blob: 7f08d681a74b4e37529f6c09ae1d2c1a944dcabd [file] [log] [blame]
Eric Anholtc8b75bc2015-03-02 13:01:12 -08001/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34#include "drm_atomic.h"
35#include "drm_atomic_helper.h"
36#include "drm_crtc_helper.h"
37#include "linux/clk.h"
Eric Anholtb501bac2015-11-30 12:34:01 -080038#include "drm_fb_cma_helper.h"
Eric Anholtc8b75bc2015-03-02 13:01:12 -080039#include "linux/component.h"
40#include "linux/of_device.h"
41#include "vc4_drv.h"
42#include "vc4_regs.h"
43
44struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
Mario Kleiner1bf59f12016-06-23 08:17:50 +020049 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
Eric Anholtc8b75bc2015-03-02 13:01:12 -080052 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
Eric Anholte582b6c2016-03-31 18:38:20 -070055 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
Mario Kleiner1bf59f12016-06-23 08:17:50 +020058 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
Eric Anholte582b6c2016-03-31 18:38:20 -070060
Eric Anholtc8b75bc2015-03-02 13:01:12 -080061 struct drm_pending_vblank_event *event;
62};
63
Eric Anholtd8dbf442015-12-28 13:25:41 -080064struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68};
69
Eric Anholtc8b75bc2015-03-02 13:01:12 -080070static inline struct vc4_crtc *
71to_vc4_crtc(struct drm_crtc *crtc)
72{
73 return (struct vc4_crtc *)crtc;
74}
75
Eric Anholtd8dbf442015-12-28 13:25:41 -080076static inline struct vc4_crtc_state *
77to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78{
79 return (struct vc4_crtc_state *)crtc_state;
80}
81
Eric Anholtc8b75bc2015-03-02 13:01:12 -080082struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder0_type;
87 enum vc4_encoder_type encoder1_type;
88};
89
90#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93#define CRTC_REG(reg) { reg, #reg }
94static const struct {
95 u32 reg;
96 const char *name;
97} crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
Eric Anholtc31806fb2016-02-15 17:06:02 -0800100 CRTC_REG(PV_VSYNCD_EVEN),
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111};
112
113static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114{
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122}
123
124#ifdef CONFIG_DEBUG_FS
125int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126{
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151}
152#endif
153
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200154int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 unsigned int flags, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
158{
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161 u32 val;
162 int fifo_lines;
163 int vblank_lines;
164 int ret = 0;
165
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168 /* Get optional system timestamp before query. */
169 if (stime)
170 *stime = ktime_get();
171
172 /*
173 * Read vertical scanline which is currently composed for our
174 * pixelvalve by the HVS, and also the scaler status.
175 */
176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178 /* Get optional system timestamp after query. */
179 if (etime)
180 *etime = ktime_get();
181
182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184 /* Vertical position of hvs composed scanline. */
185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
Mario Kleinere5380922016-07-19 20:59:00 +0200186 *hpos = 0;
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200187
Mario Kleinere5380922016-07-19 20:59:00 +0200188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 *vpos /= 2;
190
191 /* Use hpos to correct for field offset in interlaced mode. */
192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 *hpos += mode->crtc_htotal / 2;
194 }
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200195
196 /* This is the offset we need for translating hvs -> pv scanout pos. */
197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199 if (fifo_lines > 0)
200 ret |= DRM_SCANOUTPOS_VALID;
201
202 /* HVS more than fifo_lines into frame for compositing? */
203 if (*vpos > fifo_lines) {
204 /*
205 * We are in active scanout and can get some meaningful results
206 * from HVS. The actual PV scanout can not trail behind more
207 * than fifo_lines as that is the fifo's capacity. Assume that
208 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 * refilling the fifo and PV consuming from the fifo, ie.
210 * whenever the PV consumes and frees up a scanline in the
211 * fifo, the HVS will immediately refill it, therefore
212 * incrementing vpos. Therefore we choose HVS read position -
213 * fifo size in scanlines as a estimate of the real scanout
214 * position of the PV.
215 */
216 *vpos -= fifo_lines + 1;
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200217
218 ret |= DRM_SCANOUTPOS_ACCURATE;
219 return ret;
220 }
221
222 /*
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
230 */
231 ret |= DRM_SCANOUTPOS_IN_VBLANK;
Eric Anholt682e62c2016-09-28 17:30:25 -0700232 vblank_lines = mode->vtotal - mode->vdisplay;
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200233
234 if (flags & DRM_CALLED_FROM_VBLIRQ) {
235 /*
236 * Assume the irq handler got called close to first
237 * line of vblank, so PV has about a full vblank
238 * scanlines to go, and as a base timestamp use the
239 * one taken at entry into vblank irq handler, so it
240 * is not affected by random delays due to lock
241 * contention on event_lock or vblank_time lock in
242 * the core.
243 */
244 *vpos = -vblank_lines;
245
246 if (stime)
247 *stime = vc4_crtc->t_vblank;
248 if (etime)
249 *etime = vc4_crtc->t_vblank;
250
251 /*
252 * If the HVS fifo is not yet full then we know for certain
253 * we are at the very beginning of vblank, as the hvs just
254 * started refilling, and the stime and etime timestamps
255 * truly correspond to start of vblank.
256 */
257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 ret |= DRM_SCANOUTPOS_ACCURATE;
259 } else {
260 /*
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
265 */
266 *vpos = 0;
267 }
268
269 return ret;
270}
271
272int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 int *max_error, struct timeval *vblank_time,
274 unsigned flags)
275{
276 struct vc4_dev *vc4 = to_vc4_dev(dev);
277 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
278 struct drm_crtc *crtc = &vc4_crtc->base;
279 struct drm_crtc_state *state = crtc->state;
280
281 /* Helper routine in DRM core does all the work: */
282 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
283 vblank_time, flags,
284 &state->adjusted_mode);
285}
286
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800287static void vc4_crtc_destroy(struct drm_crtc *crtc)
288{
289 drm_crtc_cleanup(crtc);
290}
291
Eric Anholte582b6c2016-03-31 18:38:20 -0700292static void
293vc4_crtc_lut_load(struct drm_crtc *crtc)
294{
295 struct drm_device *dev = crtc->dev;
296 struct vc4_dev *vc4 = to_vc4_dev(dev);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 u32 i;
299
300 /* The LUT memory is laid out with each HVS channel in order,
301 * each of which takes 256 writes for R, 256 for G, then 256
302 * for B.
303 */
304 HVS_WRITE(SCALER_GAMADDR,
305 SCALER_GAMADDR_AUTOINC |
306 (vc4_crtc->channel * 3 * crtc->gamma_size));
307
308 for (i = 0; i < crtc->gamma_size; i++)
309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
312 for (i = 0; i < crtc->gamma_size; i++)
313 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314}
315
Maarten Lankhorst7ea77282016-06-07 12:49:30 +0200316static int
Eric Anholte582b6c2016-03-31 18:38:20 -0700317vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
Maarten Lankhorst7ea77282016-06-07 12:49:30 +0200318 uint32_t size)
Eric Anholte582b6c2016-03-31 18:38:20 -0700319{
320 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321 u32 i;
322
Maarten Lankhorst7ea77282016-06-07 12:49:30 +0200323 for (i = 0; i < size; i++) {
Eric Anholte582b6c2016-03-31 18:38:20 -0700324 vc4_crtc->lut_r[i] = r[i] >> 8;
325 vc4_crtc->lut_g[i] = g[i] >> 8;
326 vc4_crtc->lut_b[i] = b[i] >> 8;
327 }
328
329 vc4_crtc_lut_load(crtc);
Maarten Lankhorst7ea77282016-06-07 12:49:30 +0200330
331 return 0;
Eric Anholte582b6c2016-03-31 18:38:20 -0700332}
333
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800334static u32 vc4_get_fifo_full_level(u32 format)
335{
336 static const u32 fifo_len_bytes = 64;
337 static const u32 hvs_latency_pix = 6;
338
339 switch (format) {
340 case PV_CONTROL_FORMAT_DSIV_16:
341 case PV_CONTROL_FORMAT_DSIC_16:
342 return fifo_len_bytes - 2 * hvs_latency_pix;
343 case PV_CONTROL_FORMAT_DSIV_18:
344 return fifo_len_bytes - 14;
345 case PV_CONTROL_FORMAT_24:
346 case PV_CONTROL_FORMAT_DSIV_24:
347 default:
348 return fifo_len_bytes - 3 * hvs_latency_pix;
349 }
350}
351
352/*
353 * Returns the clock select bit for the connector attached to the
354 * CRTC.
355 */
356static int vc4_get_clock_select(struct drm_crtc *crtc)
357{
358 struct drm_connector *connector;
359
360 drm_for_each_connector(connector, crtc->dev) {
Julia Lawall2fa8e902015-10-23 07:38:00 +0200361 if (connector->state->crtc == crtc) {
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800362 struct drm_encoder *encoder = connector->encoder;
363 struct vc4_encoder *vc4_encoder =
364 to_vc4_encoder(encoder);
365
366 return vc4_encoder->clock_select;
367 }
368 }
369
370 return -1;
371}
372
373static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
374{
Eric Anholt6a609202016-02-16 10:24:08 -0800375 struct drm_device *dev = crtc->dev;
376 struct vc4_dev *vc4 = to_vc4_dev(dev);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800377 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378 struct drm_crtc_state *state = crtc->state;
379 struct drm_display_mode *mode = &state->adjusted_mode;
380 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
Eric Anholtdfccd932016-09-29 15:34:44 -0700381 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800382 u32 format = PV_CONTROL_FORMAT_24;
383 bool debug_dump_regs = false;
384 int clock_select = vc4_get_clock_select(crtc);
385
386 if (debug_dump_regs) {
387 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388 vc4_crtc_dump_regs(vc4_crtc);
389 }
390
391 /* Reset the PV fifo. */
392 CRTC_WRITE(PV_CONTROL, 0);
393 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394 CRTC_WRITE(PV_CONTROL, 0);
395
396 CRTC_WRITE(PV_HORZA,
Eric Anholtdfccd932016-09-29 15:34:44 -0700397 VC4_SET_FIELD((mode->htotal -
398 mode->hsync_end) * pixel_rep,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800399 PV_HORZA_HBP) |
Eric Anholtdfccd932016-09-29 15:34:44 -0700400 VC4_SET_FIELD((mode->hsync_end -
401 mode->hsync_start) * pixel_rep,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800402 PV_HORZA_HSYNC));
403 CRTC_WRITE(PV_HORZB,
Eric Anholtdfccd932016-09-29 15:34:44 -0700404 VC4_SET_FIELD((mode->hsync_start -
405 mode->hdisplay) * pixel_rep,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800406 PV_HORZB_HFP) |
Eric Anholtdfccd932016-09-29 15:34:44 -0700407 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800408
Eric Anholta7c50472016-02-15 17:31:41 -0800409 CRTC_WRITE(PV_VERTA,
Eric Anholt682e62c2016-09-28 17:30:25 -0700410 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
Eric Anholta7c50472016-02-15 17:31:41 -0800411 PV_VERTA_VBP) |
Eric Anholt682e62c2016-09-28 17:30:25 -0700412 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
Eric Anholta7c50472016-02-15 17:31:41 -0800413 PV_VERTA_VSYNC));
414 CRTC_WRITE(PV_VERTB,
Eric Anholt682e62c2016-09-28 17:30:25 -0700415 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
Eric Anholta7c50472016-02-15 17:31:41 -0800416 PV_VERTB_VFP) |
Eric Anholt682e62c2016-09-28 17:30:25 -0700417 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
Eric Anholta7c50472016-02-15 17:31:41 -0800418
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800419 if (interlace) {
420 CRTC_WRITE(PV_VERTA_EVEN,
Eric Anholt682e62c2016-09-28 17:30:25 -0700421 VC4_SET_FIELD(mode->crtc_vtotal -
422 mode->crtc_vsync_end - 1,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800423 PV_VERTA_VBP) |
Eric Anholt682e62c2016-09-28 17:30:25 -0700424 VC4_SET_FIELD(mode->crtc_vsync_end -
425 mode->crtc_vsync_start,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800426 PV_VERTA_VSYNC));
427 CRTC_WRITE(PV_VERTB_EVEN,
Eric Anholt682e62c2016-09-28 17:30:25 -0700428 VC4_SET_FIELD(mode->crtc_vsync_start -
429 mode->crtc_vdisplay,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800430 PV_VERTB_VFP) |
Eric Anholt682e62c2016-09-28 17:30:25 -0700431 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432
433 /* We set up first field even mode for HDMI. VEC's
434 * NTSC mode would want first field odd instead, once
435 * we support it (to do so, set ODD_FIRST and put the
436 * delay in VSYNCD_EVEN instead).
437 */
438 CRTC_WRITE(PV_V_CONTROL,
439 PV_VCONTROL_CONTINUOUS |
440 PV_VCONTROL_INTERLACE |
Eric Anholtdfccd932016-09-29 15:34:44 -0700441 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
Eric Anholt682e62c2016-09-28 17:30:25 -0700442 PV_VCONTROL_ODD_DELAY));
443 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
444 } else {
445 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800446 }
447
Eric Anholtdfccd932016-09-29 15:34:44 -0700448 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800449
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800450
451 CRTC_WRITE(PV_CONTROL,
452 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
453 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
454 PV_CONTROL_FIFO_LEVEL) |
Eric Anholtdfccd932016-09-29 15:34:44 -0700455 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800456 PV_CONTROL_CLR_AT_START |
457 PV_CONTROL_TRIGGER_UNDERFLOW |
458 PV_CONTROL_WAIT_HSTART |
459 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
460 PV_CONTROL_FIFO_CLR |
461 PV_CONTROL_EN);
462
Eric Anholt6a609202016-02-16 10:24:08 -0800463 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
464 SCALER_DISPBKGND_AUTOHS |
Eric Anholte582b6c2016-03-31 18:38:20 -0700465 SCALER_DISPBKGND_GAMMA |
Eric Anholt6a609202016-02-16 10:24:08 -0800466 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
467
Eric Anholte582b6c2016-03-31 18:38:20 -0700468 /* Reload the LUT, since the SRAMs would have been disabled if
469 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
470 */
471 vc4_crtc_lut_load(crtc);
472
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800473 if (debug_dump_regs) {
474 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
475 vc4_crtc_dump_regs(vc4_crtc);
476 }
477}
478
479static void require_hvs_enabled(struct drm_device *dev)
480{
481 struct vc4_dev *vc4 = to_vc4_dev(dev);
482
483 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
484 SCALER_DISPCTRL_ENABLE);
485}
486
487static void vc4_crtc_disable(struct drm_crtc *crtc)
488{
489 struct drm_device *dev = crtc->dev;
490 struct vc4_dev *vc4 = to_vc4_dev(dev);
491 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492 u32 chan = vc4_crtc->channel;
493 int ret;
494 require_hvs_enabled(dev);
495
Mario Kleinere941f052016-07-19 20:59:01 +0200496 /* Disable vblank irq handling before crtc is disabled. */
497 drm_crtc_vblank_off(crtc);
498
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800499 CRTC_WRITE(PV_V_CONTROL,
500 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
501 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
502 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
503
504 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
505 SCALER_DISPCTRLX_ENABLE) {
506 HVS_WRITE(SCALER_DISPCTRLX(chan),
507 SCALER_DISPCTRLX_RESET);
508
509 /* While the docs say that reset is self-clearing, it
510 * seems it doesn't actually.
511 */
512 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
513 }
514
515 /* Once we leave, the scaler should be disabled and its fifo empty. */
516
517 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
518
519 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
520 SCALER_DISPSTATX_MODE) !=
521 SCALER_DISPSTATX_MODE_DISABLED);
522
523 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
524 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
525 SCALER_DISPSTATX_EMPTY);
526}
527
528static void vc4_crtc_enable(struct drm_crtc *crtc)
529{
530 struct drm_device *dev = crtc->dev;
531 struct vc4_dev *vc4 = to_vc4_dev(dev);
532 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
533 struct drm_crtc_state *state = crtc->state;
534 struct drm_display_mode *mode = &state->adjusted_mode;
535
536 require_hvs_enabled(dev);
537
538 /* Turn on the scaler, which will wait for vstart to start
539 * compositing.
540 */
541 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
542 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
543 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
544 SCALER_DISPCTRLX_ENABLE);
545
546 /* Turn on the pixel valve, which will emit the vstart signal. */
547 CRTC_WRITE(PV_V_CONTROL,
548 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
Mario Kleinere941f052016-07-19 20:59:01 +0200549
550 /* Enable vblank irq handling after crtc is started. */
551 drm_crtc_vblank_on(crtc);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800552}
553
Mario Kleineracc1be12016-07-19 20:58:58 +0200554static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
555 const struct drm_display_mode *mode,
556 struct drm_display_mode *adjusted_mode)
557{
Mario Kleiner36451462016-07-19 20:58:59 +0200558 /* Do not allow doublescan modes from user space */
559 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
560 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
561 crtc->base.id);
562 return false;
563 }
564
Mario Kleineracc1be12016-07-19 20:58:58 +0200565 return true;
566}
567
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800568static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
569 struct drm_crtc_state *state)
570{
Eric Anholtd8dbf442015-12-28 13:25:41 -0800571 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800572 struct drm_device *dev = crtc->dev;
573 struct vc4_dev *vc4 = to_vc4_dev(dev);
574 struct drm_plane *plane;
Eric Anholtd8dbf442015-12-28 13:25:41 -0800575 unsigned long flags;
Daniel Vetter2f196b72016-06-02 16:21:44 +0200576 const struct drm_plane_state *plane_state;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800577 u32 dlist_count = 0;
Eric Anholtd8dbf442015-12-28 13:25:41 -0800578 int ret;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800579
580 /* The pixelvalve can only feed one encoder (and encoders are
581 * 1:1 with connectors.)
582 */
Maarten Lankhorst14de6c42016-01-04 12:53:20 +0100583 if (hweight32(state->connector_mask) > 1)
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800584 return -EINVAL;
585
Daniel Vetter2f196b72016-06-02 16:21:44 +0200586 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800587 dlist_count += vc4_plane_dlist_size(plane_state);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800588
589 dlist_count++; /* Account for SCALER_CTL0_END. */
590
Eric Anholtd8dbf442015-12-28 13:25:41 -0800591 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
592 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
593 dlist_count, 1, 0);
594 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
595 if (ret)
596 return ret;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800597
598 return 0;
599}
600
601static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
602 struct drm_crtc_state *old_state)
603{
604 struct drm_device *dev = crtc->dev;
605 struct vc4_dev *vc4 = to_vc4_dev(dev);
606 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
Eric Anholtd8dbf442015-12-28 13:25:41 -0800607 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800608 struct drm_plane *plane;
609 bool debug_dump_regs = false;
Eric Anholtd8dbf442015-12-28 13:25:41 -0800610 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
611 u32 __iomem *dlist_next = dlist_start;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800612
613 if (debug_dump_regs) {
614 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
615 vc4_hvs_dump_state(dev);
616 }
617
Eric Anholtd8dbf442015-12-28 13:25:41 -0800618 /* Copy all the active planes' dlist contents to the hardware dlist. */
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800619 drm_atomic_crtc_for_each_plane(plane, crtc) {
620 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
621 }
622
Eric Anholtd8dbf442015-12-28 13:25:41 -0800623 writel(SCALER_CTL0_END, dlist_next);
624 dlist_next++;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800625
Eric Anholtd8dbf442015-12-28 13:25:41 -0800626 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800627
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800628 if (crtc->state->event) {
629 unsigned long flags;
630
631 crtc->state->event->pipe = drm_crtc_index(crtc);
632
633 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
634
635 spin_lock_irqsave(&dev->event_lock, flags);
636 vc4_crtc->event = crtc->state->event;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800637 crtc->state->event = NULL;
Mario Kleiner56d1fe02016-05-18 14:02:46 +0200638
639 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
640 vc4_state->mm.start);
641
642 spin_unlock_irqrestore(&dev->event_lock, flags);
643 } else {
644 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645 vc4_state->mm.start);
646 }
647
648 if (debug_dump_regs) {
649 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
650 vc4_hvs_dump_state(dev);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800651 }
652}
653
Dave Airlie1f437102015-10-22 10:23:31 +1000654int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800655{
656 struct vc4_dev *vc4 = to_vc4_dev(dev);
657 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
658
659 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
660
661 return 0;
662}
663
Dave Airlie1f437102015-10-22 10:23:31 +1000664void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800665{
666 struct vc4_dev *vc4 = to_vc4_dev(dev);
667 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
668
669 CRTC_WRITE(PV_INTEN, 0);
670}
671
672static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
673{
674 struct drm_crtc *crtc = &vc4_crtc->base;
675 struct drm_device *dev = crtc->dev;
Mario Kleiner56d1fe02016-05-18 14:02:46 +0200676 struct vc4_dev *vc4 = to_vc4_dev(dev);
677 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
678 u32 chan = vc4_crtc->channel;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800679 unsigned long flags;
680
681 spin_lock_irqsave(&dev->event_lock, flags);
Mario Kleiner56d1fe02016-05-18 14:02:46 +0200682 if (vc4_crtc->event &&
683 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800684 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
685 vc4_crtc->event = NULL;
Mario Kleineree7c10e2016-05-06 19:26:06 +0200686 drm_crtc_vblank_put(crtc);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800687 }
688 spin_unlock_irqrestore(&dev->event_lock, flags);
689}
690
691static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
692{
693 struct vc4_crtc *vc4_crtc = data;
694 u32 stat = CRTC_READ(PV_INTSTAT);
695 irqreturn_t ret = IRQ_NONE;
696
697 if (stat & PV_INT_VFP_START) {
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200698 vc4_crtc->t_vblank = ktime_get();
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800699 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
700 drm_crtc_handle_vblank(&vc4_crtc->base);
701 vc4_crtc_handle_page_flip(vc4_crtc);
702 ret = IRQ_HANDLED;
703 }
704
705 return ret;
706}
707
Eric Anholtb501bac2015-11-30 12:34:01 -0800708struct vc4_async_flip_state {
709 struct drm_crtc *crtc;
710 struct drm_framebuffer *fb;
711 struct drm_pending_vblank_event *event;
712
713 struct vc4_seqno_cb cb;
714};
715
716/* Called when the V3D execution for the BO being flipped to is done, so that
717 * we can actually update the plane's address to point to it.
718 */
719static void
720vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
721{
722 struct vc4_async_flip_state *flip_state =
723 container_of(cb, struct vc4_async_flip_state, cb);
724 struct drm_crtc *crtc = flip_state->crtc;
725 struct drm_device *dev = crtc->dev;
726 struct vc4_dev *vc4 = to_vc4_dev(dev);
727 struct drm_plane *plane = crtc->primary;
728
729 vc4_plane_async_set_fb(plane, flip_state->fb);
730 if (flip_state->event) {
731 unsigned long flags;
732
733 spin_lock_irqsave(&dev->event_lock, flags);
734 drm_crtc_send_vblank_event(crtc, flip_state->event);
735 spin_unlock_irqrestore(&dev->event_lock, flags);
736 }
737
Mario Kleineree7c10e2016-05-06 19:26:06 +0200738 drm_crtc_vblank_put(crtc);
Eric Anholtb501bac2015-11-30 12:34:01 -0800739 drm_framebuffer_unreference(flip_state->fb);
740 kfree(flip_state);
741
742 up(&vc4->async_modeset);
743}
744
745/* Implements async (non-vblank-synced) page flips.
746 *
747 * The page flip ioctl needs to return immediately, so we grab the
748 * modeset semaphore on the pipe, and queue the address update for
749 * when V3D is done with the BO being flipped to.
750 */
751static int vc4_async_page_flip(struct drm_crtc *crtc,
752 struct drm_framebuffer *fb,
753 struct drm_pending_vblank_event *event,
754 uint32_t flags)
755{
756 struct drm_device *dev = crtc->dev;
757 struct vc4_dev *vc4 = to_vc4_dev(dev);
758 struct drm_plane *plane = crtc->primary;
759 int ret = 0;
760 struct vc4_async_flip_state *flip_state;
761 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
762 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
763
764 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
765 if (!flip_state)
766 return -ENOMEM;
767
768 drm_framebuffer_reference(fb);
769 flip_state->fb = fb;
770 flip_state->crtc = crtc;
771 flip_state->event = event;
772
773 /* Make sure all other async modesetes have landed. */
774 ret = down_interruptible(&vc4->async_modeset);
775 if (ret) {
Eric Anholt48627eb2016-02-05 15:06:15 -0800776 drm_framebuffer_unreference(fb);
Eric Anholtb501bac2015-11-30 12:34:01 -0800777 kfree(flip_state);
778 return ret;
779 }
780
Mario Kleineree7c10e2016-05-06 19:26:06 +0200781 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
782
Eric Anholtb501bac2015-11-30 12:34:01 -0800783 /* Immediately update the plane's legacy fb pointer, so that later
784 * modeset prep sees the state that will be present when the semaphore
785 * is released.
786 */
787 drm_atomic_set_fb_for_plane(plane->state, fb);
788 plane->fb = fb;
789
790 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
791 vc4_async_page_flip_complete);
792
793 /* Driver takes ownership of state on successful async commit. */
794 return 0;
795}
796
797static int vc4_page_flip(struct drm_crtc *crtc,
798 struct drm_framebuffer *fb,
799 struct drm_pending_vblank_event *event,
800 uint32_t flags)
801{
802 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
803 return vc4_async_page_flip(crtc, fb, event, flags);
804 else
805 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
806}
807
Eric Anholtd8dbf442015-12-28 13:25:41 -0800808static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
809{
810 struct vc4_crtc_state *vc4_state;
811
812 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
813 if (!vc4_state)
814 return NULL;
815
816 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
817 return &vc4_state->base;
818}
819
820static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
821 struct drm_crtc_state *state)
822{
823 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
824 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
825
826 if (vc4_state->mm.allocated) {
827 unsigned long flags;
828
829 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
830 drm_mm_remove_node(&vc4_state->mm);
831 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
832
833 }
834
Daniel Vetterec2dc6a2016-05-09 16:34:09 +0200835 __drm_atomic_helper_crtc_destroy_state(state);
Eric Anholtd8dbf442015-12-28 13:25:41 -0800836}
837
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800838static const struct drm_crtc_funcs vc4_crtc_funcs = {
839 .set_config = drm_atomic_helper_set_config,
840 .destroy = vc4_crtc_destroy,
Eric Anholtb501bac2015-11-30 12:34:01 -0800841 .page_flip = vc4_page_flip,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800842 .set_property = NULL,
843 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
844 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
845 .reset = drm_atomic_helper_crtc_reset,
Eric Anholtd8dbf442015-12-28 13:25:41 -0800846 .atomic_duplicate_state = vc4_crtc_duplicate_state,
847 .atomic_destroy_state = vc4_crtc_destroy_state,
Eric Anholte582b6c2016-03-31 18:38:20 -0700848 .gamma_set = vc4_crtc_gamma_set,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800849};
850
851static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
852 .mode_set_nofb = vc4_crtc_mode_set_nofb,
853 .disable = vc4_crtc_disable,
854 .enable = vc4_crtc_enable,
Mario Kleineracc1be12016-07-19 20:58:58 +0200855 .mode_fixup = vc4_crtc_mode_fixup,
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800856 .atomic_check = vc4_crtc_atomic_check,
857 .atomic_flush = vc4_crtc_atomic_flush,
858};
859
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800860static const struct vc4_crtc_data pv0_data = {
861 .hvs_channel = 0,
862 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
863 .encoder1_type = VC4_ENCODER_TYPE_DPI,
864};
865
866static const struct vc4_crtc_data pv1_data = {
867 .hvs_channel = 2,
868 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
869 .encoder1_type = VC4_ENCODER_TYPE_SMI,
870};
871
872static const struct vc4_crtc_data pv2_data = {
873 .hvs_channel = 1,
874 .encoder0_type = VC4_ENCODER_TYPE_VEC,
875 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
876};
877
878static const struct of_device_id vc4_crtc_dt_match[] = {
879 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
880 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
881 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
882 {}
883};
884
885static void vc4_set_crtc_possible_masks(struct drm_device *drm,
886 struct drm_crtc *crtc)
887{
888 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
889 struct drm_encoder *encoder;
890
891 drm_for_each_encoder(encoder, drm) {
892 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
893
894 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
895 vc4_encoder->clock_select = 0;
896 encoder->possible_crtcs |= drm_crtc_mask(crtc);
897 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
898 vc4_encoder->clock_select = 1;
899 encoder->possible_crtcs |= drm_crtc_mask(crtc);
900 }
901 }
902}
903
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200904static void
905vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
906{
907 struct drm_device *drm = vc4_crtc->base.dev;
908 struct vc4_dev *vc4 = to_vc4_dev(drm);
909 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
910 /* Top/base are supposed to be 4-pixel aligned, but the
911 * Raspberry Pi firmware fills the low bits (which are
912 * presumably ignored).
913 */
914 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
915 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
916
917 vc4_crtc->cob_size = top - base + 4;
918}
919
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800920static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
921{
922 struct platform_device *pdev = to_platform_device(dev);
923 struct drm_device *drm = dev_get_drvdata(master);
924 struct vc4_dev *vc4 = to_vc4_dev(drm);
925 struct vc4_crtc *vc4_crtc;
926 struct drm_crtc *crtc;
Eric Anholtfc2d6f12015-10-20 14:18:56 +0100927 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800928 const struct of_device_id *match;
Eric Anholtfc2d6f12015-10-20 14:18:56 +0100929 int ret, i;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800930
931 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
932 if (!vc4_crtc)
933 return -ENOMEM;
934 crtc = &vc4_crtc->base;
935
936 match = of_match_device(vc4_crtc_dt_match, dev);
937 if (!match)
938 return -ENODEV;
939 vc4_crtc->data = match->data;
940
941 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
942 if (IS_ERR(vc4_crtc->regs))
943 return PTR_ERR(vc4_crtc->regs);
944
945 /* For now, we create just the primary and the legacy cursor
946 * planes. We should be able to stack more planes on easily,
947 * but to do that we would need to compute the bandwidth
948 * requirement of the plane configuration, and reject ones
949 * that will take too much.
950 */
951 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
Dan Carpenter79513232015-11-04 16:21:40 +0300952 if (IS_ERR(primary_plane)) {
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800953 dev_err(dev, "failed to construct primary plane\n");
954 ret = PTR_ERR(primary_plane);
955 goto err;
956 }
957
Eric Anholtfc2d6f12015-10-20 14:18:56 +0100958 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
Ville Syrjäläf9882872015-12-09 16:19:31 +0200959 &vc4_crtc_funcs, NULL);
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800960 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
961 primary_plane->crtc = crtc;
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800962 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
963 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
Eric Anholte582b6c2016-03-31 18:38:20 -0700964 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800965
Eric Anholtfc2d6f12015-10-20 14:18:56 +0100966 /* Set up some arbitrary number of planes. We're not limited
967 * by a set number of physical registers, just the space in
968 * the HVS (16k) and how small an plane can be (28 bytes).
969 * However, each plane we set up takes up some memory, and
970 * increases the cost of looping over planes, which atomic
971 * modesetting does quite a bit. As a result, we pick a
972 * modest number of planes to expose, that should hopefully
973 * still cover any sane usecase.
974 */
975 for (i = 0; i < 8; i++) {
976 struct drm_plane *plane =
977 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
978
979 if (IS_ERR(plane))
980 continue;
981
982 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
983 }
984
985 /* Set up the legacy cursor after overlay initialization,
986 * since we overlay planes on the CRTC in the order they were
987 * initialized.
988 */
989 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
990 if (!IS_ERR(cursor_plane)) {
991 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
992 cursor_plane->crtc = crtc;
993 crtc->cursor = cursor_plane;
994 }
995
Mario Kleiner1bf59f12016-06-23 08:17:50 +0200996 vc4_crtc_get_cob_allocation(vc4_crtc);
997
Eric Anholtc8b75bc2015-03-02 13:01:12 -0800998 CRTC_WRITE(PV_INTEN, 0);
999 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1000 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1001 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1002 if (ret)
Eric Anholtfc2d6f12015-10-20 14:18:56 +01001003 goto err_destroy_planes;
Eric Anholtc8b75bc2015-03-02 13:01:12 -08001004
1005 vc4_set_crtc_possible_masks(drm, crtc);
1006
Eric Anholte582b6c2016-03-31 18:38:20 -07001007 for (i = 0; i < crtc->gamma_size; i++) {
1008 vc4_crtc->lut_r[i] = i;
1009 vc4_crtc->lut_g[i] = i;
1010 vc4_crtc->lut_b[i] = i;
1011 }
1012
Eric Anholtc8b75bc2015-03-02 13:01:12 -08001013 platform_set_drvdata(pdev, vc4_crtc);
1014
1015 return 0;
1016
Eric Anholtfc2d6f12015-10-20 14:18:56 +01001017err_destroy_planes:
1018 list_for_each_entry_safe(destroy_plane, temp,
1019 &drm->mode_config.plane_list, head) {
1020 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1021 destroy_plane->funcs->destroy(destroy_plane);
1022 }
Eric Anholtc8b75bc2015-03-02 13:01:12 -08001023err:
1024 return ret;
1025}
1026
1027static void vc4_crtc_unbind(struct device *dev, struct device *master,
1028 void *data)
1029{
1030 struct platform_device *pdev = to_platform_device(dev);
1031 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1032
1033 vc4_crtc_destroy(&vc4_crtc->base);
1034
1035 CRTC_WRITE(PV_INTEN, 0);
1036
1037 platform_set_drvdata(pdev, NULL);
1038}
1039
1040static const struct component_ops vc4_crtc_ops = {
1041 .bind = vc4_crtc_bind,
1042 .unbind = vc4_crtc_unbind,
1043};
1044
1045static int vc4_crtc_dev_probe(struct platform_device *pdev)
1046{
1047 return component_add(&pdev->dev, &vc4_crtc_ops);
1048}
1049
1050static int vc4_crtc_dev_remove(struct platform_device *pdev)
1051{
1052 component_del(&pdev->dev, &vc4_crtc_ops);
1053 return 0;
1054}
1055
1056struct platform_driver vc4_crtc_driver = {
1057 .probe = vc4_crtc_dev_probe,
1058 .remove = vc4_crtc_dev_remove,
1059 .driver = {
1060 .name = "vc4_crtc",
1061 .of_match_table = vc4_crtc_dt_match,
1062 },
1063};