blob: 6fca48c9e054b8c82e9b60e188ed6a460a290613 [file] [log] [blame]
Mark Salter3c7f2552014-04-15 22:47:52 -04001/*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
4 *
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
9 *
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
12 *
13 */
14
Ard Biesheuvelbd669472014-07-02 14:54:42 +020015#include <linux/efi.h>
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +010016#include <linux/sort.h>
Ard Biesheuvelbd669472014-07-02 14:54:42 +020017#include <asm/efi.h>
18
19#include "efistub.h"
20
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +010021bool __nokaslr;
22
Linn Crosetto73a649252016-04-25 21:06:36 +010023static int efi_get_secureboot(efi_system_table_t *sys_table_arg)
Ard Biesheuvel345c7362014-04-03 17:46:58 +020024{
Linn Crosetto30d7bf02016-04-25 21:06:37 +010025 static efi_char16_t const sb_var_name[] = {
Ard Biesheuvel345c7362014-04-03 17:46:58 +020026 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
Linn Crosetto30d7bf02016-04-25 21:06:37 +010027 static efi_char16_t const sm_var_name[] = {
28 'S', 'e', 't', 'u', 'p', 'M', 'o', 'd', 'e', 0 };
Ard Biesheuvel345c7362014-04-03 17:46:58 +020029
Linn Crosetto30d7bf02016-04-25 21:06:37 +010030 efi_guid_t var_guid = EFI_GLOBAL_VARIABLE_GUID;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020031 efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020032 u8 val;
Linn Crosetto30d7bf02016-04-25 21:06:37 +010033 unsigned long size = sizeof(val);
34 efi_status_t status;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020035
Linn Crosetto30d7bf02016-04-25 21:06:37 +010036 status = f_getvar((efi_char16_t *)sb_var_name, (efi_guid_t *)&var_guid,
Ard Biesheuvel345c7362014-04-03 17:46:58 +020037 NULL, &size, &val);
38
Linn Crosetto30d7bf02016-04-25 21:06:37 +010039 if (status != EFI_SUCCESS)
40 goto out_efi_err;
41
42 if (val == 0)
43 return 0;
44
45 status = f_getvar((efi_char16_t *)sm_var_name, (efi_guid_t *)&var_guid,
46 NULL, &size, &val);
47
48 if (status != EFI_SUCCESS)
49 goto out_efi_err;
50
51 if (val == 1)
52 return 0;
53
54 return 1;
55
56out_efi_err:
Ard Biesheuvel345c7362014-04-03 17:46:58 +020057 switch (status) {
Ard Biesheuvel345c7362014-04-03 17:46:58 +020058 case EFI_NOT_FOUND:
59 return 0;
Linn Crosetto73a649252016-04-25 21:06:36 +010060 case EFI_DEVICE_ERROR:
61 return -EIO;
62 case EFI_SECURITY_VIOLATION:
63 return -EACCES;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020064 default:
Linn Crosetto73a649252016-04-25 21:06:36 +010065 return -EINVAL;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020066 }
67}
68
Ard Biesheuvelbd669472014-07-02 14:54:42 +020069efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
70 void *__image, void **__fh)
Mark Salter3c7f2552014-04-15 22:47:52 -040071{
72 efi_file_io_interface_t *io;
73 efi_loaded_image_t *image = __image;
74 efi_file_handle_t *fh;
75 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
76 efi_status_t status;
77 void *handle = (void *)(unsigned long)image->device_handle;
78
79 status = sys_table_arg->boottime->handle_protocol(handle,
80 &fs_proto, (void **)&io);
81 if (status != EFI_SUCCESS) {
82 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
83 return status;
84 }
85
86 status = io->open_volume(io, &fh);
87 if (status != EFI_SUCCESS)
88 efi_printk(sys_table_arg, "Failed to open volume\n");
89
90 *__fh = fh;
91 return status;
92}
Ard Biesheuvelbd669472014-07-02 14:54:42 +020093
Ard Biesheuvelbd669472014-07-02 14:54:42 +020094void efi_char16_printk(efi_system_table_t *sys_table_arg,
Mark Salter3c7f2552014-04-15 22:47:52 -040095 efi_char16_t *str)
96{
97 struct efi_simple_text_output_protocol *out;
98
99 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
100 out->output_string(out, str);
101}
102
Ard Biesheuvelf0827e12016-04-25 21:06:54 +0100103static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
104{
105 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
106 efi_status_t status;
107 unsigned long size;
108 void **gop_handle = NULL;
109 struct screen_info *si = NULL;
110
111 size = 0;
112 status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
113 &gop_proto, NULL, &size, gop_handle);
114 if (status == EFI_BUFFER_TOO_SMALL) {
115 si = alloc_screen_info(sys_table_arg);
116 if (!si)
117 return NULL;
118 efi_setup_gop(sys_table_arg, si, &gop_proto, size);
119 }
120 return si;
121}
Mark Salter3c7f2552014-04-15 22:47:52 -0400122
123/*
124 * This function handles the architcture specific differences between arm and
125 * arm64 regarding where the kernel image must be loaded and any memory that
126 * must be reserved. On failure it is required to free all
127 * all allocations it has made.
128 */
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200129efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
130 unsigned long *image_addr,
131 unsigned long *image_size,
132 unsigned long *reserve_addr,
133 unsigned long *reserve_size,
134 unsigned long dram_base,
135 efi_loaded_image_t *image);
Mark Salter3c7f2552014-04-15 22:47:52 -0400136/*
137 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
138 * that is described in the PE/COFF header. Most of the code is the same
139 * for both archictectures, with the arch-specific code provided in the
140 * handle_kernel_image() function.
141 */
Ard Biesheuvelddeeefe2015-01-12 20:28:20 +0000142unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
Mark Salter3c7f2552014-04-15 22:47:52 -0400143 unsigned long *image_addr)
144{
145 efi_loaded_image_t *image;
146 efi_status_t status;
147 unsigned long image_size = 0;
148 unsigned long dram_base;
149 /* addr/point and size pairs for memory management*/
150 unsigned long initrd_addr;
151 u64 initrd_size = 0;
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200152 unsigned long fdt_addr = 0; /* Original DTB */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100153 unsigned long fdt_size = 0;
Mark Salter3c7f2552014-04-15 22:47:52 -0400154 char *cmdline_ptr = NULL;
155 int cmdline_size = 0;
156 unsigned long new_fdt_addr;
157 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
158 unsigned long reserve_addr = 0;
159 unsigned long reserve_size = 0;
Linn Crosetto73a649252016-04-25 21:06:36 +0100160 int secure_boot = 0;
Ard Biesheuvelf0827e12016-04-25 21:06:54 +0100161 struct screen_info *si;
Mark Salter3c7f2552014-04-15 22:47:52 -0400162
163 /* Check if we were booted by the EFI firmware */
164 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
165 goto fail;
166
167 pr_efi(sys_table, "Booting Linux Kernel...\n");
168
Ard Biesheuvelb9d6769b2016-02-17 12:36:03 +0000169 status = check_platform_features(sys_table);
170 if (status != EFI_SUCCESS)
171 goto fail;
172
Mark Salter3c7f2552014-04-15 22:47:52 -0400173 /*
174 * Get a handle to the loaded image protocol. This is used to get
175 * information about the running image, such as size and the command
176 * line.
177 */
178 status = sys_table->boottime->handle_protocol(handle,
179 &loaded_image_proto, (void *)&image);
180 if (status != EFI_SUCCESS) {
181 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
182 goto fail;
183 }
184
185 dram_base = get_dram_base(sys_table);
186 if (dram_base == EFI_ERROR) {
187 pr_efi_err(sys_table, "Failed to find DRAM base\n");
188 goto fail;
189 }
Mark Salter3c7f2552014-04-15 22:47:52 -0400190
191 /*
192 * Get the command line from EFI, using the LOADED_IMAGE
193 * protocol. We are going to copy the command line into the
194 * device tree, so this can be allocated anywhere.
195 */
196 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
197 if (!cmdline_ptr) {
198 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100199 goto fail;
200 }
201
202 /* check whether 'nokaslr' was passed on the command line */
203 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
204 static const u8 default_cmdline[] = CONFIG_CMDLINE;
205 const u8 *str, *cmdline = cmdline_ptr;
206
207 if (IS_ENABLED(CONFIG_CMDLINE_FORCE))
208 cmdline = default_cmdline;
209 str = strstr(cmdline, "nokaslr");
210 if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
211 __nokaslr = true;
212 }
213
Ard Biesheuvelf0827e12016-04-25 21:06:54 +0100214 si = setup_graphics(sys_table);
215
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100216 status = handle_kernel_image(sys_table, image_addr, &image_size,
217 &reserve_addr,
218 &reserve_size,
219 dram_base, image);
220 if (status != EFI_SUCCESS) {
221 pr_efi_err(sys_table, "Failed to relocate kernel\n");
222 goto fail_free_cmdline;
Mark Salter3c7f2552014-04-15 22:47:52 -0400223 }
224
Matt Fleming5a17dae2014-08-05 11:52:11 +0100225 status = efi_parse_options(cmdline_ptr);
226 if (status != EFI_SUCCESS)
227 pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
228
Linn Crosetto73a649252016-04-25 21:06:36 +0100229 secure_boot = efi_get_secureboot(sys_table);
230 if (secure_boot > 0)
231 pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
232
233 if (secure_boot < 0) {
234 pr_efi_err(sys_table,
235 "could not determine UEFI Secure Boot status.\n");
236 }
237
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200238 /*
239 * Unauthenticated device tree data is a security hazard, so
240 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
241 */
Linn Crosetto73a649252016-04-25 21:06:36 +0100242 if (secure_boot != 0 && strstr(cmdline_ptr, "dtb=")) {
243 pr_efi(sys_table, "Ignoring DTB from command line.\n");
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200244 } else {
Mark Salter3c7f2552014-04-15 22:47:52 -0400245 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
246 "dtb=",
Ard Biesheuvela6433752015-03-04 13:02:29 +0100247 ~0UL, &fdt_addr, &fdt_size);
Mark Salter3c7f2552014-04-15 22:47:52 -0400248
249 if (status != EFI_SUCCESS) {
250 pr_efi_err(sys_table, "Failed to load device tree!\n");
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100251 goto fail_free_image;
Mark Salter3c7f2552014-04-15 22:47:52 -0400252 }
253 }
Mark Rutland0bcaa902014-10-23 16:33:33 +0100254
255 if (fdt_addr) {
256 pr_efi(sys_table, "Using DTB from command line\n");
257 } else {
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200258 /* Look for a device tree configuration table entry. */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100259 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
Mark Rutland0bcaa902014-10-23 16:33:33 +0100260 if (fdt_addr)
261 pr_efi(sys_table, "Using DTB from configuration table\n");
262 }
263
264 if (!fdt_addr)
265 pr_efi(sys_table, "Generating empty DTB\n");
Mark Salter3c7f2552014-04-15 22:47:52 -0400266
267 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
268 "initrd=", dram_base + SZ_512M,
269 (unsigned long *)&initrd_addr,
270 (unsigned long *)&initrd_size);
271 if (status != EFI_SUCCESS)
272 pr_efi_err(sys_table, "Failed initrd from command line!\n");
273
Ard Biesheuvel568bc4e2016-11-12 21:32:33 +0000274 efi_random_get_seed(sys_table);
275
Mark Salter3c7f2552014-04-15 22:47:52 -0400276 new_fdt_addr = fdt_addr;
277 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
278 &new_fdt_addr, dram_base + MAX_FDT_OFFSET,
279 initrd_addr, initrd_size, cmdline_ptr,
280 fdt_addr, fdt_size);
281
282 /*
283 * If all went well, we need to return the FDT address to the
284 * calling function so it can be passed to kernel as part of
285 * the kernel boot protocol.
286 */
287 if (status == EFI_SUCCESS)
288 return new_fdt_addr;
289
290 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
291
292 efi_free(sys_table, initrd_size, initrd_addr);
293 efi_free(sys_table, fdt_size, fdt_addr);
294
Mark Salter3c7f2552014-04-15 22:47:52 -0400295fail_free_image:
296 efi_free(sys_table, image_size, *image_addr);
297 efi_free(sys_table, reserve_size, reserve_addr);
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100298fail_free_cmdline:
Ard Biesheuvelf0827e12016-04-25 21:06:54 +0100299 free_screen_info(sys_table, si);
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100300 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
Mark Salter3c7f2552014-04-15 22:47:52 -0400301fail:
302 return EFI_ERROR;
303}
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200304
305/*
306 * This is the base address at which to start allocating virtual memory ranges
307 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
308 * any allocation we choose, and eliminate the risk of a conflict after kexec.
309 * The value chosen is the largest non-zero power of 2 suitable for this purpose
310 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
311 * be mapped efficiently.
Roy Franz81a0bc32015-09-23 20:17:54 -0700312 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
313 * map everything below 1 GB.
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200314 */
Roy Franz81a0bc32015-09-23 20:17:54 -0700315#define EFI_RT_VIRTUAL_BASE SZ_512M
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200316
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100317static int cmp_mem_desc(const void *l, const void *r)
318{
319 const efi_memory_desc_t *left = l, *right = r;
320
321 return (left->phys_addr > right->phys_addr) ? 1 : -1;
322}
323
324/*
325 * Returns whether region @left ends exactly where region @right starts,
326 * or false if either argument is NULL.
327 */
328static bool regions_are_adjacent(efi_memory_desc_t *left,
329 efi_memory_desc_t *right)
330{
331 u64 left_end;
332
333 if (left == NULL || right == NULL)
334 return false;
335
336 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
337
338 return left_end == right->phys_addr;
339}
340
341/*
342 * Returns whether region @left and region @right have compatible memory type
343 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
344 */
345static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
346 efi_memory_desc_t *right)
347{
348 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
349 EFI_MEMORY_WC | EFI_MEMORY_UC |
350 EFI_MEMORY_RUNTIME;
351
352 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
353}
354
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200355/*
356 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
357 *
358 * This function populates the virt_addr fields of all memory region descriptors
359 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
360 * are also copied to @runtime_map, and their total count is returned in @count.
361 */
362void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
363 unsigned long desc_size, efi_memory_desc_t *runtime_map,
364 int *count)
365{
366 u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100367 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200368 int l;
369
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100370 /*
371 * To work around potential issues with the Properties Table feature
372 * introduced in UEFI 2.5, which may split PE/COFF executable images
373 * in memory into several RuntimeServicesCode and RuntimeServicesData
374 * regions, we need to preserve the relative offsets between adjacent
375 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
376 * The easiest way to find adjacent regions is to sort the memory map
377 * before traversing it.
378 */
379 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
380
381 for (l = 0; l < map_size; l += desc_size, prev = in) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200382 u64 paddr, size;
383
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100384 in = (void *)memory_map + l;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200385 if (!(in->attribute & EFI_MEMORY_RUNTIME))
386 continue;
387
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100388 paddr = in->phys_addr;
389 size = in->num_pages * EFI_PAGE_SIZE;
390
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200391 /*
392 * Make the mapping compatible with 64k pages: this allows
393 * a 4k page size kernel to kexec a 64k page size kernel and
394 * vice versa.
395 */
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100396 if (!regions_are_adjacent(prev, in) ||
397 !regions_have_compatible_memory_type_attrs(prev, in)) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200398
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100399 paddr = round_down(in->phys_addr, SZ_64K);
400 size += in->phys_addr - paddr;
401
402 /*
403 * Avoid wasting memory on PTEs by choosing a virtual
404 * base that is compatible with section mappings if this
405 * region has the appropriate size and physical
406 * alignment. (Sections are 2 MB on 4k granule kernels)
407 */
408 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
409 efi_virt_base = round_up(efi_virt_base, SZ_2M);
410 else
411 efi_virt_base = round_up(efi_virt_base, SZ_64K);
412 }
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200413
414 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
415 efi_virt_base += size;
416
417 memcpy(out, in, desc_size);
418 out = (void *)out + desc_size;
419 ++*count;
420 }
421}