blob: 61a8ac70d3cace13ab40c7c666b2a4c7200788d6 [file] [log] [blame]
Kalle Valo5e3dd152013-06-12 20:52:10 +03001/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "hif.h"
19#include "pci.h"
20#include "ce.h"
21#include "debug.h"
22
23/*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28/*
29 * A single CopyEngine (CE) comprises two "rings":
30 * a source ring
31 * a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers. When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 u32 ce_ctrl_addr,
64 unsigned int n)
65{
66 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67}
68
69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 u32 ce_ctrl_addr)
71{
72 return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73}
74
75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 u32 ce_ctrl_addr,
77 unsigned int n)
78{
79 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
80 void __iomem *indicator_addr;
81
82 if (!test_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features)) {
83 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
84 return;
85 }
86
87 /* workaround for QCA988x_1.0 HW CE */
88 indicator_addr = ar_pci->mem + ce_ctrl_addr + DST_WATERMARK_ADDRESS;
89
90 if (ce_ctrl_addr == ath10k_ce_base_address(CDC_WAR_DATA_CE)) {
91 iowrite32((CDC_WAR_MAGIC_STR | n), indicator_addr);
92 } else {
93 unsigned long irq_flags;
94 local_irq_save(irq_flags);
95 iowrite32(1, indicator_addr);
96
97 /*
98 * PCIE write waits for ACK in IPQ8K, there is no
99 * need to read back value.
100 */
101 (void)ioread32(indicator_addr);
102 (void)ioread32(indicator_addr); /* conservative */
103
104 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
105
106 iowrite32(0, indicator_addr);
107 local_irq_restore(irq_flags);
108 }
109}
110
111static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
112 u32 ce_ctrl_addr)
113{
114 return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
115}
116
117static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
118 u32 ce_ctrl_addr)
119{
120 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
121}
122
123static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
124 u32 ce_ctrl_addr,
125 unsigned int addr)
126{
127 ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
128}
129
130static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
131 u32 ce_ctrl_addr,
132 unsigned int n)
133{
134 ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
135}
136
137static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
138 u32 ce_ctrl_addr,
139 unsigned int n)
140{
141 u32 ctrl1_addr = ath10k_pci_read32((ar),
142 (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
143
144 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
145 (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
146 CE_CTRL1_DMAX_LENGTH_SET(n));
147}
148
149static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
150 u32 ce_ctrl_addr,
151 unsigned int n)
152{
153 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
154
155 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
156 (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
157 CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
158}
159
160static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
161 u32 ce_ctrl_addr,
162 unsigned int n)
163{
164 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
165
166 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
167 (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
168 CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
169}
170
171static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
172 u32 ce_ctrl_addr)
173{
174 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
175}
176
177static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
178 u32 ce_ctrl_addr,
179 u32 addr)
180{
181 ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
182}
183
184static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
185 u32 ce_ctrl_addr,
186 unsigned int n)
187{
188 ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
189}
190
191static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
192 u32 ce_ctrl_addr,
193 unsigned int n)
194{
195 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
196
197 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
198 (addr & ~SRC_WATERMARK_HIGH_MASK) |
199 SRC_WATERMARK_HIGH_SET(n));
200}
201
202static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
203 u32 ce_ctrl_addr,
204 unsigned int n)
205{
206 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
207
208 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
209 (addr & ~SRC_WATERMARK_LOW_MASK) |
210 SRC_WATERMARK_LOW_SET(n));
211}
212
213static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
214 u32 ce_ctrl_addr,
215 unsigned int n)
216{
217 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
218
219 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
220 (addr & ~DST_WATERMARK_HIGH_MASK) |
221 DST_WATERMARK_HIGH_SET(n));
222}
223
224static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
225 u32 ce_ctrl_addr,
226 unsigned int n)
227{
228 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
229
230 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
231 (addr & ~DST_WATERMARK_LOW_MASK) |
232 DST_WATERMARK_LOW_SET(n));
233}
234
235static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
236 u32 ce_ctrl_addr)
237{
238 u32 host_ie_addr = ath10k_pci_read32(ar,
239 ce_ctrl_addr + HOST_IE_ADDRESS);
240
241 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
242 host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
243}
244
245static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
246 u32 ce_ctrl_addr)
247{
248 u32 host_ie_addr = ath10k_pci_read32(ar,
249 ce_ctrl_addr + HOST_IE_ADDRESS);
250
251 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
252 host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
253}
254
255static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
256 u32 ce_ctrl_addr)
257{
258 u32 host_ie_addr = ath10k_pci_read32(ar,
259 ce_ctrl_addr + HOST_IE_ADDRESS);
260
261 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
262 host_ie_addr & ~CE_WATERMARK_MASK);
263}
264
265static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
266 u32 ce_ctrl_addr)
267{
268 u32 misc_ie_addr = ath10k_pci_read32(ar,
269 ce_ctrl_addr + MISC_IE_ADDRESS);
270
271 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
272 misc_ie_addr | CE_ERROR_MASK);
273}
274
275static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
276 u32 ce_ctrl_addr,
277 unsigned int mask)
278{
279 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
280}
281
282
283/*
284 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
285 * ath10k_ce_sendlist_send.
286 * The caller takes responsibility for any needed locking.
287 */
288static int ath10k_ce_send_nolock(struct ce_state *ce_state,
289 void *per_transfer_context,
290 u32 buffer,
291 unsigned int nbytes,
292 unsigned int transfer_id,
293 unsigned int flags)
294{
295 struct ath10k *ar = ce_state->ar;
296 struct ce_ring_state *src_ring = ce_state->src_ring;
297 struct ce_desc *desc, *sdesc;
298 unsigned int nentries_mask = src_ring->nentries_mask;
299 unsigned int sw_index = src_ring->sw_index;
300 unsigned int write_index = src_ring->write_index;
301 u32 ctrl_addr = ce_state->ctrl_addr;
302 u32 desc_flags = 0;
303 int ret = 0;
304
305 if (nbytes > ce_state->src_sz_max)
306 ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
307 __func__, nbytes, ce_state->src_sz_max);
308
309 ath10k_pci_wake(ar);
310
311 if (unlikely(CE_RING_DELTA(nentries_mask,
312 write_index, sw_index - 1) <= 0)) {
313 ret = -EIO;
314 goto exit;
315 }
316
317 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
318 write_index);
319 sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
320
321 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
322
323 if (flags & CE_SEND_FLAG_GATHER)
324 desc_flags |= CE_DESC_FLAGS_GATHER;
325 if (flags & CE_SEND_FLAG_BYTE_SWAP)
326 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
327
328 sdesc->addr = __cpu_to_le32(buffer);
329 sdesc->nbytes = __cpu_to_le16(nbytes);
330 sdesc->flags = __cpu_to_le16(desc_flags);
331
332 *desc = *sdesc;
333
334 src_ring->per_transfer_context[write_index] = per_transfer_context;
335
336 /* Update Source Ring Write Index */
337 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
338
339 /* WORKAROUND */
340 if (!(flags & CE_SEND_FLAG_GATHER))
341 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
342
343 src_ring->write_index = write_index;
344exit:
345 ath10k_pci_sleep(ar);
346 return ret;
347}
348
349int ath10k_ce_send(struct ce_state *ce_state,
350 void *per_transfer_context,
351 u32 buffer,
352 unsigned int nbytes,
353 unsigned int transfer_id,
354 unsigned int flags)
355{
356 struct ath10k *ar = ce_state->ar;
357 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
358 int ret;
359
360 spin_lock_bh(&ar_pci->ce_lock);
361 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
362 buffer, nbytes, transfer_id, flags);
363 spin_unlock_bh(&ar_pci->ce_lock);
364
365 return ret;
366}
367
368void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
369 unsigned int nbytes, u32 flags)
370{
371 unsigned int num_items = sendlist->num_items;
372 struct ce_sendlist_item *item;
373
374 item = &sendlist->item[num_items];
375 item->data = buffer;
376 item->u.nbytes = nbytes;
377 item->flags = flags;
378 sendlist->num_items++;
379}
380
381int ath10k_ce_sendlist_send(struct ce_state *ce_state,
382 void *per_transfer_context,
383 struct ce_sendlist *sendlist,
384 unsigned int transfer_id)
385{
386 struct ce_ring_state *src_ring = ce_state->src_ring;
387 struct ce_sendlist_item *item;
388 struct ath10k *ar = ce_state->ar;
389 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390 unsigned int nentries_mask = src_ring->nentries_mask;
391 unsigned int num_items = sendlist->num_items;
392 unsigned int sw_index;
393 unsigned int write_index;
394 int i, delta, ret = -ENOMEM;
395
396 spin_lock_bh(&ar_pci->ce_lock);
397
398 sw_index = src_ring->sw_index;
399 write_index = src_ring->write_index;
400
401 delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
402
403 if (delta >= num_items) {
404 /*
405 * Handle all but the last item uniformly.
406 */
407 for (i = 0; i < num_items - 1; i++) {
408 item = &sendlist->item[i];
409 ret = ath10k_ce_send_nolock(ce_state,
410 CE_SENDLIST_ITEM_CTXT,
411 (u32) item->data,
412 item->u.nbytes, transfer_id,
413 item->flags |
414 CE_SEND_FLAG_GATHER);
415 if (ret)
416 ath10k_warn("CE send failed for item: %d\n", i);
417 }
418 /*
419 * Provide valid context pointer for final item.
420 */
421 item = &sendlist->item[i];
422 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
423 (u32) item->data, item->u.nbytes,
424 transfer_id, item->flags);
425 if (ret)
426 ath10k_warn("CE send failed for last item: %d\n", i);
427 }
428
429 spin_unlock_bh(&ar_pci->ce_lock);
430
431 return ret;
432}
433
434int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state,
435 void *per_recv_context,
436 u32 buffer)
437{
438 struct ce_ring_state *dest_ring = ce_state->dest_ring;
439 u32 ctrl_addr = ce_state->ctrl_addr;
440 struct ath10k *ar = ce_state->ar;
441 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442 unsigned int nentries_mask = dest_ring->nentries_mask;
443 unsigned int write_index;
444 unsigned int sw_index;
445 int ret;
446
447 spin_lock_bh(&ar_pci->ce_lock);
448 write_index = dest_ring->write_index;
449 sw_index = dest_ring->sw_index;
450
451 ath10k_pci_wake(ar);
452
453 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
454 struct ce_desc *base = dest_ring->base_addr_owner_space;
455 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
456
457 /* Update destination descriptor */
458 desc->addr = __cpu_to_le32(buffer);
459 desc->nbytes = 0;
460
461 dest_ring->per_transfer_context[write_index] =
462 per_recv_context;
463
464 /* Update Destination Ring Write Index */
465 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
466 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
467 dest_ring->write_index = write_index;
468 ret = 0;
469 } else {
470 ret = -EIO;
471 }
472 ath10k_pci_sleep(ar);
473 spin_unlock_bh(&ar_pci->ce_lock);
474
475 return ret;
476}
477
478/*
479 * Guts of ath10k_ce_completed_recv_next.
480 * The caller takes responsibility for any necessary locking.
481 */
482static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state,
483 void **per_transfer_contextp,
484 u32 *bufferp,
485 unsigned int *nbytesp,
486 unsigned int *transfer_idp,
487 unsigned int *flagsp)
488{
489 struct ce_ring_state *dest_ring = ce_state->dest_ring;
490 unsigned int nentries_mask = dest_ring->nentries_mask;
491 unsigned int sw_index = dest_ring->sw_index;
492
493 struct ce_desc *base = dest_ring->base_addr_owner_space;
494 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
495 struct ce_desc sdesc;
496 u16 nbytes;
497
498 /* Copy in one go for performance reasons */
499 sdesc = *desc;
500
501 nbytes = __le16_to_cpu(sdesc.nbytes);
502 if (nbytes == 0) {
503 /*
504 * This closes a relatively unusual race where the Host
505 * sees the updated DRRI before the update to the
506 * corresponding descriptor has completed. We treat this
507 * as a descriptor that is not yet done.
508 */
509 return -EIO;
510 }
511
512 desc->nbytes = 0;
513
514 /* Return data from completed destination descriptor */
515 *bufferp = __le32_to_cpu(sdesc.addr);
516 *nbytesp = nbytes;
517 *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
518
519 if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
520 *flagsp = CE_RECV_FLAG_SWAPPED;
521 else
522 *flagsp = 0;
523
524 if (per_transfer_contextp)
525 *per_transfer_contextp =
526 dest_ring->per_transfer_context[sw_index];
527
528 /* sanity */
529 dest_ring->per_transfer_context[sw_index] = NULL;
530
531 /* Update sw_index */
532 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
533 dest_ring->sw_index = sw_index;
534
535 return 0;
536}
537
538int ath10k_ce_completed_recv_next(struct ce_state *ce_state,
539 void **per_transfer_contextp,
540 u32 *bufferp,
541 unsigned int *nbytesp,
542 unsigned int *transfer_idp,
543 unsigned int *flagsp)
544{
545 struct ath10k *ar = ce_state->ar;
546 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
547 int ret;
548
549 spin_lock_bh(&ar_pci->ce_lock);
550 ret = ath10k_ce_completed_recv_next_nolock(ce_state,
551 per_transfer_contextp,
552 bufferp, nbytesp,
553 transfer_idp, flagsp);
554 spin_unlock_bh(&ar_pci->ce_lock);
555
556 return ret;
557}
558
559int ath10k_ce_revoke_recv_next(struct ce_state *ce_state,
560 void **per_transfer_contextp,
561 u32 *bufferp)
562{
563 struct ce_ring_state *dest_ring;
564 unsigned int nentries_mask;
565 unsigned int sw_index;
566 unsigned int write_index;
567 int ret;
568 struct ath10k *ar;
569 struct ath10k_pci *ar_pci;
570
571 dest_ring = ce_state->dest_ring;
572
573 if (!dest_ring)
574 return -EIO;
575
576 ar = ce_state->ar;
577 ar_pci = ath10k_pci_priv(ar);
578
579 spin_lock_bh(&ar_pci->ce_lock);
580
581 nentries_mask = dest_ring->nentries_mask;
582 sw_index = dest_ring->sw_index;
583 write_index = dest_ring->write_index;
584 if (write_index != sw_index) {
585 struct ce_desc *base = dest_ring->base_addr_owner_space;
586 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
587
588 /* Return data from completed destination descriptor */
589 *bufferp = __le32_to_cpu(desc->addr);
590
591 if (per_transfer_contextp)
592 *per_transfer_contextp =
593 dest_ring->per_transfer_context[sw_index];
594
595 /* sanity */
596 dest_ring->per_transfer_context[sw_index] = NULL;
597
598 /* Update sw_index */
599 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
600 dest_ring->sw_index = sw_index;
601 ret = 0;
602 } else {
603 ret = -EIO;
604 }
605
606 spin_unlock_bh(&ar_pci->ce_lock);
607
608 return ret;
609}
610
611/*
612 * Guts of ath10k_ce_completed_send_next.
613 * The caller takes responsibility for any necessary locking.
614 */
615static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state,
616 void **per_transfer_contextp,
617 u32 *bufferp,
618 unsigned int *nbytesp,
619 unsigned int *transfer_idp)
620{
621 struct ce_ring_state *src_ring = ce_state->src_ring;
622 u32 ctrl_addr = ce_state->ctrl_addr;
623 struct ath10k *ar = ce_state->ar;
624 unsigned int nentries_mask = src_ring->nentries_mask;
625 unsigned int sw_index = src_ring->sw_index;
626 unsigned int read_index;
627 int ret = -EIO;
628
629 if (src_ring->hw_index == sw_index) {
630 /*
631 * The SW completion index has caught up with the cached
632 * version of the HW completion index.
633 * Update the cached HW completion index to see whether
634 * the SW has really caught up to the HW, or if the cached
635 * value of the HW index has become stale.
636 */
637 ath10k_pci_wake(ar);
638 src_ring->hw_index =
639 ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
640 ath10k_pci_sleep(ar);
641 }
642 read_index = src_ring->hw_index;
643
644 if ((read_index != sw_index) && (read_index != 0xffffffff)) {
645 struct ce_desc *sbase = src_ring->shadow_base;
646 struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
647
648 /* Return data from completed source descriptor */
649 *bufferp = __le32_to_cpu(sdesc->addr);
650 *nbytesp = __le16_to_cpu(sdesc->nbytes);
651 *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
652 CE_DESC_FLAGS_META_DATA);
653
654 if (per_transfer_contextp)
655 *per_transfer_contextp =
656 src_ring->per_transfer_context[sw_index];
657
658 /* sanity */
659 src_ring->per_transfer_context[sw_index] = NULL;
660
661 /* Update sw_index */
662 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
663 src_ring->sw_index = sw_index;
664 ret = 0;
665 }
666
667 return ret;
668}
669
670/* NB: Modeled after ath10k_ce_completed_send_next */
671int ath10k_ce_cancel_send_next(struct ce_state *ce_state,
672 void **per_transfer_contextp,
673 u32 *bufferp,
674 unsigned int *nbytesp,
675 unsigned int *transfer_idp)
676{
677 struct ce_ring_state *src_ring;
678 unsigned int nentries_mask;
679 unsigned int sw_index;
680 unsigned int write_index;
681 int ret;
682 struct ath10k *ar;
683 struct ath10k_pci *ar_pci;
684
685 src_ring = ce_state->src_ring;
686
687 if (!src_ring)
688 return -EIO;
689
690 ar = ce_state->ar;
691 ar_pci = ath10k_pci_priv(ar);
692
693 spin_lock_bh(&ar_pci->ce_lock);
694
695 nentries_mask = src_ring->nentries_mask;
696 sw_index = src_ring->sw_index;
697 write_index = src_ring->write_index;
698
699 if (write_index != sw_index) {
700 struct ce_desc *base = src_ring->base_addr_owner_space;
701 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
702
703 /* Return data from completed source descriptor */
704 *bufferp = __le32_to_cpu(desc->addr);
705 *nbytesp = __le16_to_cpu(desc->nbytes);
706 *transfer_idp = MS(__le16_to_cpu(desc->flags),
707 CE_DESC_FLAGS_META_DATA);
708
709 if (per_transfer_contextp)
710 *per_transfer_contextp =
711 src_ring->per_transfer_context[sw_index];
712
713 /* sanity */
714 src_ring->per_transfer_context[sw_index] = NULL;
715
716 /* Update sw_index */
717 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
718 src_ring->sw_index = sw_index;
719 ret = 0;
720 } else {
721 ret = -EIO;
722 }
723
724 spin_unlock_bh(&ar_pci->ce_lock);
725
726 return ret;
727}
728
729int ath10k_ce_completed_send_next(struct ce_state *ce_state,
730 void **per_transfer_contextp,
731 u32 *bufferp,
732 unsigned int *nbytesp,
733 unsigned int *transfer_idp)
734{
735 struct ath10k *ar = ce_state->ar;
736 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
737 int ret;
738
739 spin_lock_bh(&ar_pci->ce_lock);
740 ret = ath10k_ce_completed_send_next_nolock(ce_state,
741 per_transfer_contextp,
742 bufferp, nbytesp,
743 transfer_idp);
744 spin_unlock_bh(&ar_pci->ce_lock);
745
746 return ret;
747}
748
749/*
750 * Guts of interrupt handler for per-engine interrupts on a particular CE.
751 *
752 * Invokes registered callbacks for recv_complete,
753 * send_complete, and watermarks.
754 */
755void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
756{
757 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758 struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
759 u32 ctrl_addr = ce_state->ctrl_addr;
760 void *transfer_context;
761 u32 buf;
762 unsigned int nbytes;
763 unsigned int id;
764 unsigned int flags;
765
766 ath10k_pci_wake(ar);
767 spin_lock_bh(&ar_pci->ce_lock);
768
769 /* Clear the copy-complete interrupts that will be handled here. */
770 ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
771 HOST_IS_COPY_COMPLETE_MASK);
772
773 if (ce_state->recv_cb) {
774 /*
775 * Pop completed recv buffers and call the registered
776 * recv callback for each
777 */
778 while (ath10k_ce_completed_recv_next_nolock(ce_state,
779 &transfer_context,
780 &buf, &nbytes,
781 &id, &flags) == 0) {
782 spin_unlock_bh(&ar_pci->ce_lock);
783 ce_state->recv_cb(ce_state, transfer_context, buf,
784 nbytes, id, flags);
785 spin_lock_bh(&ar_pci->ce_lock);
786 }
787 }
788
789 if (ce_state->send_cb) {
790 /*
791 * Pop completed send buffers and call the registered
792 * send callback for each
793 */
794 while (ath10k_ce_completed_send_next_nolock(ce_state,
795 &transfer_context,
796 &buf,
797 &nbytes,
798 &id) == 0) {
799 spin_unlock_bh(&ar_pci->ce_lock);
800 ce_state->send_cb(ce_state, transfer_context,
801 buf, nbytes, id);
802 spin_lock_bh(&ar_pci->ce_lock);
803 }
804 }
805
806 /*
807 * Misc CE interrupts are not being handled, but still need
808 * to be cleared.
809 */
810 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
811
812 spin_unlock_bh(&ar_pci->ce_lock);
813 ath10k_pci_sleep(ar);
814}
815
816/*
817 * Handler for per-engine interrupts on ALL active CEs.
818 * This is used in cases where the system is sharing a
819 * single interrput for all CEs
820 */
821
822void ath10k_ce_per_engine_service_any(struct ath10k *ar)
823{
824 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
825 int ce_id;
826 u32 intr_summary;
827
828 ath10k_pci_wake(ar);
829 intr_summary = CE_INTERRUPT_SUMMARY(ar);
830
831 for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
832 if (intr_summary & (1 << ce_id))
833 intr_summary &= ~(1 << ce_id);
834 else
835 /* no intr pending on this CE */
836 continue;
837
838 ath10k_ce_per_engine_service(ar, ce_id);
839 }
840
841 ath10k_pci_sleep(ar);
842}
843
844/*
845 * Adjust interrupts for the copy complete handler.
846 * If it's needed for either send or recv, then unmask
847 * this interrupt; otherwise, mask it.
848 *
849 * Called with ce_lock held.
850 */
851static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state,
852 int disable_copy_compl_intr)
853{
854 u32 ctrl_addr = ce_state->ctrl_addr;
855 struct ath10k *ar = ce_state->ar;
856
857 ath10k_pci_wake(ar);
858
859 if ((!disable_copy_compl_intr) &&
860 (ce_state->send_cb || ce_state->recv_cb))
861 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
862 else
863 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
864
865 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
866
867 ath10k_pci_sleep(ar);
868}
869
870void ath10k_ce_disable_interrupts(struct ath10k *ar)
871{
872 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
873 int ce_id;
874
875 ath10k_pci_wake(ar);
876 for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
877 struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
878 u32 ctrl_addr = ce_state->ctrl_addr;
879
880 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
881 }
882 ath10k_pci_sleep(ar);
883}
884
885void ath10k_ce_send_cb_register(struct ce_state *ce_state,
886 void (*send_cb) (struct ce_state *ce_state,
887 void *transfer_context,
888 u32 buffer,
889 unsigned int nbytes,
890 unsigned int transfer_id),
891 int disable_interrupts)
892{
893 struct ath10k *ar = ce_state->ar;
894 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
895
896 spin_lock_bh(&ar_pci->ce_lock);
897 ce_state->send_cb = send_cb;
898 ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
899 spin_unlock_bh(&ar_pci->ce_lock);
900}
901
902void ath10k_ce_recv_cb_register(struct ce_state *ce_state,
903 void (*recv_cb) (struct ce_state *ce_state,
904 void *transfer_context,
905 u32 buffer,
906 unsigned int nbytes,
907 unsigned int transfer_id,
908 unsigned int flags))
909{
910 struct ath10k *ar = ce_state->ar;
911 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
912
913 spin_lock_bh(&ar_pci->ce_lock);
914 ce_state->recv_cb = recv_cb;
915 ath10k_ce_per_engine_handler_adjust(ce_state, 0);
916 spin_unlock_bh(&ar_pci->ce_lock);
917}
918
919static int ath10k_ce_init_src_ring(struct ath10k *ar,
920 unsigned int ce_id,
921 struct ce_state *ce_state,
922 const struct ce_attr *attr)
923{
924 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
925 struct ce_ring_state *src_ring;
926 unsigned int nentries = attr->src_nentries;
927 unsigned int ce_nbytes;
928 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
929 dma_addr_t base_addr;
930 char *ptr;
931
932 nentries = roundup_pow_of_two(nentries);
933
934 if (ce_state->src_ring) {
935 WARN_ON(ce_state->src_ring->nentries != nentries);
936 return 0;
937 }
938
939 ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
940 ptr = kzalloc(ce_nbytes, GFP_KERNEL);
941 if (ptr == NULL)
942 return -ENOMEM;
943
944 ce_state->src_ring = (struct ce_ring_state *)ptr;
945 src_ring = ce_state->src_ring;
946
947 ptr += sizeof(struct ce_ring_state);
948 src_ring->nentries = nentries;
949 src_ring->nentries_mask = nentries - 1;
950
951 ath10k_pci_wake(ar);
952 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
953 src_ring->hw_index = src_ring->sw_index;
954
955 src_ring->write_index =
956 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
957 ath10k_pci_sleep(ar);
958
959 src_ring->per_transfer_context = (void **)ptr;
960
961 /*
962 * Legacy platforms that do not support cache
963 * coherent DMA are unsupported
964 */
965 src_ring->base_addr_owner_space_unaligned =
966 pci_alloc_consistent(ar_pci->pdev,
967 (nentries * sizeof(struct ce_desc) +
968 CE_DESC_RING_ALIGN),
969 &base_addr);
970 src_ring->base_addr_ce_space_unaligned = base_addr;
971
972 src_ring->base_addr_owner_space = PTR_ALIGN(
973 src_ring->base_addr_owner_space_unaligned,
974 CE_DESC_RING_ALIGN);
975 src_ring->base_addr_ce_space = ALIGN(
976 src_ring->base_addr_ce_space_unaligned,
977 CE_DESC_RING_ALIGN);
978
979 /*
980 * Also allocate a shadow src ring in regular
981 * mem to use for faster access.
982 */
983 src_ring->shadow_base_unaligned =
984 kmalloc((nentries * sizeof(struct ce_desc) +
985 CE_DESC_RING_ALIGN), GFP_KERNEL);
986
987 src_ring->shadow_base = PTR_ALIGN(
988 src_ring->shadow_base_unaligned,
989 CE_DESC_RING_ALIGN);
990
991 ath10k_pci_wake(ar);
992 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
993 src_ring->base_addr_ce_space);
994 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
995 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
996 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
997 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
998 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
999 ath10k_pci_sleep(ar);
1000
1001 return 0;
1002}
1003
1004static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1005 unsigned int ce_id,
1006 struct ce_state *ce_state,
1007 const struct ce_attr *attr)
1008{
1009 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1010 struct ce_ring_state *dest_ring;
1011 unsigned int nentries = attr->dest_nentries;
1012 unsigned int ce_nbytes;
1013 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1014 dma_addr_t base_addr;
1015 char *ptr;
1016
1017 nentries = roundup_pow_of_two(nentries);
1018
1019 if (ce_state->dest_ring) {
1020 WARN_ON(ce_state->dest_ring->nentries != nentries);
1021 return 0;
1022 }
1023
1024 ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
1025 ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1026 if (ptr == NULL)
1027 return -ENOMEM;
1028
1029 ce_state->dest_ring = (struct ce_ring_state *)ptr;
1030 dest_ring = ce_state->dest_ring;
1031
1032 ptr += sizeof(struct ce_ring_state);
1033 dest_ring->nentries = nentries;
1034 dest_ring->nentries_mask = nentries - 1;
1035
1036 ath10k_pci_wake(ar);
1037 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1038 dest_ring->write_index =
1039 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1040 ath10k_pci_sleep(ar);
1041
1042 dest_ring->per_transfer_context = (void **)ptr;
1043
1044 /*
1045 * Legacy platforms that do not support cache
1046 * coherent DMA are unsupported
1047 */
1048 dest_ring->base_addr_owner_space_unaligned =
1049 pci_alloc_consistent(ar_pci->pdev,
1050 (nentries * sizeof(struct ce_desc) +
1051 CE_DESC_RING_ALIGN),
1052 &base_addr);
1053 dest_ring->base_addr_ce_space_unaligned = base_addr;
1054
1055 /*
1056 * Correctly initialize memory to 0 to prevent garbage
1057 * data crashing system when download firmware
1058 */
1059 memset(dest_ring->base_addr_owner_space_unaligned, 0,
1060 nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1061
1062 dest_ring->base_addr_owner_space = PTR_ALIGN(
1063 dest_ring->base_addr_owner_space_unaligned,
1064 CE_DESC_RING_ALIGN);
1065 dest_ring->base_addr_ce_space = ALIGN(
1066 dest_ring->base_addr_ce_space_unaligned,
1067 CE_DESC_RING_ALIGN);
1068
1069 ath10k_pci_wake(ar);
1070 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1071 dest_ring->base_addr_ce_space);
1072 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1073 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1074 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1075 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1076 ath10k_pci_sleep(ar);
1077
1078 return 0;
1079}
1080
1081static struct ce_state *ath10k_ce_init_state(struct ath10k *ar,
1082 unsigned int ce_id,
1083 const struct ce_attr *attr)
1084{
1085 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1086 struct ce_state *ce_state = NULL;
1087 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1088
1089 spin_lock_bh(&ar_pci->ce_lock);
1090
1091 if (!ar_pci->ce_id_to_state[ce_id]) {
1092 ce_state = kzalloc(sizeof(*ce_state), GFP_ATOMIC);
1093 if (ce_state == NULL) {
1094 spin_unlock_bh(&ar_pci->ce_lock);
1095 return NULL;
1096 }
1097
1098 ar_pci->ce_id_to_state[ce_id] = ce_state;
1099 ce_state->ar = ar;
1100 ce_state->id = ce_id;
1101 ce_state->ctrl_addr = ctrl_addr;
1102 ce_state->state = CE_RUNNING;
1103 /* Save attribute flags */
1104 ce_state->attr_flags = attr->flags;
1105 ce_state->src_sz_max = attr->src_sz_max;
1106 }
1107
1108 spin_unlock_bh(&ar_pci->ce_lock);
1109
1110 return ce_state;
1111}
1112
1113/*
1114 * Initialize a Copy Engine based on caller-supplied attributes.
1115 * This may be called once to initialize both source and destination
1116 * rings or it may be called twice for separate source and destination
1117 * initialization. It may be that only one side or the other is
1118 * initialized by software/firmware.
1119 */
1120struct ce_state *ath10k_ce_init(struct ath10k *ar,
1121 unsigned int ce_id,
1122 const struct ce_attr *attr)
1123{
1124 struct ce_state *ce_state;
1125 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1126
1127 ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1128 if (!ce_state) {
1129 ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1130 return NULL;
1131 }
1132
1133 if (attr->src_nentries) {
1134 if (ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr)) {
1135 ath10k_err("Failed to initialize CE src ring for ID: %d\n",
1136 ce_id);
1137 ath10k_ce_deinit(ce_state);
1138 return NULL;
1139 }
1140 }
1141
1142 if (attr->dest_nentries) {
1143 if (ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr)) {
1144 ath10k_err("Failed to initialize CE dest ring for ID: %d\n",
1145 ce_id);
1146 ath10k_ce_deinit(ce_state);
1147 return NULL;
1148 }
1149 }
1150
1151 /* Enable CE error interrupts */
1152 ath10k_pci_wake(ar);
1153 ath10k_ce_error_intr_enable(ar, ctrl_addr);
1154 ath10k_pci_sleep(ar);
1155
1156 return ce_state;
1157}
1158
1159void ath10k_ce_deinit(struct ce_state *ce_state)
1160{
1161 unsigned int ce_id = ce_state->id;
1162 struct ath10k *ar = ce_state->ar;
1163 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1164
1165 ce_state->state = CE_UNUSED;
1166 ar_pci->ce_id_to_state[ce_id] = NULL;
1167
1168 if (ce_state->src_ring) {
1169 kfree(ce_state->src_ring->shadow_base_unaligned);
1170 pci_free_consistent(ar_pci->pdev,
1171 (ce_state->src_ring->nentries *
1172 sizeof(struct ce_desc) +
1173 CE_DESC_RING_ALIGN),
1174 ce_state->src_ring->base_addr_owner_space,
1175 ce_state->src_ring->base_addr_ce_space);
1176 kfree(ce_state->src_ring);
1177 }
1178
1179 if (ce_state->dest_ring) {
1180 pci_free_consistent(ar_pci->pdev,
1181 (ce_state->dest_ring->nentries *
1182 sizeof(struct ce_desc) +
1183 CE_DESC_RING_ALIGN),
1184 ce_state->dest_ring->base_addr_owner_space,
1185 ce_state->dest_ring->base_addr_ce_space);
1186 kfree(ce_state->dest_ring);
1187 }
1188 kfree(ce_state);
1189}