blob: 4de9d90a4bb3365f7f0c70ae900908c7833289d2 [file] [log] [blame]
Woojung Huhb987e982017-05-31 20:19:19 +00001/*
2 * Microchip switch driver main logic
3 *
4 * Copyright (C) 2017
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <linux/delay.h>
20#include <linux/export.h>
21#include <linux/gpio.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/platform_data/microchip-ksz.h>
25#include <linux/phy.h>
26#include <linux/etherdevice.h>
27#include <linux/if_bridge.h>
28#include <net/dsa.h>
29#include <net/switchdev.h>
30
31#include "ksz_priv.h"
32
33static const struct {
34 int index;
35 char string[ETH_GSTRING_LEN];
36} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 { 0x00, "rx_hi" },
38 { 0x01, "rx_undersize" },
39 { 0x02, "rx_fragments" },
40 { 0x03, "rx_oversize" },
41 { 0x04, "rx_jabbers" },
42 { 0x05, "rx_symbol_err" },
43 { 0x06, "rx_crc_err" },
44 { 0x07, "rx_align_err" },
45 { 0x08, "rx_mac_ctrl" },
46 { 0x09, "rx_pause" },
47 { 0x0A, "rx_bcast" },
48 { 0x0B, "rx_mcast" },
49 { 0x0C, "rx_ucast" },
50 { 0x0D, "rx_64_or_less" },
51 { 0x0E, "rx_65_127" },
52 { 0x0F, "rx_128_255" },
53 { 0x10, "rx_256_511" },
54 { 0x11, "rx_512_1023" },
55 { 0x12, "rx_1024_1522" },
56 { 0x13, "rx_1523_2000" },
57 { 0x14, "rx_2001" },
58 { 0x15, "tx_hi" },
59 { 0x16, "tx_late_col" },
60 { 0x17, "tx_pause" },
61 { 0x18, "tx_bcast" },
62 { 0x19, "tx_mcast" },
63 { 0x1A, "tx_ucast" },
64 { 0x1B, "tx_deferred" },
65 { 0x1C, "tx_total_col" },
66 { 0x1D, "tx_exc_col" },
67 { 0x1E, "tx_single_col" },
68 { 0x1F, "tx_mult_col" },
69 { 0x80, "rx_total" },
70 { 0x81, "tx_total" },
71 { 0x82, "rx_discards" },
72 { 0x83, "tx_discards" },
73};
74
75static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76{
77 u8 data;
78
79 ksz_read8(dev, addr, &data);
80 if (set)
81 data |= bits;
82 else
83 data &= ~bits;
84 ksz_write8(dev, addr, data);
85}
86
87static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88{
89 u32 data;
90
91 ksz_read32(dev, addr, &data);
92 if (set)
93 data |= bits;
94 else
95 data &= ~bits;
96 ksz_write32(dev, addr, data);
97}
98
99static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 bool set)
101{
102 u32 addr;
103 u8 data;
104
105 addr = PORT_CTRL_ADDR(port, offset);
106 ksz_read8(dev, addr, &data);
107
108 if (set)
109 data |= bits;
110 else
111 data &= ~bits;
112
113 ksz_write8(dev, addr, data);
114}
115
116static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 u32 bits, bool set)
118{
119 u32 addr;
120 u32 data;
121
122 addr = PORT_CTRL_ADDR(port, offset);
123 ksz_read32(dev, addr, &data);
124
125 if (set)
126 data |= bits;
127 else
128 data &= ~bits;
129
130 ksz_write32(dev, addr, data);
131}
132
133static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134{
135 u8 data;
136
137 do {
138 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 if (!(data & waiton))
140 break;
141 usleep_range(1, 10);
142 } while (timeout-- > 0);
143
144 if (timeout <= 0)
145 return -ETIMEDOUT;
146
147 return 0;
148}
149
150static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151{
152 struct ksz_device *dev = ds->priv;
153 int ret;
154
155 mutex_lock(&dev->vlan_mutex);
156
157 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159
160 /* wait to be cleared */
161 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 if (ret < 0) {
163 dev_dbg(dev->dev, "Failed to read vlan table\n");
164 goto exit;
165 }
166
167 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170
171 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172
173exit:
174 mutex_unlock(&dev->vlan_mutex);
175
176 return ret;
177}
178
179static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180{
181 struct ksz_device *dev = ds->priv;
182 int ret;
183
184 mutex_lock(&dev->vlan_mutex);
185
186 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189
190 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192
193 /* wait to be cleared */
194 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 if (ret < 0) {
196 dev_dbg(dev->dev, "Failed to write vlan table\n");
197 goto exit;
198 }
199
200 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201
202 /* update vlan cache table */
203 dev->vlan_cache[vid].table[0] = vlan_table[0];
204 dev->vlan_cache[vid].table[1] = vlan_table[1];
205 dev->vlan_cache[vid].table[2] = vlan_table[2];
206
207exit:
208 mutex_unlock(&dev->vlan_mutex);
209
210 return ret;
211}
212
213static void read_table(struct dsa_switch *ds, u32 *table)
214{
215 struct ksz_device *dev = ds->priv;
216
217 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221}
222
223static void write_table(struct dsa_switch *ds, u32 *table)
224{
225 struct ksz_device *dev = ds->priv;
226
227 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231}
232
233static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234{
235 u32 data;
236
237 do {
238 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 if (!(data & waiton))
240 break;
241 usleep_range(1, 10);
242 } while (timeout-- > 0);
243
244 if (timeout <= 0)
245 return -ETIMEDOUT;
246
247 return 0;
248}
249
250static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251{
252 u32 data;
253
254 do {
255 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 if (!(data & waiton))
257 break;
258 usleep_range(1, 10);
259 } while (timeout-- > 0);
260
261 if (timeout <= 0)
262 return -ETIMEDOUT;
263
264 return 0;
265}
266
267static int ksz_reset_switch(struct dsa_switch *ds)
268{
269 struct ksz_device *dev = ds->priv;
270 u8 data8;
271 u16 data16;
272 u32 data32;
273
274 /* reset switch */
275 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276
277 /* turn off SPI DO Edge select */
278 ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281
282 /* default configuration */
283 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287
288 /* disable interrupts */
289 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292
293 /* set broadcast storm protection 10% rate */
294 ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 data16 &= ~BROADCAST_STORM_RATE;
296 data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298
299 return 0;
300}
301
302static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303{
304 u8 data8;
305 u16 data16;
306
307 /* enable tag tail for host port */
308 if (cpu_port)
309 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 true);
311
312 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313
314 /* set back pressure */
315 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316
317 /* set flow control */
318 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320
321 /* enable broadcast storm limit */
322 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323
324 /* disable DiffServ priority */
325 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326
327 /* replace priority */
328 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 false);
330 ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 MTI_PVID_REPLACE, false);
332
333 /* enable 802.1p priority */
334 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335
336 /* configure MAC to 1G & RGMII mode */
337 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 data8 |= PORT_RGMII_ID_EG_ENABLE;
339 data8 &= ~PORT_MII_NOT_1GBIT;
340 data8 &= ~PORT_MII_SEL_M;
341 data8 |= PORT_RGMII_SEL;
342 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343
344 /* clear pending interrupts */
345 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346}
347
348static void ksz_config_cpu_port(struct dsa_switch *ds)
349{
350 struct ksz_device *dev = ds->priv;
351 int i;
352
353 ds->num_ports = dev->port_cnt;
354
355 for (i = 0; i < ds->num_ports; i++) {
356 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 dev->cpu_port = i;
358
359 /* enable cpu port */
360 port_setup(dev, i, true);
361 }
362 }
363}
364
365static int ksz_setup(struct dsa_switch *ds)
366{
367 struct ksz_device *dev = ds->priv;
368 int ret = 0;
369
370 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 dev->num_vlans, GFP_KERNEL);
372 if (!dev->vlan_cache)
373 return -ENOMEM;
374
375 ret = ksz_reset_switch(ds);
376 if (ret) {
377 dev_err(ds->dev, "failed to reset switch\n");
378 return ret;
379 }
380
381 /* accept packet up to 2000bytes */
382 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383
384 ksz_config_cpu_port(ds);
385
386 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387
388 /* queue based egress rate limit */
389 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390
391 /* start switch */
392 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393
394 return 0;
395}
396
397static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds)
398{
399 return DSA_TAG_PROTO_KSZ;
400}
401
402static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
403{
404 struct ksz_device *dev = ds->priv;
405 u16 val = 0;
406
407 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
408
409 return val;
410}
411
412static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
413{
414 struct ksz_device *dev = ds->priv;
415
416 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
417
418 return 0;
419}
420
421static int ksz_enable_port(struct dsa_switch *ds, int port,
422 struct phy_device *phy)
423{
424 struct ksz_device *dev = ds->priv;
425
426 /* setup slave port */
427 port_setup(dev, port, false);
428
429 return 0;
430}
431
432static void ksz_disable_port(struct dsa_switch *ds, int port,
433 struct phy_device *phy)
434{
435 struct ksz_device *dev = ds->priv;
436
437 /* there is no port disable */
438 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
439}
440
441static int ksz_sset_count(struct dsa_switch *ds)
442{
443 return TOTAL_SWITCH_COUNTER_NUM;
444}
445
446static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
447{
448 int i;
449
450 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
451 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
452 ETH_GSTRING_LEN);
453 }
454}
455
456static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
457 uint64_t *buf)
458{
459 struct ksz_device *dev = ds->priv;
460 int i;
461 u32 data;
462 int timeout;
463
464 mutex_lock(&dev->stats_mutex);
465
466 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
467 data = MIB_COUNTER_READ;
468 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
469 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
470
471 timeout = 1000;
472 do {
473 ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
474 &data);
475 usleep_range(1, 10);
476 if (!(data & MIB_COUNTER_READ))
477 break;
478 } while (timeout-- > 0);
479
480 /* failed to read MIB. get out of loop */
481 if (!timeout) {
482 dev_dbg(dev->dev, "Failed to get MIB\n");
483 break;
484 }
485
486 /* count resets upon read */
487 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
488
489 dev->mib_value[i] += (uint64_t)data;
490 buf[i] = dev->mib_value[i];
491 }
492
493 mutex_unlock(&dev->stats_mutex);
494}
495
496static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
497{
498 struct ksz_device *dev = ds->priv;
499 u8 data;
500
501 ksz_pread8(dev, port, P_STP_CTRL, &data);
502 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
503
504 switch (state) {
505 case BR_STATE_DISABLED:
506 data |= PORT_LEARN_DISABLE;
507 break;
508 case BR_STATE_LISTENING:
509 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
510 break;
511 case BR_STATE_LEARNING:
512 data |= PORT_RX_ENABLE;
513 break;
514 case BR_STATE_FORWARDING:
515 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
516 break;
517 case BR_STATE_BLOCKING:
518 data |= PORT_LEARN_DISABLE;
519 break;
520 default:
521 dev_err(ds->dev, "invalid STP state: %d\n", state);
522 return;
523 }
524
525 ksz_pwrite8(dev, port, P_STP_CTRL, data);
526}
527
528static void ksz_port_fast_age(struct dsa_switch *ds, int port)
529{
530 struct ksz_device *dev = ds->priv;
531 u8 data8;
532
533 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
534 data8 |= SW_FAST_AGING;
535 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
536
537 data8 &= ~SW_FAST_AGING;
538 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
539}
540
541static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
542{
543 struct ksz_device *dev = ds->priv;
544
545 if (flag) {
546 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
547 PORT_VLAN_LOOKUP_VID_0, true);
548 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
549 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
550 } else {
551 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
552 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
553 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
554 PORT_VLAN_LOOKUP_VID_0, false);
555 }
556
557 return 0;
558}
559
560static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
561 const struct switchdev_obj_port_vlan *vlan,
562 struct switchdev_trans *trans)
563{
564 /* nothing needed */
565
566 return 0;
567}
568
569static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
570 const struct switchdev_obj_port_vlan *vlan,
571 struct switchdev_trans *trans)
572{
573 struct ksz_device *dev = ds->priv;
574 u32 vlan_table[3];
575 u16 vid;
576 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
577
578 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
579 if (get_vlan_table(ds, vid, vlan_table)) {
580 dev_dbg(dev->dev, "Failed to get vlan table\n");
581 return;
582 }
583
584 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
585 if (untagged)
586 vlan_table[1] |= BIT(port);
587 else
588 vlan_table[1] &= ~BIT(port);
589 vlan_table[1] &= ~(BIT(dev->cpu_port));
590
591 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
592
593 if (set_vlan_table(ds, vid, vlan_table)) {
594 dev_dbg(dev->dev, "Failed to set vlan table\n");
595 return;
596 }
597
598 /* change PVID */
599 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
600 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
601 }
602}
603
604static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
605 const struct switchdev_obj_port_vlan *vlan)
606{
607 struct ksz_device *dev = ds->priv;
608 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
609 u32 vlan_table[3];
610 u16 vid;
611 u16 pvid;
612
613 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
614 pvid = pvid & 0xFFF;
615
616 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
617 if (get_vlan_table(ds, vid, vlan_table)) {
618 dev_dbg(dev->dev, "Failed to get vlan table\n");
619 return -ETIMEDOUT;
620 }
621
622 vlan_table[2] &= ~BIT(port);
623
624 if (pvid == vid)
625 pvid = 1;
626
627 if (untagged)
628 vlan_table[1] &= ~BIT(port);
629
630 if (set_vlan_table(ds, vid, vlan_table)) {
631 dev_dbg(dev->dev, "Failed to set vlan table\n");
632 return -ETIMEDOUT;
633 }
634 }
635
636 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
637
638 return 0;
639}
640
Woojung Huhb987e982017-05-31 20:19:19 +0000641struct alu_struct {
642 /* entry 1 */
643 u8 is_static:1;
644 u8 is_src_filter:1;
645 u8 is_dst_filter:1;
646 u8 prio_age:3;
647 u32 _reserv_0_1:23;
648 u8 mstp:3;
649 /* entry 2 */
650 u8 is_override:1;
651 u8 is_use_fid:1;
652 u32 _reserv_1_1:23;
653 u8 port_forward:7;
654 /* entry 3 & 4*/
655 u32 _reserv_2_1:9;
656 u8 fid:7;
657 u8 mac[ETH_ALEN];
658};
659
Arkadi Sharshevsky1b6dd552017-08-06 16:15:40 +0300660static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
661 const unsigned char *addr, u16 vid)
Woojung Huhb987e982017-05-31 20:19:19 +0000662{
663 struct ksz_device *dev = ds->priv;
664 u32 alu_table[4];
665 u32 data;
Arkadi Sharshevsky1b6dd552017-08-06 16:15:40 +0300666 int ret = 0;
Woojung Huhb987e982017-05-31 20:19:19 +0000667
668 mutex_lock(&dev->alu_mutex);
669
670 /* find any entry with mac & vid */
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300671 data = vid << ALU_FID_INDEX_S;
672 data |= ((addr[0] << 8) | addr[1]);
Woojung Huhb987e982017-05-31 20:19:19 +0000673 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
674
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300675 data = ((addr[2] << 24) | (addr[3] << 16));
676 data |= ((addr[4] << 8) | addr[5]);
Woojung Huhb987e982017-05-31 20:19:19 +0000677 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
678
679 /* start read operation */
680 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
681
682 /* wait to be finished */
Arkadi Sharshevsky1b6dd552017-08-06 16:15:40 +0300683 ret = wait_alu_ready(dev, ALU_START, 1000);
684 if (ret < 0) {
Woojung Huhb987e982017-05-31 20:19:19 +0000685 dev_dbg(dev->dev, "Failed to read ALU\n");
686 goto exit;
687 }
688
689 /* read ALU entry */
690 read_table(ds, alu_table);
691
692 /* update ALU entry */
693 alu_table[0] = ALU_V_STATIC_VALID;
694 alu_table[1] |= BIT(port);
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300695 if (vid)
Woojung Huhb987e982017-05-31 20:19:19 +0000696 alu_table[1] |= ALU_V_USE_FID;
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300697 alu_table[2] = (vid << ALU_V_FID_S);
698 alu_table[2] |= ((addr[0] << 8) | addr[1]);
699 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
700 alu_table[3] |= ((addr[4] << 8) | addr[5]);
Woojung Huhb987e982017-05-31 20:19:19 +0000701
702 write_table(ds, alu_table);
703
704 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
705
706 /* wait to be finished */
Arkadi Sharshevsky1b6dd552017-08-06 16:15:40 +0300707 ret = wait_alu_ready(dev, ALU_START, 1000);
708 if (ret < 0)
709 dev_dbg(dev->dev, "Failed to write ALU\n");
Woojung Huhb987e982017-05-31 20:19:19 +0000710
711exit:
712 mutex_unlock(&dev->alu_mutex);
Arkadi Sharshevsky1b6dd552017-08-06 16:15:40 +0300713
714 return ret;
Woojung Huhb987e982017-05-31 20:19:19 +0000715}
716
717static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300718 const unsigned char *addr, u16 vid)
Woojung Huhb987e982017-05-31 20:19:19 +0000719{
720 struct ksz_device *dev = ds->priv;
721 u32 alu_table[4];
722 u32 data;
723 int ret = 0;
724
725 mutex_lock(&dev->alu_mutex);
726
727 /* read any entry with mac & vid */
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300728 data = vid << ALU_FID_INDEX_S;
729 data |= ((addr[0] << 8) | addr[1]);
Woojung Huhb987e982017-05-31 20:19:19 +0000730 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
731
Arkadi Sharshevsky6c2c1dc2017-08-06 16:15:39 +0300732 data = ((addr[2] << 24) | (addr[3] << 16));
733 data |= ((addr[4] << 8) | addr[5]);
Woojung Huhb987e982017-05-31 20:19:19 +0000734 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
735
736 /* start read operation */
737 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
738
739 /* wait to be finished */
740 ret = wait_alu_ready(dev, ALU_START, 1000);
741 if (ret < 0) {
742 dev_dbg(dev->dev, "Failed to read ALU\n");
743 goto exit;
744 }
745
746 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
747 if (alu_table[0] & ALU_V_STATIC_VALID) {
748 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
749 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
750 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
751
752 /* clear forwarding port */
753 alu_table[2] &= ~BIT(port);
754
755 /* if there is no port to forward, clear table */
756 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
757 alu_table[0] = 0;
758 alu_table[1] = 0;
759 alu_table[2] = 0;
760 alu_table[3] = 0;
761 }
762 } else {
763 alu_table[0] = 0;
764 alu_table[1] = 0;
765 alu_table[2] = 0;
766 alu_table[3] = 0;
767 }
768
769 write_table(ds, alu_table);
770
771 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
772
773 /* wait to be finished */
774 ret = wait_alu_ready(dev, ALU_START, 1000);
775 if (ret < 0)
776 dev_dbg(dev->dev, "Failed to write ALU\n");
777
778exit:
779 mutex_unlock(&dev->alu_mutex);
780
781 return ret;
782}
783
784static void convert_alu(struct alu_struct *alu, u32 *alu_table)
785{
786 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
787 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
788 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
789 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
790 ALU_V_PRIO_AGE_CNT_M;
791 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
792
793 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
794 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
795 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
796
797 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
798
799 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
800 alu->mac[1] = alu_table[2] & 0xFF;
801 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
802 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
803 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
804 alu->mac[5] = alu_table[3] & 0xFF;
805}
806
807static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
808 struct switchdev_obj_port_fdb *fdb,
809 switchdev_obj_dump_cb_t *cb)
810{
811 struct ksz_device *dev = ds->priv;
812 int ret = 0;
813 u32 data;
814 u32 alu_table[4];
815 struct alu_struct alu;
816 int timeout;
817
818 mutex_lock(&dev->alu_mutex);
819
820 /* start ALU search */
821 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
822
823 do {
824 timeout = 1000;
825 do {
826 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
827 if ((data & ALU_VALID) || !(data & ALU_START))
828 break;
829 usleep_range(1, 10);
830 } while (timeout-- > 0);
831
832 if (!timeout) {
833 dev_dbg(dev->dev, "Failed to search ALU\n");
834 ret = -ETIMEDOUT;
835 goto exit;
836 }
837
838 /* read ALU table */
839 read_table(ds, alu_table);
840
841 convert_alu(&alu, alu_table);
842
843 if (alu.port_forward & BIT(port)) {
844 fdb->vid = alu.fid;
845 if (alu.is_static)
846 fdb->ndm_state = NUD_NOARP;
847 else
848 fdb->ndm_state = NUD_REACHABLE;
849 ether_addr_copy(fdb->addr, alu.mac);
850
851 ret = cb(&fdb->obj);
852 if (ret)
853 goto exit;
854 }
855 } while (data & ALU_START);
856
857exit:
858
859 /* stop ALU search */
860 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
861
862 mutex_unlock(&dev->alu_mutex);
863
864 return ret;
865}
866
867static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
868 const struct switchdev_obj_port_mdb *mdb,
869 struct switchdev_trans *trans)
870{
871 /* nothing to do */
872 return 0;
873}
874
875static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
876 const struct switchdev_obj_port_mdb *mdb,
877 struct switchdev_trans *trans)
878{
879 struct ksz_device *dev = ds->priv;
880 u32 static_table[4];
881 u32 data;
882 int index;
883 u32 mac_hi, mac_lo;
884
885 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
886 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
887 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
888
889 mutex_lock(&dev->alu_mutex);
890
891 for (index = 0; index < dev->num_statics; index++) {
892 /* find empty slot first */
893 data = (index << ALU_STAT_INDEX_S) |
894 ALU_STAT_READ | ALU_STAT_START;
895 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
896
897 /* wait to be finished */
898 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
899 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
900 goto exit;
901 }
902
903 /* read ALU static table */
904 read_table(ds, static_table);
905
906 if (static_table[0] & ALU_V_STATIC_VALID) {
907 /* check this has same vid & mac address */
908 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
909 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
910 (static_table[3] == mac_lo)) {
911 /* found matching one */
912 break;
913 }
914 } else {
915 /* found empty one */
916 break;
917 }
918 }
919
920 /* no available entry */
921 if (index == dev->num_statics)
922 goto exit;
923
924 /* add entry */
925 static_table[0] = ALU_V_STATIC_VALID;
926 static_table[1] |= BIT(port);
927 if (mdb->vid)
928 static_table[1] |= ALU_V_USE_FID;
929 static_table[2] = (mdb->vid << ALU_V_FID_S);
930 static_table[2] |= mac_hi;
931 static_table[3] = mac_lo;
932
933 write_table(ds, static_table);
934
935 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
936 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
937
938 /* wait to be finished */
939 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
940 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
941
942exit:
943 mutex_unlock(&dev->alu_mutex);
944}
945
946static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
947 const struct switchdev_obj_port_mdb *mdb)
948{
949 struct ksz_device *dev = ds->priv;
950 u32 static_table[4];
951 u32 data;
952 int index;
953 int ret = 0;
954 u32 mac_hi, mac_lo;
955
956 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
957 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
958 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
959
960 mutex_lock(&dev->alu_mutex);
961
962 for (index = 0; index < dev->num_statics; index++) {
963 /* find empty slot first */
964 data = (index << ALU_STAT_INDEX_S) |
965 ALU_STAT_READ | ALU_STAT_START;
966 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
967
968 /* wait to be finished */
969 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
970 if (ret < 0) {
971 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
972 goto exit;
973 }
974
975 /* read ALU static table */
976 read_table(ds, static_table);
977
978 if (static_table[0] & ALU_V_STATIC_VALID) {
979 /* check this has same vid & mac address */
980
981 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
982 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
983 (static_table[3] == mac_lo)) {
984 /* found matching one */
985 break;
986 }
987 }
988 }
989
990 /* no available entry */
991 if (index == dev->num_statics) {
992 ret = -EINVAL;
993 goto exit;
994 }
995
996 /* clear port */
997 static_table[1] &= ~BIT(port);
998
999 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
1000 /* delete entry */
1001 static_table[0] = 0;
1002 static_table[1] = 0;
1003 static_table[2] = 0;
1004 static_table[3] = 0;
1005 }
1006
1007 write_table(ds, static_table);
1008
1009 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1010 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1011
1012 /* wait to be finished */
1013 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1014 if (ret < 0)
1015 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1016
1017exit:
1018 mutex_unlock(&dev->alu_mutex);
1019
1020 return ret;
1021}
1022
Woojung Huhb987e982017-05-31 20:19:19 +00001023static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1024 struct dsa_mall_mirror_tc_entry *mirror,
1025 bool ingress)
1026{
1027 struct ksz_device *dev = ds->priv;
1028
1029 if (ingress)
1030 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1031 else
1032 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1033
1034 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1035
1036 /* configure mirror port */
1037 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1038 PORT_MIRROR_SNIFFER, true);
1039
1040 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1041
1042 return 0;
1043}
1044
1045static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1046 struct dsa_mall_mirror_tc_entry *mirror)
1047{
1048 struct ksz_device *dev = ds->priv;
1049 u8 data;
1050
1051 if (mirror->ingress)
1052 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1053 else
1054 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1055
1056 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1057
1058 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1059 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1060 PORT_MIRROR_SNIFFER, false);
1061}
1062
1063static const struct dsa_switch_ops ksz_switch_ops = {
1064 .get_tag_protocol = ksz_get_tag_protocol,
1065 .setup = ksz_setup,
1066 .phy_read = ksz_phy_read16,
1067 .phy_write = ksz_phy_write16,
1068 .port_enable = ksz_enable_port,
1069 .port_disable = ksz_disable_port,
1070 .get_strings = ksz_get_strings,
1071 .get_ethtool_stats = ksz_get_ethtool_stats,
1072 .get_sset_count = ksz_sset_count,
1073 .port_stp_state_set = ksz_port_stp_state_set,
1074 .port_fast_age = ksz_port_fast_age,
1075 .port_vlan_filtering = ksz_port_vlan_filtering,
1076 .port_vlan_prepare = ksz_port_vlan_prepare,
1077 .port_vlan_add = ksz_port_vlan_add,
1078 .port_vlan_del = ksz_port_vlan_del,
Woojung Huhb987e982017-05-31 20:19:19 +00001079 .port_fdb_dump = ksz_port_fdb_dump,
1080 .port_fdb_add = ksz_port_fdb_add,
1081 .port_fdb_del = ksz_port_fdb_del,
1082 .port_mdb_prepare = ksz_port_mdb_prepare,
1083 .port_mdb_add = ksz_port_mdb_add,
1084 .port_mdb_del = ksz_port_mdb_del,
Woojung Huhb987e982017-05-31 20:19:19 +00001085 .port_mirror_add = ksz_port_mirror_add,
1086 .port_mirror_del = ksz_port_mirror_del,
1087};
1088
1089struct ksz_chip_data {
1090 u32 chip_id;
1091 const char *dev_name;
1092 int num_vlans;
1093 int num_alus;
1094 int num_statics;
1095 int cpu_ports;
1096 int port_cnt;
1097};
1098
1099static const struct ksz_chip_data ksz_switch_chips[] = {
1100 {
1101 .chip_id = 0x00947700,
1102 .dev_name = "KSZ9477",
1103 .num_vlans = 4096,
1104 .num_alus = 4096,
1105 .num_statics = 16,
1106 .cpu_ports = 0x7F, /* can be configured as cpu port */
1107 .port_cnt = 7, /* total physical port count */
1108 },
1109};
1110
1111static int ksz_switch_init(struct ksz_device *dev)
1112{
1113 int i;
1114
1115 mutex_init(&dev->reg_mutex);
1116 mutex_init(&dev->stats_mutex);
1117 mutex_init(&dev->alu_mutex);
1118 mutex_init(&dev->vlan_mutex);
1119
1120 dev->ds->ops = &ksz_switch_ops;
1121
1122 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1123 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1124
1125 if (dev->chip_id == chip->chip_id) {
1126 dev->name = chip->dev_name;
1127 dev->num_vlans = chip->num_vlans;
1128 dev->num_alus = chip->num_alus;
1129 dev->num_statics = chip->num_statics;
1130 dev->port_cnt = chip->port_cnt;
1131 dev->cpu_ports = chip->cpu_ports;
1132
1133 break;
1134 }
1135 }
1136
1137 /* no switch found */
1138 if (!dev->port_cnt)
1139 return -ENODEV;
1140
1141 return 0;
1142}
1143
1144struct ksz_device *ksz_switch_alloc(struct device *base,
1145 const struct ksz_io_ops *ops,
1146 void *priv)
1147{
1148 struct dsa_switch *ds;
1149 struct ksz_device *swdev;
1150
1151 ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1152 if (!ds)
1153 return NULL;
1154
1155 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1156 if (!swdev)
1157 return NULL;
1158
1159 ds->priv = swdev;
1160 swdev->dev = base;
1161
1162 swdev->ds = ds;
1163 swdev->priv = priv;
1164 swdev->ops = ops;
1165
1166 return swdev;
1167}
1168EXPORT_SYMBOL(ksz_switch_alloc);
1169
1170int ksz_switch_detect(struct ksz_device *dev)
1171{
1172 u8 data8;
1173 u32 id32;
1174 int ret;
1175
1176 /* turn off SPI DO Edge select */
1177 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1178 if (ret)
1179 return ret;
1180
1181 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1182 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1183 if (ret)
1184 return ret;
1185
1186 /* read chip id */
1187 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1188 if (ret)
1189 return ret;
1190
1191 dev->chip_id = id32;
1192
1193 return 0;
1194}
1195EXPORT_SYMBOL(ksz_switch_detect);
1196
1197int ksz_switch_register(struct ksz_device *dev)
1198{
1199 int ret;
1200
1201 if (dev->pdata)
1202 dev->chip_id = dev->pdata->chip_id;
1203
1204 if (ksz_switch_detect(dev))
1205 return -EINVAL;
1206
1207 ret = ksz_switch_init(dev);
1208 if (ret)
1209 return ret;
1210
1211 return dsa_register_switch(dev->ds);
1212}
1213EXPORT_SYMBOL(ksz_switch_register);
1214
1215void ksz_switch_remove(struct ksz_device *dev)
1216{
1217 dsa_unregister_switch(dev->ds);
1218}
1219EXPORT_SYMBOL(ksz_switch_remove);
1220
1221MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1222MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1223MODULE_LICENSE("GPL");