbi;
1454}
1455
1456static int __init sa1100fb_probe(struct device *dev)
1457{
1458 struct sa1100fb_info *fbi;
1459 int ret;
1460
1461 if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1462 return -EBUSY;
1463
1464 fbi = sa1100fb_init_fbinfo(dev);
1465 ret = -ENOMEM;
1466 if (!fbi)
1467 goto failed;
1468
1469 /* Initialize video memory */
1470 ret = sa1100fb_map_video_memory(fbi);
1471 if (ret)
1472 goto failed;
1473
1474 ret = request_irq(IRQ_LCD, sa1100fb_handle_irq, SA_INTERRUPT,
1475 "LCD", fbi);
1476 if (ret) {
1477 printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret);
1478 goto failed;
1479 }
1480
1481#ifdef ASSABET_PAL_VIDEO
1482 if (machine_is_assabet())
1483 ASSABET_BCR_clear(ASSABET_BCR_LCD_ON);
1484#endif
1485
1486 /*
1487 * This makes sure that our colour bitfield
1488 * descriptors are correctly initialised.
1489 */
1490 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1491
1492 dev_set_drvdata(dev, fbi);
1493
1494 ret = register_framebuffer(&fbi->fb);
1495 if (ret < 0)
1496 goto failed;
1497
1498#ifdef CONFIG_CPU_FREQ
1499 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1500 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1501 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1502 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1503#endif
1504
1505 /* This driver cannot be unloaded at the moment */
1506 return 0;
1507
1508failed:
1509 dev_set_drvdata(dev, NULL);
1510 kfree(fbi);
1511 release_mem_region(0xb0100000, 0x10000);
1512 return ret;
1513}
1514
1515static struct device_driver sa1100fb_driver = {
1516 .name = "sa11x0-fb",
1517 .bus = &platform_bus_type,
1518 .probe = sa1100fb_probe,
1519 .suspend = sa1100fb_suspend,
1520 .resume = sa1100fb_resume,
1521};
1522
1523int __init sa1100fb_init(void)
1524{
1525 if (fb_get_options("sa1100fb", NULL))
1526 return -ENODEV;
1527
1528 return driver_register(&sa1100fb_driver);
1529}
1530
1531int __init sa1100fb_setup(char *options)
1532{
1533#if 0
1534 char *this_opt;
1535
1536 if (!options || !*options)
1537 return 0;
1538
1539 while ((this_opt = strsep(&options, ",")) != NULL) {
1540
1541 if (!strncmp(this_opt, "bpp:", 4))
1542 current_par.max_bpp =
1543 simple_strtoul(this_opt + 4, NULL, 0);
1544
1545 if (!strncmp(this_opt, "lccr0:", 6))
1546 lcd_shadow.lccr0 =
1547 simple_strtoul(this_opt + 6, NULL, 0);
1548 if (!strncmp(this_opt, "lccr1:", 6)) {
1549 lcd_shadow.lccr1 =
1550 simple_strtoul(this_opt + 6, NULL, 0);
1551 current_par.max_xres =
1552 (lcd_shadow.lccr1 & 0x3ff) + 16;
1553 }
1554 if (!strncmp(this_opt, "lccr2:", 6)) {
1555 lcd_shadow.lccr2 =
1556 simple_strtoul(this_opt + 6, NULL, 0);
1557 current_par.max_yres =
1558 (lcd_shadow.
1559 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1560 lccr2 & 0x3ff) +
1561 1) *
1562 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1563 }
1564 if (!strncmp(this_opt, "lccr3:", 6))
1565 lcd_shadow.lccr3 =
1566 simple_strtoul(this_opt + 6, NULL, 0);
1567 }
1568#endif
1569 return 0;
1570}
1571
1572module_init(sa1100fb_init);
1573MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1574MODULE_LICENSE("GPL");