Jerome Brunet | 22f65a3 | 2018-05-16 10:50:40 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
Neil Armstrong | 62ec0b9 | 2017-08-01 13:56:59 +0200 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (c) 2017 BayLibre, SAS. |
| 4 | * Author: Neil Armstrong <narmstrong@baylibre.com> |
Neil Armstrong | 62ec0b9 | 2017-08-01 13:56:59 +0200 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | #include <linux/clk-provider.h> |
| 8 | #include <linux/bitfield.h> |
| 9 | #include <linux/regmap.h> |
| 10 | #include "gxbb-aoclk.h" |
| 11 | |
| 12 | /* |
| 13 | * The AO Domain embeds a dual/divider to generate a more precise |
| 14 | * 32,768KHz clock for low-power suspend mode and CEC. |
| 15 | * ______ ______ |
| 16 | * | | | | |
| 17 | * ______ | Div1 |-| Cnt1 | ______ |
| 18 | * | | /|______| |______|\ | | |
| 19 | * Xtal-->| Gate |---| ______ ______ X-X--| Gate |--> |
| 20 | * |______| | \| | | |/ | |______| |
| 21 | * | | Div2 |-| Cnt2 | | |
| 22 | * | |______| |______| | |
| 23 | * |_______________________| |
| 24 | * |
| 25 | * The dividing can be switched to single or dual, with a counter |
| 26 | * for each divider to set when the switching is done. |
| 27 | * The entire dividing mechanism can be also bypassed. |
| 28 | */ |
| 29 | |
| 30 | #define CLK_CNTL0_N1_MASK GENMASK(11, 0) |
| 31 | #define CLK_CNTL0_N2_MASK GENMASK(23, 12) |
| 32 | #define CLK_CNTL0_DUALDIV_EN BIT(28) |
| 33 | #define CLK_CNTL0_OUT_GATE_EN BIT(30) |
| 34 | #define CLK_CNTL0_IN_GATE_EN BIT(31) |
| 35 | |
| 36 | #define CLK_CNTL1_M1_MASK GENMASK(11, 0) |
| 37 | #define CLK_CNTL1_M2_MASK GENMASK(23, 12) |
| 38 | #define CLK_CNTL1_BYPASS_EN BIT(24) |
| 39 | #define CLK_CNTL1_SELECT_OSC BIT(27) |
| 40 | |
| 41 | #define PWR_CNTL_ALT_32K_SEL GENMASK(13, 10) |
| 42 | |
| 43 | struct cec_32k_freq_table { |
| 44 | unsigned long parent_rate; |
| 45 | unsigned long target_rate; |
| 46 | bool dualdiv; |
| 47 | unsigned int n1; |
| 48 | unsigned int n2; |
| 49 | unsigned int m1; |
| 50 | unsigned int m2; |
| 51 | }; |
| 52 | |
| 53 | static const struct cec_32k_freq_table aoclk_cec_32k_table[] = { |
| 54 | [0] = { |
| 55 | .parent_rate = 24000000, |
| 56 | .target_rate = 32768, |
| 57 | .dualdiv = true, |
| 58 | .n1 = 733, |
| 59 | .n2 = 732, |
| 60 | .m1 = 8, |
| 61 | .m2 = 11, |
| 62 | }, |
| 63 | }; |
| 64 | |
| 65 | /* |
| 66 | * If CLK_CNTL0_DUALDIV_EN == 0 |
| 67 | * - will use N1 divider only |
| 68 | * If CLK_CNTL0_DUALDIV_EN == 1 |
| 69 | * - hold M1 cycles of N1 divider then changes to N2 |
| 70 | * - hold M2 cycles of N2 divider then changes to N1 |
| 71 | * Then we can get more accurate division. |
| 72 | */ |
| 73 | static unsigned long aoclk_cec_32k_recalc_rate(struct clk_hw *hw, |
| 74 | unsigned long parent_rate) |
| 75 | { |
| 76 | struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw); |
| 77 | unsigned long n1; |
| 78 | u32 reg0, reg1; |
| 79 | |
| 80 | regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, ®0); |
| 81 | regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, ®1); |
| 82 | |
| 83 | if (reg1 & CLK_CNTL1_BYPASS_EN) |
| 84 | return parent_rate; |
| 85 | |
| 86 | if (reg0 & CLK_CNTL0_DUALDIV_EN) { |
| 87 | unsigned long n2, m1, m2, f1, f2, p1, p2; |
| 88 | |
| 89 | n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1; |
| 90 | n2 = FIELD_GET(CLK_CNTL0_N2_MASK, reg0) + 1; |
| 91 | |
| 92 | m1 = FIELD_GET(CLK_CNTL1_M1_MASK, reg1) + 1; |
| 93 | m2 = FIELD_GET(CLK_CNTL1_M2_MASK, reg1) + 1; |
| 94 | |
| 95 | f1 = DIV_ROUND_CLOSEST(parent_rate, n1); |
| 96 | f2 = DIV_ROUND_CLOSEST(parent_rate, n2); |
| 97 | |
| 98 | p1 = DIV_ROUND_CLOSEST(100000000 * m1, f1 * (m1 + m2)); |
| 99 | p2 = DIV_ROUND_CLOSEST(100000000 * m2, f2 * (m1 + m2)); |
| 100 | |
| 101 | return DIV_ROUND_UP(100000000, p1 + p2); |
| 102 | } |
| 103 | |
| 104 | n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1; |
| 105 | |
| 106 | return DIV_ROUND_CLOSEST(parent_rate, n1); |
| 107 | } |
| 108 | |
| 109 | static const struct cec_32k_freq_table *find_cec_32k_freq(unsigned long rate, |
| 110 | unsigned long prate) |
| 111 | { |
| 112 | int i; |
| 113 | |
| 114 | for (i = 0 ; i < ARRAY_SIZE(aoclk_cec_32k_table) ; ++i) |
| 115 | if (aoclk_cec_32k_table[i].parent_rate == prate && |
| 116 | aoclk_cec_32k_table[i].target_rate == rate) |
| 117 | return &aoclk_cec_32k_table[i]; |
| 118 | |
| 119 | return NULL; |
| 120 | } |
| 121 | |
| 122 | static long aoclk_cec_32k_round_rate(struct clk_hw *hw, unsigned long rate, |
| 123 | unsigned long *prate) |
| 124 | { |
| 125 | const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate, |
| 126 | *prate); |
| 127 | |
| 128 | /* If invalid return first one */ |
| 129 | if (!freq) |
| 130 | return aoclk_cec_32k_table[0].target_rate; |
| 131 | |
| 132 | return freq->target_rate; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * From the Amlogic init procedure, the IN and OUT gates needs to be handled |
| 137 | * in the init procedure to avoid any glitches. |
| 138 | */ |
| 139 | |
| 140 | static int aoclk_cec_32k_set_rate(struct clk_hw *hw, unsigned long rate, |
| 141 | unsigned long parent_rate) |
| 142 | { |
| 143 | const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate, |
| 144 | parent_rate); |
| 145 | struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw); |
| 146 | u32 reg = 0; |
| 147 | |
| 148 | if (!freq) |
| 149 | return -EINVAL; |
| 150 | |
| 151 | /* Disable clock */ |
| 152 | regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, |
| 153 | CLK_CNTL0_IN_GATE_EN | CLK_CNTL0_OUT_GATE_EN, 0); |
| 154 | |
| 155 | reg = FIELD_PREP(CLK_CNTL0_N1_MASK, freq->n1 - 1); |
| 156 | if (freq->dualdiv) |
| 157 | reg |= CLK_CNTL0_DUALDIV_EN | |
| 158 | FIELD_PREP(CLK_CNTL0_N2_MASK, freq->n2 - 1); |
| 159 | |
| 160 | regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, reg); |
| 161 | |
| 162 | reg = FIELD_PREP(CLK_CNTL1_M1_MASK, freq->m1 - 1); |
| 163 | if (freq->dualdiv) |
| 164 | reg |= FIELD_PREP(CLK_CNTL1_M2_MASK, freq->m2 - 1); |
| 165 | |
| 166 | regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, reg); |
| 167 | |
| 168 | /* Enable clock */ |
| 169 | regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, |
| 170 | CLK_CNTL0_IN_GATE_EN, CLK_CNTL0_IN_GATE_EN); |
| 171 | |
| 172 | udelay(200); |
| 173 | |
| 174 | regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, |
| 175 | CLK_CNTL0_OUT_GATE_EN, CLK_CNTL0_OUT_GATE_EN); |
| 176 | |
| 177 | regmap_update_bits(cec_32k->regmap, AO_CRT_CLK_CNTL1, |
| 178 | CLK_CNTL1_SELECT_OSC, CLK_CNTL1_SELECT_OSC); |
| 179 | |
| 180 | /* Select 32k from XTAL */ |
| 181 | regmap_update_bits(cec_32k->regmap, |
| 182 | AO_RTI_PWR_CNTL_REG0, |
| 183 | PWR_CNTL_ALT_32K_SEL, |
| 184 | FIELD_PREP(PWR_CNTL_ALT_32K_SEL, 4)); |
| 185 | |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | const struct clk_ops meson_aoclk_cec_32k_ops = { |
| 190 | .recalc_rate = aoclk_cec_32k_recalc_rate, |
| 191 | .round_rate = aoclk_cec_32k_round_rate, |
| 192 | .set_rate = aoclk_cec_32k_set_rate, |
| 193 | }; |