Chris Metcalf | e5a0693 | 2010-11-01 17:00:37 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | /** |
| 16 | * NetIO interface structures and macros. |
| 17 | */ |
| 18 | |
| 19 | #ifndef __NETIO_INTF_H__ |
| 20 | #define __NETIO_INTF_H__ |
| 21 | |
| 22 | #include <hv/netio_errors.h> |
| 23 | |
| 24 | #ifdef __KERNEL__ |
| 25 | #include <linux/types.h> |
| 26 | #else |
| 27 | #include <stdint.h> |
| 28 | #endif |
| 29 | |
| 30 | #if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) |
| 31 | #include <assert.h> |
| 32 | #define netio_assert assert /**< Enable assertions from macros */ |
| 33 | #else |
| 34 | #define netio_assert(...) ((void)(0)) /**< Disable assertions from macros */ |
| 35 | #endif |
| 36 | |
| 37 | /* |
| 38 | * If none of these symbols are defined, we're building libnetio in an |
| 39 | * environment where we have pthreads, so we'll enable locking. |
| 40 | */ |
| 41 | #if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) && \ |
| 42 | !defined(__NEWLIB__) |
| 43 | #define _NETIO_PTHREAD /**< Include a mutex in netio_queue_t below */ |
| 44 | |
| 45 | /* |
| 46 | * If NETIO_UNLOCKED is defined, we don't do use per-cpu locks on |
| 47 | * per-packet NetIO operations. We still do pthread locking on things |
| 48 | * like netio_input_register, though. This is used for building |
| 49 | * libnetio_unlocked. |
| 50 | */ |
| 51 | #ifndef NETIO_UNLOCKED |
| 52 | |
| 53 | /* Avoid PLT overhead by using our own inlined per-cpu lock. */ |
| 54 | #include <sched.h> |
| 55 | typedef int _netio_percpu_mutex_t; |
| 56 | |
| 57 | static __inline int |
| 58 | _netio_percpu_mutex_init(_netio_percpu_mutex_t* lock) |
| 59 | { |
| 60 | *lock = 0; |
| 61 | return 0; |
| 62 | } |
| 63 | |
| 64 | static __inline int |
| 65 | _netio_percpu_mutex_lock(_netio_percpu_mutex_t* lock) |
| 66 | { |
| 67 | while (__builtin_expect(__insn_tns(lock), 0)) |
| 68 | sched_yield(); |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | static __inline int |
| 73 | _netio_percpu_mutex_unlock(_netio_percpu_mutex_t* lock) |
| 74 | { |
| 75 | *lock = 0; |
| 76 | return 0; |
| 77 | } |
| 78 | |
| 79 | #else /* NETIO_UNLOCKED */ |
| 80 | |
| 81 | /* Don't do any locking for per-packet NetIO operations. */ |
| 82 | typedef int _netio_percpu_mutex_t; |
| 83 | #define _netio_percpu_mutex_init(L) |
| 84 | #define _netio_percpu_mutex_lock(L) |
| 85 | #define _netio_percpu_mutex_unlock(L) |
| 86 | |
| 87 | #endif /* NETIO_UNLOCKED */ |
| 88 | #endif /* !__HV__, !__BOGUX, !__KERNEL__, !__NEWLIB__ */ |
| 89 | |
| 90 | /** How many tiles can register for a given queue. |
| 91 | * @ingroup setup */ |
| 92 | #define NETIO_MAX_TILES_PER_QUEUE 64 |
| 93 | |
| 94 | |
| 95 | /** Largest permissible queue identifier. |
| 96 | * @ingroup setup */ |
| 97 | #define NETIO_MAX_QUEUE_ID 255 |
| 98 | |
| 99 | |
| 100 | #ifndef __DOXYGEN__ |
| 101 | |
| 102 | /* Metadata packet checksum/ethertype flags. */ |
| 103 | |
| 104 | /** The L4 checksum has not been calculated. */ |
| 105 | #define _NETIO_PKT_NO_L4_CSUM_SHIFT 0 |
| 106 | #define _NETIO_PKT_NO_L4_CSUM_RMASK 1 |
| 107 | #define _NETIO_PKT_NO_L4_CSUM_MASK \ |
| 108 | (_NETIO_PKT_NO_L4_CSUM_RMASK << _NETIO_PKT_NO_L4_CSUM_SHIFT) |
| 109 | |
| 110 | /** The L3 checksum has not been calculated. */ |
| 111 | #define _NETIO_PKT_NO_L3_CSUM_SHIFT 1 |
| 112 | #define _NETIO_PKT_NO_L3_CSUM_RMASK 1 |
| 113 | #define _NETIO_PKT_NO_L3_CSUM_MASK \ |
| 114 | (_NETIO_PKT_NO_L3_CSUM_RMASK << _NETIO_PKT_NO_L3_CSUM_SHIFT) |
| 115 | |
| 116 | /** The L3 checksum is incorrect (or perhaps has not been calculated). */ |
| 117 | #define _NETIO_PKT_BAD_L3_CSUM_SHIFT 2 |
| 118 | #define _NETIO_PKT_BAD_L3_CSUM_RMASK 1 |
| 119 | #define _NETIO_PKT_BAD_L3_CSUM_MASK \ |
| 120 | (_NETIO_PKT_BAD_L3_CSUM_RMASK << _NETIO_PKT_BAD_L3_CSUM_SHIFT) |
| 121 | |
| 122 | /** The Ethernet packet type is unrecognized. */ |
| 123 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT 3 |
| 124 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_RMASK 1 |
| 125 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_MASK \ |
| 126 | (_NETIO_PKT_TYPE_UNRECOGNIZED_RMASK << \ |
| 127 | _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT) |
| 128 | |
| 129 | /* Metadata packet type flags. */ |
| 130 | |
| 131 | /** Where the packet type bits are; this field is the index into |
| 132 | * _netio_pkt_info. */ |
| 133 | #define _NETIO_PKT_TYPE_SHIFT 4 |
| 134 | #define _NETIO_PKT_TYPE_RMASK 0x3F |
| 135 | |
| 136 | /** How many VLAN tags the packet has, and, if we have two, which one we |
| 137 | * actually grouped on. A VLAN within a proprietary (Marvell or Broadcom) |
| 138 | * tag is counted here. */ |
| 139 | #define _NETIO_PKT_VLAN_SHIFT 4 |
| 140 | #define _NETIO_PKT_VLAN_RMASK 0x3 |
| 141 | #define _NETIO_PKT_VLAN_MASK \ |
| 142 | (_NETIO_PKT_VLAN_RMASK << _NETIO_PKT_VLAN_SHIFT) |
| 143 | #define _NETIO_PKT_VLAN_NONE 0 /* No VLAN tag. */ |
| 144 | #define _NETIO_PKT_VLAN_ONE 1 /* One VLAN tag. */ |
| 145 | #define _NETIO_PKT_VLAN_TWO_OUTER 2 /* Two VLAN tags, outer one used. */ |
| 146 | #define _NETIO_PKT_VLAN_TWO_INNER 3 /* Two VLAN tags, inner one used. */ |
| 147 | |
| 148 | /** Which proprietary tags the packet has. */ |
| 149 | #define _NETIO_PKT_TAG_SHIFT 6 |
| 150 | #define _NETIO_PKT_TAG_RMASK 0x3 |
| 151 | #define _NETIO_PKT_TAG_MASK \ |
| 152 | (_NETIO_PKT_TAG_RMASK << _NETIO_PKT_TAG_SHIFT) |
| 153 | #define _NETIO_PKT_TAG_NONE 0 /* No proprietary tags. */ |
| 154 | #define _NETIO_PKT_TAG_MRVL 1 /* Marvell HyperG.Stack tags. */ |
| 155 | #define _NETIO_PKT_TAG_MRVL_EXT 2 /* HyperG.Stack extended tags. */ |
| 156 | #define _NETIO_PKT_TAG_BRCM 3 /* Broadcom HiGig tags. */ |
| 157 | |
| 158 | /** Whether a packet has an LLC + SNAP header. */ |
| 159 | #define _NETIO_PKT_SNAP_SHIFT 8 |
| 160 | #define _NETIO_PKT_SNAP_RMASK 0x1 |
| 161 | #define _NETIO_PKT_SNAP_MASK \ |
| 162 | (_NETIO_PKT_SNAP_RMASK << _NETIO_PKT_SNAP_SHIFT) |
| 163 | |
| 164 | /* NOTE: Bits 9 and 10 are unused. */ |
| 165 | |
| 166 | /** Length of any custom data before the L2 header, in words. */ |
| 167 | #define _NETIO_PKT_CUSTOM_LEN_SHIFT 11 |
| 168 | #define _NETIO_PKT_CUSTOM_LEN_RMASK 0x1F |
| 169 | #define _NETIO_PKT_CUSTOM_LEN_MASK \ |
| 170 | (_NETIO_PKT_CUSTOM_LEN_RMASK << _NETIO_PKT_CUSTOM_LEN_SHIFT) |
| 171 | |
| 172 | /** The L4 checksum is incorrect (or perhaps has not been calculated). */ |
| 173 | #define _NETIO_PKT_BAD_L4_CSUM_SHIFT 16 |
| 174 | #define _NETIO_PKT_BAD_L4_CSUM_RMASK 0x1 |
| 175 | #define _NETIO_PKT_BAD_L4_CSUM_MASK \ |
| 176 | (_NETIO_PKT_BAD_L4_CSUM_RMASK << _NETIO_PKT_BAD_L4_CSUM_SHIFT) |
| 177 | |
| 178 | /** Length of the L2 header, in words. */ |
| 179 | #define _NETIO_PKT_L2_LEN_SHIFT 17 |
| 180 | #define _NETIO_PKT_L2_LEN_RMASK 0x1F |
| 181 | #define _NETIO_PKT_L2_LEN_MASK \ |
| 182 | (_NETIO_PKT_L2_LEN_RMASK << _NETIO_PKT_L2_LEN_SHIFT) |
| 183 | |
| 184 | |
| 185 | /* Flags in minimal packet metadata. */ |
| 186 | |
| 187 | /** We need an eDMA checksum on this packet. */ |
| 188 | #define _NETIO_PKT_NEED_EDMA_CSUM_SHIFT 0 |
| 189 | #define _NETIO_PKT_NEED_EDMA_CSUM_RMASK 1 |
| 190 | #define _NETIO_PKT_NEED_EDMA_CSUM_MASK \ |
| 191 | (_NETIO_PKT_NEED_EDMA_CSUM_RMASK << _NETIO_PKT_NEED_EDMA_CSUM_SHIFT) |
| 192 | |
| 193 | /* Data within the packet information table. */ |
| 194 | |
| 195 | /* Note that, for efficiency, code which uses these fields assumes that none |
| 196 | * of the shift values below are zero. See uses below for an explanation. */ |
| 197 | |
| 198 | /** Offset within the L2 header of the innermost ethertype (in halfwords). */ |
| 199 | #define _NETIO_PKT_INFO_ETYPE_SHIFT 6 |
| 200 | #define _NETIO_PKT_INFO_ETYPE_RMASK 0x1F |
| 201 | |
| 202 | /** Offset within the L2 header of the VLAN tag (in halfwords). */ |
| 203 | #define _NETIO_PKT_INFO_VLAN_SHIFT 11 |
| 204 | #define _NETIO_PKT_INFO_VLAN_RMASK 0x1F |
| 205 | |
| 206 | #endif |
| 207 | |
| 208 | |
| 209 | /** The size of a memory buffer representing a small packet. |
| 210 | * @ingroup egress */ |
| 211 | #define SMALL_PACKET_SIZE 256 |
| 212 | |
| 213 | /** The size of a memory buffer representing a large packet. |
| 214 | * @ingroup egress */ |
| 215 | #define LARGE_PACKET_SIZE 2048 |
| 216 | |
| 217 | /** The size of a memory buffer representing a jumbo packet. |
| 218 | * @ingroup egress */ |
| 219 | #define JUMBO_PACKET_SIZE (12 * 1024) |
| 220 | |
| 221 | |
| 222 | /* Common ethertypes. |
| 223 | * @ingroup ingress */ |
| 224 | /** @{ */ |
| 225 | /** The ethertype of IPv4. */ |
| 226 | #define ETHERTYPE_IPv4 (0x0800) |
| 227 | /** The ethertype of ARP. */ |
| 228 | #define ETHERTYPE_ARP (0x0806) |
| 229 | /** The ethertype of VLANs. */ |
| 230 | #define ETHERTYPE_VLAN (0x8100) |
| 231 | /** The ethertype of a Q-in-Q header. */ |
| 232 | #define ETHERTYPE_Q_IN_Q (0x9100) |
| 233 | /** The ethertype of IPv6. */ |
| 234 | #define ETHERTYPE_IPv6 (0x86DD) |
| 235 | /** The ethertype of MPLS. */ |
| 236 | #define ETHERTYPE_MPLS (0x8847) |
| 237 | /** @} */ |
| 238 | |
| 239 | |
| 240 | /** The possible return values of NETIO_PKT_STATUS. |
| 241 | * @ingroup ingress |
| 242 | */ |
| 243 | typedef enum |
| 244 | { |
| 245 | /** No problems were detected with this packet. */ |
| 246 | NETIO_PKT_STATUS_OK, |
| 247 | /** The packet is undersized; this is expected behavior if the packet's |
| 248 | * ethertype is unrecognized, but otherwise the packet is likely corrupt. */ |
| 249 | NETIO_PKT_STATUS_UNDERSIZE, |
| 250 | /** The packet is oversized and some trailing bytes have been discarded. |
| 251 | This is expected behavior for short packets, since it's impossible to |
| 252 | precisely determine the amount of padding which may have been added to |
| 253 | them to make them meet the minimum Ethernet packet size. */ |
| 254 | NETIO_PKT_STATUS_OVERSIZE, |
| 255 | /** The packet was judged to be corrupt by hardware (for instance, it had |
| 256 | a bad CRC, or part of it was discarded due to lack of buffer space in |
| 257 | the I/O shim) and should be discarded. */ |
| 258 | NETIO_PKT_STATUS_BAD |
| 259 | } netio_pkt_status_t; |
| 260 | |
| 261 | |
| 262 | /** Log2 of how many buckets we have. */ |
| 263 | #define NETIO_LOG2_NUM_BUCKETS (10) |
| 264 | |
| 265 | /** How many buckets we have. |
| 266 | * @ingroup ingress */ |
| 267 | #define NETIO_NUM_BUCKETS (1 << NETIO_LOG2_NUM_BUCKETS) |
| 268 | |
| 269 | |
| 270 | /** |
| 271 | * @brief A group-to-bucket identifier. |
| 272 | * |
| 273 | * @ingroup setup |
| 274 | * |
| 275 | * This tells us what to do with a given group. |
| 276 | */ |
| 277 | typedef union { |
| 278 | /** The header broken down into bits. */ |
| 279 | struct { |
| 280 | /** Whether we should balance on L4, if available */ |
| 281 | unsigned int __balance_on_l4:1; |
| 282 | /** Whether we should balance on L3, if available */ |
| 283 | unsigned int __balance_on_l3:1; |
| 284 | /** Whether we should balance on L2, if available */ |
| 285 | unsigned int __balance_on_l2:1; |
| 286 | /** Reserved for future use */ |
| 287 | unsigned int __reserved:1; |
| 288 | /** The base bucket to use to send traffic */ |
| 289 | unsigned int __bucket_base:NETIO_LOG2_NUM_BUCKETS; |
| 290 | /** The mask to apply to the balancing value. This must be one less |
| 291 | * than a power of two, e.g. 0x3 or 0xFF. |
| 292 | */ |
| 293 | unsigned int __bucket_mask:NETIO_LOG2_NUM_BUCKETS; |
| 294 | /** Pad to 32 bits */ |
| 295 | unsigned int __padding:(32 - 4 - 2 * NETIO_LOG2_NUM_BUCKETS); |
| 296 | } bits; |
| 297 | /** To send out the IDN. */ |
| 298 | unsigned int word; |
| 299 | } |
| 300 | netio_group_t; |
| 301 | |
| 302 | |
| 303 | /** |
| 304 | * @brief A VLAN-to-bucket identifier. |
| 305 | * |
| 306 | * @ingroup setup |
| 307 | * |
| 308 | * This tells us what to do with a given VLAN. |
| 309 | */ |
| 310 | typedef netio_group_t netio_vlan_t; |
| 311 | |
| 312 | |
| 313 | /** |
| 314 | * A bucket-to-queue mapping. |
| 315 | * @ingroup setup |
| 316 | */ |
| 317 | typedef unsigned char netio_bucket_t; |
| 318 | |
| 319 | |
| 320 | /** |
| 321 | * A packet size can always fit in a netio_size_t. |
| 322 | * @ingroup setup |
| 323 | */ |
| 324 | typedef unsigned int netio_size_t; |
| 325 | |
| 326 | |
| 327 | /** |
| 328 | * @brief Ethernet standard (ingress) packet metadata. |
| 329 | * |
| 330 | * @ingroup ingress |
| 331 | * |
| 332 | * This is additional data associated with each packet. |
| 333 | * This structure is opaque and accessed through the @ref ingress. |
| 334 | * |
| 335 | * Also, the buffer population operation currently assumes that standard |
| 336 | * metadata is at least as large as minimal metadata, and will need to be |
| 337 | * modified if that is no longer the case. |
| 338 | */ |
| 339 | typedef struct |
| 340 | { |
| 341 | #ifdef __DOXYGEN__ |
| 342 | /** This structure is opaque. */ |
| 343 | unsigned char opaque[24]; |
| 344 | #else |
| 345 | /** The overall ordinal of the packet */ |
| 346 | unsigned int __packet_ordinal; |
| 347 | /** The ordinal of the packet within the group */ |
| 348 | unsigned int __group_ordinal; |
| 349 | /** The best flow hash IPP could compute. */ |
| 350 | unsigned int __flow_hash; |
| 351 | /** Flags pertaining to checksum calculation, packet type, etc. */ |
| 352 | unsigned int __flags; |
| 353 | /** The first word of "user data". */ |
| 354 | unsigned int __user_data_0; |
| 355 | /** The second word of "user data". */ |
| 356 | unsigned int __user_data_1; |
| 357 | #endif |
| 358 | } |
| 359 | netio_pkt_metadata_t; |
| 360 | |
| 361 | |
| 362 | /** To ensure that the L3 header is aligned mod 4, the L2 header should be |
| 363 | * aligned mod 4 plus 2, since every supported L2 header is 4n + 2 bytes |
| 364 | * long. The standard way to do this is to simply add 2 bytes of padding |
| 365 | * before the L2 header. |
| 366 | */ |
| 367 | #define NETIO_PACKET_PADDING 2 |
| 368 | |
| 369 | |
| 370 | |
| 371 | /** |
| 372 | * @brief Ethernet minimal (egress) packet metadata. |
| 373 | * |
| 374 | * @ingroup egress |
| 375 | * |
| 376 | * This structure represents information about packets which have |
| 377 | * been processed by @ref netio_populate_buffer() or |
| 378 | * @ref netio_populate_prepend_buffer(). This structure is opaque |
| 379 | * and accessed through the @ref egress. |
| 380 | * |
| 381 | * @internal This structure is actually copied into the memory used by |
| 382 | * standard metadata, which is assumed to be large enough. |
| 383 | */ |
| 384 | typedef struct |
| 385 | { |
| 386 | #ifdef __DOXYGEN__ |
| 387 | /** This structure is opaque. */ |
| 388 | unsigned char opaque[14]; |
| 389 | #else |
| 390 | /** The offset of the L2 header from the start of the packet data. */ |
| 391 | unsigned short l2_offset; |
| 392 | /** The offset of the L3 header from the start of the packet data. */ |
| 393 | unsigned short l3_offset; |
| 394 | /** Where to write the checksum. */ |
| 395 | unsigned char csum_location; |
| 396 | /** Where to start checksumming from. */ |
| 397 | unsigned char csum_start; |
| 398 | /** Flags pertaining to checksum calculation etc. */ |
| 399 | unsigned short flags; |
| 400 | /** The L2 length of the packet. */ |
| 401 | unsigned short l2_length; |
| 402 | /** The checksum with which to seed the checksum generator. */ |
| 403 | unsigned short csum_seed; |
| 404 | /** How much to checksum. */ |
| 405 | unsigned short csum_length; |
| 406 | #endif |
| 407 | } |
| 408 | netio_pkt_minimal_metadata_t; |
| 409 | |
| 410 | |
| 411 | #ifndef __DOXYGEN__ |
| 412 | |
| 413 | /** |
| 414 | * @brief An I/O notification header. |
| 415 | * |
| 416 | * This is the first word of data received from an I/O shim in a notification |
| 417 | * packet. It contains framing and status information. |
| 418 | */ |
| 419 | typedef union |
| 420 | { |
| 421 | unsigned int word; /**< The whole word. */ |
| 422 | /** The various fields. */ |
| 423 | struct |
| 424 | { |
| 425 | unsigned int __channel:7; /**< Resource channel. */ |
| 426 | unsigned int __type:4; /**< Type. */ |
| 427 | unsigned int __ack:1; /**< Whether an acknowledgement is needed. */ |
| 428 | unsigned int __reserved:1; /**< Reserved. */ |
| 429 | unsigned int __protocol:1; /**< A protocol-specific word is added. */ |
| 430 | unsigned int __status:2; /**< Status of the transfer. */ |
| 431 | unsigned int __framing:2; /**< Framing of the transfer. */ |
| 432 | unsigned int __transfer_size:14; /**< Transfer size in bytes (total). */ |
| 433 | } bits; |
| 434 | } |
| 435 | __netio_pkt_notif_t; |
| 436 | |
| 437 | |
| 438 | /** |
| 439 | * Returns the base address of the packet. |
| 440 | */ |
| 441 | #define _NETIO_PKT_HANDLE_BASE(p) \ |
| 442 | ((unsigned char*)((p).word & 0xFFFFFFC0)) |
| 443 | |
| 444 | /** |
| 445 | * Returns the base address of the packet. |
| 446 | */ |
| 447 | #define _NETIO_PKT_BASE(p) \ |
| 448 | _NETIO_PKT_HANDLE_BASE(p->__packet) |
| 449 | |
| 450 | /** |
| 451 | * @brief An I/O notification packet (second word) |
| 452 | * |
| 453 | * This is the second word of data received from an I/O shim in a notification |
| 454 | * packet. This is the virtual address of the packet buffer, plus some flag |
| 455 | * bits. (The virtual address of the packet is always 256-byte aligned so we |
| 456 | * have room for 8 bits' worth of flags in the low 8 bits.) |
| 457 | * |
| 458 | * @internal |
| 459 | * NOTE: The low two bits must contain "__queue", so the "packet size" |
| 460 | * (SIZE_SMALL, SIZE_LARGE, or SIZE_JUMBO) can be determined quickly. |
| 461 | * |
| 462 | * If __addr or __offset are moved, _NETIO_PKT_BASE |
| 463 | * (defined right below this) must be changed. |
| 464 | */ |
| 465 | typedef union |
| 466 | { |
| 467 | unsigned int word; /**< The whole word. */ |
| 468 | /** The various fields. */ |
| 469 | struct |
| 470 | { |
| 471 | /** Which queue the packet will be returned to once it is sent back to |
| 472 | the IPP. This is one of the SIZE_xxx values. */ |
| 473 | unsigned int __queue:2; |
| 474 | |
| 475 | /** The IPP handle of the sending IPP. */ |
| 476 | unsigned int __ipp_handle:2; |
| 477 | |
| 478 | /** Reserved for future use. */ |
| 479 | unsigned int __reserved:1; |
| 480 | |
| 481 | /** If 1, this packet has minimal (egress) metadata; otherwise, it |
| 482 | has standard (ingress) metadata. */ |
| 483 | unsigned int __minimal:1; |
| 484 | |
| 485 | /** Offset of the metadata within the packet. This value is multiplied |
| 486 | * by 64 and added to the base packet address to get the metadata |
| 487 | * address. Note that this field is aligned within the word such that |
| 488 | * you can easily extract the metadata address with a 26-bit mask. */ |
| 489 | unsigned int __offset:2; |
| 490 | |
| 491 | /** The top 24 bits of the packet's virtual address. */ |
| 492 | unsigned int __addr:24; |
| 493 | } bits; |
| 494 | } |
| 495 | __netio_pkt_handle_t; |
| 496 | |
| 497 | #endif /* !__DOXYGEN__ */ |
| 498 | |
| 499 | |
| 500 | /** |
| 501 | * @brief A handle for an I/O packet's storage. |
| 502 | * @ingroup ingress |
| 503 | * |
| 504 | * netio_pkt_handle_t encodes the concept of a ::netio_pkt_t with its |
| 505 | * packet metadata removed. It is a much smaller type that exists to |
| 506 | * facilitate applications where the full ::netio_pkt_t type is too |
| 507 | * large, such as those that cache enormous numbers of packets or wish |
| 508 | * to transmit packet descriptors over the UDN. |
| 509 | * |
| 510 | * Because there is no metadata, most ::netio_pkt_t operations cannot be |
| 511 | * performed on a netio_pkt_handle_t. It supports only |
| 512 | * netio_free_handle() (to free the buffer) and |
| 513 | * NETIO_PKT_CUSTOM_DATA_H() (to access a pointer to its contents). |
| 514 | * The application must acquire any additional metadata it wants from the |
| 515 | * original ::netio_pkt_t and record it separately. |
| 516 | * |
| 517 | * A netio_pkt_handle_t can be extracted from a ::netio_pkt_t by calling |
| 518 | * NETIO_PKT_HANDLE(). An invalid handle (analogous to NULL) can be |
| 519 | * created by assigning the value ::NETIO_PKT_HANDLE_NONE. A handle can |
| 520 | * be tested for validity with NETIO_PKT_HANDLE_IS_VALID(). |
| 521 | */ |
| 522 | typedef struct |
| 523 | { |
| 524 | unsigned int word; /**< Opaque bits. */ |
| 525 | } netio_pkt_handle_t; |
| 526 | |
| 527 | /** |
| 528 | * @brief A packet descriptor. |
| 529 | * |
| 530 | * @ingroup ingress |
| 531 | * @ingroup egress |
| 532 | * |
| 533 | * This data structure represents a packet. The structure is manipulated |
| 534 | * through the @ref ingress and the @ref egress. |
| 535 | * |
| 536 | * While the contents of a netio_pkt_t are opaque, the structure itself is |
| 537 | * portable. This means that it may be shared between all tiles which have |
| 538 | * done a netio_input_register() call for the interface on which the pkt_t |
| 539 | * was initially received (via netio_get_packet()) or retrieved (via |
| 540 | * netio_get_buffer()). The contents of a netio_pkt_t can be transmitted to |
| 541 | * another tile via shared memory, or via a UDN message, or by other means. |
| 542 | * The destination tile may then use the pkt_t as if it had originally been |
| 543 | * received locally; it may read or write the packet's data, read its |
| 544 | * metadata, free the packet, send the packet, transfer the netio_pkt_t to |
| 545 | * yet another tile, and so forth. |
| 546 | * |
| 547 | * Once a netio_pkt_t has been transferred to a second tile, the first tile |
| 548 | * should not reference the original copy; in particular, if more than one |
| 549 | * tile frees or sends the same netio_pkt_t, the IPP's packet free lists will |
| 550 | * become corrupted. Note also that each tile which reads or modifies |
| 551 | * packet data must obey the memory coherency rules outlined in @ref input. |
| 552 | */ |
| 553 | typedef struct |
| 554 | { |
| 555 | #ifdef __DOXYGEN__ |
| 556 | /** This structure is opaque. */ |
| 557 | unsigned char opaque[32]; |
| 558 | #else |
| 559 | /** For an ingress packet (one with standard metadata), this is the |
| 560 | * notification header we got from the I/O shim. For an egress packet |
| 561 | * (one with minimal metadata), this word is zero if the packet has not |
| 562 | * been populated, and nonzero if it has. */ |
| 563 | __netio_pkt_notif_t __notif_header; |
| 564 | |
| 565 | /** Virtual address of the packet buffer, plus state flags. */ |
| 566 | __netio_pkt_handle_t __packet; |
| 567 | |
| 568 | /** Metadata associated with the packet. */ |
| 569 | netio_pkt_metadata_t __metadata; |
| 570 | #endif |
| 571 | } |
| 572 | netio_pkt_t; |
| 573 | |
| 574 | |
| 575 | #ifndef __DOXYGEN__ |
| 576 | |
| 577 | #define __NETIO_PKT_NOTIF_HEADER(pkt) ((pkt)->__notif_header) |
| 578 | #define __NETIO_PKT_IPP_HANDLE(pkt) ((pkt)->__packet.bits.__ipp_handle) |
| 579 | #define __NETIO_PKT_QUEUE(pkt) ((pkt)->__packet.bits.__queue) |
| 580 | #define __NETIO_PKT_NOTIF_HEADER_M(mda, pkt) ((pkt)->__notif_header) |
| 581 | #define __NETIO_PKT_IPP_HANDLE_M(mda, pkt) ((pkt)->__packet.bits.__ipp_handle) |
| 582 | #define __NETIO_PKT_MINIMAL(pkt) ((pkt)->__packet.bits.__minimal) |
| 583 | #define __NETIO_PKT_QUEUE_M(mda, pkt) ((pkt)->__packet.bits.__queue) |
| 584 | #define __NETIO_PKT_FLAGS_M(mda, pkt) ((mda)->__flags) |
| 585 | |
| 586 | /* Packet information table, used by the attribute access functions below. */ |
| 587 | extern const uint16_t _netio_pkt_info[]; |
| 588 | |
| 589 | #endif /* __DOXYGEN__ */ |
| 590 | |
| 591 | |
| 592 | #ifndef __DOXYGEN__ |
| 593 | /* These macros are deprecated and will disappear in a future MDE release. */ |
| 594 | #define NETIO_PKT_GOOD_CHECKSUM(pkt) \ |
| 595 | NETIO_PKT_L4_CSUM_CORRECT(pkt) |
| 596 | #define NETIO_PKT_GOOD_CHECKSUM_M(mda, pkt) \ |
| 597 | NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt) |
| 598 | #endif /* __DOXYGEN__ */ |
| 599 | |
| 600 | |
| 601 | /* Packet attribute access functions. */ |
| 602 | |
| 603 | /** Return a pointer to the metadata for a packet. |
| 604 | * @ingroup ingress |
| 605 | * |
| 606 | * Calling this function once and passing the result to other retrieval |
| 607 | * functions with a "_M" suffix usually improves performance. This |
| 608 | * function must be called on an 'ingress' packet (i.e. one retrieved |
| 609 | * by @ref netio_get_packet(), on which @ref netio_populate_buffer() or |
| 610 | * @ref netio_populate_prepend_buffer have not been called). Use of this |
| 611 | * function on an 'egress' packet will cause an assertion failure. |
| 612 | * |
| 613 | * @param[in] pkt Packet on which to operate. |
| 614 | * @return A pointer to the packet's standard metadata. |
| 615 | */ |
| 616 | static __inline netio_pkt_metadata_t* |
| 617 | NETIO_PKT_METADATA(netio_pkt_t* pkt) |
| 618 | { |
| 619 | netio_assert(!pkt->__packet.bits.__minimal); |
| 620 | return &pkt->__metadata; |
| 621 | } |
| 622 | |
| 623 | |
| 624 | /** Return a pointer to the minimal metadata for a packet. |
| 625 | * @ingroup egress |
| 626 | * |
| 627 | * Calling this function once and passing the result to other retrieval |
| 628 | * functions with a "_MM" suffix usually improves performance. This |
| 629 | * function must be called on an 'egress' packet (i.e. one on which |
| 630 | * @ref netio_populate_buffer() or @ref netio_populate_prepend_buffer() |
| 631 | * have been called, or one retrieved by @ref netio_get_buffer()). Use of |
| 632 | * this function on an 'ingress' packet will cause an assertion failure. |
| 633 | * |
| 634 | * @param[in] pkt Packet on which to operate. |
| 635 | * @return A pointer to the packet's standard metadata. |
| 636 | */ |
| 637 | static __inline netio_pkt_minimal_metadata_t* |
| 638 | NETIO_PKT_MINIMAL_METADATA(netio_pkt_t* pkt) |
| 639 | { |
| 640 | netio_assert(pkt->__packet.bits.__minimal); |
| 641 | return (netio_pkt_minimal_metadata_t*) &pkt->__metadata; |
| 642 | } |
| 643 | |
| 644 | |
| 645 | /** Determine whether a packet has 'minimal' metadata. |
| 646 | * @ingroup pktfuncs |
| 647 | * |
| 648 | * This function will return nonzero if the packet is an 'egress' |
| 649 | * packet (i.e. one on which @ref netio_populate_buffer() or |
| 650 | * @ref netio_populate_prepend_buffer() have been called, or one |
| 651 | * retrieved by @ref netio_get_buffer()), and zero if the packet |
| 652 | * is an 'ingress' packet (i.e. one retrieved by @ref netio_get_packet(), |
| 653 | * which has not been converted into an 'egress' packet). |
| 654 | * |
| 655 | * @param[in] pkt Packet on which to operate. |
| 656 | * @return Nonzero if the packet has minimal metadata. |
| 657 | */ |
| 658 | static __inline unsigned int |
| 659 | NETIO_PKT_IS_MINIMAL(netio_pkt_t* pkt) |
| 660 | { |
| 661 | return pkt->__packet.bits.__minimal; |
| 662 | } |
| 663 | |
| 664 | |
| 665 | /** Return a handle for a packet's storage. |
| 666 | * @ingroup pktfuncs |
| 667 | * |
| 668 | * @param[in] pkt Packet on which to operate. |
| 669 | * @return A handle for the packet's storage. |
| 670 | */ |
| 671 | static __inline netio_pkt_handle_t |
| 672 | NETIO_PKT_HANDLE(netio_pkt_t* pkt) |
| 673 | { |
| 674 | netio_pkt_handle_t h; |
| 675 | h.word = pkt->__packet.word; |
| 676 | return h; |
| 677 | } |
| 678 | |
| 679 | |
| 680 | /** A special reserved value indicating the absence of a packet handle. |
| 681 | * |
| 682 | * @ingroup pktfuncs |
| 683 | */ |
| 684 | #define NETIO_PKT_HANDLE_NONE ((netio_pkt_handle_t) { 0 }) |
| 685 | |
| 686 | |
| 687 | /** Test whether a packet handle is valid. |
| 688 | * |
| 689 | * Applications may wish to use the reserved value NETIO_PKT_HANDLE_NONE |
| 690 | * to indicate no packet at all. This function tests to see if a packet |
| 691 | * handle is a real handle, not this special reserved value. |
| 692 | * |
| 693 | * @ingroup pktfuncs |
| 694 | * |
| 695 | * @param[in] handle Handle on which to operate. |
| 696 | * @return One if the packet handle is valid, else zero. |
| 697 | */ |
| 698 | static __inline unsigned int |
| 699 | NETIO_PKT_HANDLE_IS_VALID(netio_pkt_handle_t handle) |
| 700 | { |
| 701 | return handle.word != 0; |
| 702 | } |
| 703 | |
| 704 | |
| 705 | |
| 706 | /** Return a pointer to the start of the packet's custom header. |
| 707 | * A custom header may or may not be present, depending upon the IPP; its |
| 708 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 709 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 710 | * the custom header precedes the L2 header in the packet buffer. |
| 711 | * @ingroup ingress |
| 712 | * |
| 713 | * @param[in] handle Handle on which to operate. |
| 714 | * @return A pointer to start of the packet. |
| 715 | */ |
| 716 | static __inline unsigned char* |
| 717 | NETIO_PKT_CUSTOM_DATA_H(netio_pkt_handle_t handle) |
| 718 | { |
| 719 | return _NETIO_PKT_HANDLE_BASE(handle) + NETIO_PACKET_PADDING; |
| 720 | } |
| 721 | |
| 722 | |
| 723 | /** Return the length of the packet's custom header. |
| 724 | * A custom header may or may not be present, depending upon the IPP; its |
| 725 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 726 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 727 | * the custom header precedes the L2 header in the packet buffer. |
| 728 | * |
| 729 | * @ingroup ingress |
| 730 | * |
| 731 | * @param[in] mda Pointer to packet's standard metadata. |
| 732 | * @param[in] pkt Packet on which to operate. |
| 733 | * @return The length of the packet's custom header, in bytes. |
| 734 | */ |
| 735 | static __inline netio_size_t |
| 736 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 737 | { |
| 738 | /* |
| 739 | * Note that we effectively need to extract a quantity from the flags word |
| 740 | * which is measured in words, and then turn it into bytes by shifting |
| 741 | * it left by 2. We do this all at once by just shifting right two less |
| 742 | * bits, and shifting the mask up two bits. |
| 743 | */ |
| 744 | return ((mda->__flags >> (_NETIO_PKT_CUSTOM_LEN_SHIFT - 2)) & |
| 745 | (_NETIO_PKT_CUSTOM_LEN_RMASK << 2)); |
| 746 | } |
| 747 | |
| 748 | |
| 749 | /** Return the length of the packet, starting with the custom header. |
| 750 | * A custom header may or may not be present, depending upon the IPP; its |
| 751 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 752 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 753 | * the custom header precedes the L2 header in the packet buffer. |
| 754 | * @ingroup ingress |
| 755 | * |
| 756 | * @param[in] mda Pointer to packet's standard metadata. |
| 757 | * @param[in] pkt Packet on which to operate. |
| 758 | * @return The length of the packet, in bytes. |
| 759 | */ |
| 760 | static __inline netio_size_t |
| 761 | NETIO_PKT_CUSTOM_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 762 | { |
| 763 | return (__NETIO_PKT_NOTIF_HEADER(pkt).bits.__transfer_size - |
| 764 | NETIO_PACKET_PADDING); |
| 765 | } |
| 766 | |
| 767 | |
| 768 | /** Return a pointer to the start of the packet's custom header. |
| 769 | * A custom header may or may not be present, depending upon the IPP; its |
| 770 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 771 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 772 | * the custom header precedes the L2 header in the packet buffer. |
| 773 | * @ingroup ingress |
| 774 | * |
| 775 | * @param[in] mda Pointer to packet's standard metadata. |
| 776 | * @param[in] pkt Packet on which to operate. |
| 777 | * @return A pointer to start of the packet. |
| 778 | */ |
| 779 | static __inline unsigned char* |
| 780 | NETIO_PKT_CUSTOM_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 781 | { |
| 782 | return NETIO_PKT_CUSTOM_DATA_H(NETIO_PKT_HANDLE(pkt)); |
| 783 | } |
| 784 | |
| 785 | |
| 786 | /** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header. |
| 787 | * @ingroup ingress |
| 788 | * |
| 789 | * @param[in] mda Pointer to packet's standard metadata. |
| 790 | * @param[in] pkt Packet on which to operate. |
| 791 | * @return The length of the packet's L2 header, in bytes. |
| 792 | */ |
| 793 | static __inline netio_size_t |
| 794 | NETIO_PKT_L2_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 795 | { |
| 796 | /* |
| 797 | * Note that we effectively need to extract a quantity from the flags word |
| 798 | * which is measured in words, and then turn it into bytes by shifting |
| 799 | * it left by 2. We do this all at once by just shifting right two less |
| 800 | * bits, and shifting the mask up two bits. We then add two bytes. |
| 801 | */ |
| 802 | return ((mda->__flags >> (_NETIO_PKT_L2_LEN_SHIFT - 2)) & |
| 803 | (_NETIO_PKT_L2_LEN_RMASK << 2)) + 2; |
| 804 | } |
| 805 | |
| 806 | |
| 807 | /** Return the length of the packet, starting with the L2 (Ethernet) header. |
| 808 | * @ingroup ingress |
| 809 | * |
| 810 | * @param[in] mda Pointer to packet's standard metadata. |
| 811 | * @param[in] pkt Packet on which to operate. |
| 812 | * @return The length of the packet, in bytes. |
| 813 | */ |
| 814 | static __inline netio_size_t |
| 815 | NETIO_PKT_L2_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 816 | { |
| 817 | return (NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt) - |
| 818 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda,pkt)); |
| 819 | } |
| 820 | |
| 821 | |
| 822 | /** Return a pointer to the start of the packet's L2 (Ethernet) header. |
| 823 | * @ingroup ingress |
| 824 | * |
| 825 | * @param[in] mda Pointer to packet's standard metadata. |
| 826 | * @param[in] pkt Packet on which to operate. |
| 827 | * @return A pointer to start of the packet. |
| 828 | */ |
| 829 | static __inline unsigned char* |
| 830 | NETIO_PKT_L2_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 831 | { |
| 832 | return (NETIO_PKT_CUSTOM_DATA_M(mda, pkt) + |
| 833 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt)); |
| 834 | } |
| 835 | |
| 836 | |
| 837 | /** Retrieve the length of the packet, starting with the L3 (generally, |
| 838 | * the IP) header. |
| 839 | * @ingroup ingress |
| 840 | * |
| 841 | * @param[in] mda Pointer to packet's standard metadata. |
| 842 | * @param[in] pkt Packet on which to operate. |
| 843 | * @return Length of the packet's L3 header and data, in bytes. |
| 844 | */ |
| 845 | static __inline netio_size_t |
| 846 | NETIO_PKT_L3_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 847 | { |
| 848 | return (NETIO_PKT_L2_LENGTH_M(mda, pkt) - |
| 849 | NETIO_PKT_L2_HEADER_LENGTH_M(mda,pkt)); |
| 850 | } |
| 851 | |
| 852 | |
| 853 | /** Return a pointer to the packet's L3 (generally, the IP) header. |
| 854 | * @ingroup ingress |
| 855 | * |
| 856 | * Note that we guarantee word alignment of the L3 header. |
| 857 | * |
| 858 | * @param[in] mda Pointer to packet's standard metadata. |
| 859 | * @param[in] pkt Packet on which to operate. |
| 860 | * @return A pointer to the packet's L3 header. |
| 861 | */ |
| 862 | static __inline unsigned char* |
| 863 | NETIO_PKT_L3_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 864 | { |
| 865 | return (NETIO_PKT_L2_DATA_M(mda, pkt) + |
| 866 | NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt)); |
| 867 | } |
| 868 | |
| 869 | |
| 870 | /** Return the ordinal of the packet. |
| 871 | * @ingroup ingress |
| 872 | * |
| 873 | * Each packet is given an ordinal number when it is delivered by the IPP. |
| 874 | * In the medium term, the ordinal is unique and monotonically increasing, |
| 875 | * being incremented by 1 for each packet; the ordinal of the first packet |
| 876 | * delivered after the IPP starts is zero. (Since the ordinal is of finite |
| 877 | * size, given enough input packets, it will eventually wrap around to zero; |
| 878 | * in the long term, therefore, ordinals are not unique.) The ordinals |
| 879 | * handed out by different IPPs are not disjoint, so two packets from |
| 880 | * different IPPs may have identical ordinals. Packets dropped by the |
| 881 | * IPP or by the I/O shim are not assigned ordinals. |
| 882 | * |
| 883 | * @param[in] mda Pointer to packet's standard metadata. |
| 884 | * @param[in] pkt Packet on which to operate. |
| 885 | * @return The packet's per-IPP packet ordinal. |
| 886 | */ |
| 887 | static __inline unsigned int |
| 888 | NETIO_PKT_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 889 | { |
| 890 | return mda->__packet_ordinal; |
| 891 | } |
| 892 | |
| 893 | |
| 894 | /** Return the per-group ordinal of the packet. |
| 895 | * @ingroup ingress |
| 896 | * |
| 897 | * Each packet is given a per-group ordinal number when it is |
| 898 | * delivered by the IPP. By default, the group is the packet's VLAN, |
| 899 | * although IPP can be recompiled to use different values. In |
| 900 | * the medium term, the ordinal is unique and monotonically |
| 901 | * increasing, being incremented by 1 for each packet; the ordinal of |
| 902 | * the first packet distributed to a particular group is zero. |
| 903 | * (Since the ordinal is of finite size, given enough input packets, |
| 904 | * it will eventually wrap around to zero; in the long term, |
| 905 | * therefore, ordinals are not unique.) The ordinals handed out by |
| 906 | * different IPPs are not disjoint, so two packets from different IPPs |
| 907 | * may have identical ordinals; similarly, packets distributed to |
| 908 | * different groups may have identical ordinals. Packets dropped by |
| 909 | * the IPP or by the I/O shim are not assigned ordinals. |
| 910 | * |
| 911 | * @param[in] mda Pointer to packet's standard metadata. |
| 912 | * @param[in] pkt Packet on which to operate. |
| 913 | * @return The packet's per-IPP, per-group ordinal. |
| 914 | */ |
| 915 | static __inline unsigned int |
| 916 | NETIO_PKT_GROUP_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 917 | { |
| 918 | return mda->__group_ordinal; |
| 919 | } |
| 920 | |
| 921 | |
| 922 | /** Return the VLAN ID assigned to the packet. |
| 923 | * @ingroup ingress |
| 924 | * |
| 925 | * This value is usually contained within the packet header. |
| 926 | * |
| 927 | * This value will be zero if the packet does not have a VLAN tag, or if |
| 928 | * this value was not extracted from the packet. |
| 929 | * |
| 930 | * @param[in] mda Pointer to packet's standard metadata. |
| 931 | * @param[in] pkt Packet on which to operate. |
| 932 | * @return The packet's VLAN ID. |
| 933 | */ |
| 934 | static __inline unsigned short |
| 935 | NETIO_PKT_VLAN_ID_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 936 | { |
| 937 | int vl = (mda->__flags >> _NETIO_PKT_VLAN_SHIFT) & _NETIO_PKT_VLAN_RMASK; |
| 938 | unsigned short* pkt_p; |
| 939 | int index; |
| 940 | unsigned short val; |
| 941 | |
| 942 | if (vl == _NETIO_PKT_VLAN_NONE) |
| 943 | return 0; |
| 944 | |
| 945 | pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt); |
| 946 | index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK; |
| 947 | |
| 948 | val = pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_VLAN_SHIFT) & |
| 949 | _NETIO_PKT_INFO_VLAN_RMASK]; |
| 950 | |
| 951 | #ifdef __TILECC__ |
| 952 | return (__insn_bytex(val) >> 16) & 0xFFF; |
| 953 | #else |
| 954 | return (__builtin_bswap32(val) >> 16) & 0xFFF; |
| 955 | #endif |
| 956 | } |
| 957 | |
| 958 | |
| 959 | /** Return the ethertype of the packet. |
| 960 | * @ingroup ingress |
| 961 | * |
| 962 | * This value is usually contained within the packet header. |
| 963 | * |
| 964 | * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED_M() |
| 965 | * returns true, and otherwise, may not be well defined. |
| 966 | * |
| 967 | * @param[in] mda Pointer to packet's standard metadata. |
| 968 | * @param[in] pkt Packet on which to operate. |
| 969 | * @return The packet's ethertype. |
| 970 | */ |
| 971 | static __inline unsigned short |
| 972 | NETIO_PKT_ETHERTYPE_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 973 | { |
| 974 | unsigned short* pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt); |
| 975 | int index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK; |
| 976 | |
| 977 | unsigned short val = |
| 978 | pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_ETYPE_SHIFT) & |
| 979 | _NETIO_PKT_INFO_ETYPE_RMASK]; |
| 980 | |
| 981 | return __builtin_bswap32(val) >> 16; |
| 982 | } |
| 983 | |
| 984 | |
| 985 | /** Return the flow hash computed on the packet. |
| 986 | * @ingroup ingress |
| 987 | * |
| 988 | * For TCP and UDP packets, this hash is calculated by hashing together |
| 989 | * the "5-tuple" values, specifically the source IP address, destination |
| 990 | * IP address, protocol type, source port and destination port. |
| 991 | * The hash value is intended to be helpful for millions of distinct |
| 992 | * flows. |
| 993 | * |
| 994 | * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is |
| 995 | * derived by hashing together the source and destination IP addresses. |
| 996 | * |
| 997 | * For MPLS-encapsulated packets, the flow hash is derived by hashing |
| 998 | * the first MPLS label. |
| 999 | * |
| 1000 | * For all other packets the flow hash is computed from the source |
| 1001 | * and destination Ethernet addresses. |
| 1002 | * |
| 1003 | * The hash is symmetric, meaning it produces the same value if the |
| 1004 | * source and destination are swapped. The only exceptions are |
| 1005 | * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple |
| 1006 | * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32 |
| 1007 | * (Encap Security Payload), which use only the destination address |
| 1008 | * since the source address is not meaningful. |
| 1009 | * |
| 1010 | * @param[in] mda Pointer to packet's standard metadata. |
| 1011 | * @param[in] pkt Packet on which to operate. |
| 1012 | * @return The packet's 32-bit flow hash. |
| 1013 | */ |
| 1014 | static __inline unsigned int |
| 1015 | NETIO_PKT_FLOW_HASH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1016 | { |
| 1017 | return mda->__flow_hash; |
| 1018 | } |
| 1019 | |
| 1020 | |
| 1021 | /** Return the first word of "user data" for the packet. |
| 1022 | * |
| 1023 | * The contents of the user data words depend on the IPP. |
| 1024 | * |
| 1025 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first |
| 1026 | * word of user data contains the least significant bits of the 64-bit |
| 1027 | * arrival cycle count (see @c get_cycle_count_low()). |
| 1028 | * |
| 1029 | * See the <em>System Programmer's Guide</em> for details. |
| 1030 | * |
| 1031 | * @ingroup ingress |
| 1032 | * |
| 1033 | * @param[in] mda Pointer to packet's standard metadata. |
| 1034 | * @param[in] pkt Packet on which to operate. |
| 1035 | * @return The packet's first word of "user data". |
| 1036 | */ |
| 1037 | static __inline unsigned int |
| 1038 | NETIO_PKT_USER_DATA_0_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1039 | { |
| 1040 | return mda->__user_data_0; |
| 1041 | } |
| 1042 | |
| 1043 | |
| 1044 | /** Return the second word of "user data" for the packet. |
| 1045 | * |
| 1046 | * The contents of the user data words depend on the IPP. |
| 1047 | * |
| 1048 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second |
| 1049 | * word of user data contains the most significant bits of the 64-bit |
| 1050 | * arrival cycle count (see @c get_cycle_count_high()). |
| 1051 | * |
| 1052 | * See the <em>System Programmer's Guide</em> for details. |
| 1053 | * |
| 1054 | * @ingroup ingress |
| 1055 | * |
| 1056 | * @param[in] mda Pointer to packet's standard metadata. |
| 1057 | * @param[in] pkt Packet on which to operate. |
| 1058 | * @return The packet's second word of "user data". |
| 1059 | */ |
| 1060 | static __inline unsigned int |
| 1061 | NETIO_PKT_USER_DATA_1_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1062 | { |
| 1063 | return mda->__user_data_1; |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | /** Determine whether the L4 (TCP/UDP) checksum was calculated. |
| 1068 | * @ingroup ingress |
| 1069 | * |
| 1070 | * @param[in] mda Pointer to packet's standard metadata. |
| 1071 | * @param[in] pkt Packet on which to operate. |
| 1072 | * @return Nonzero if the L4 checksum was calculated. |
| 1073 | */ |
| 1074 | static __inline unsigned int |
| 1075 | NETIO_PKT_L4_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1076 | { |
| 1077 | return !(mda->__flags & _NETIO_PKT_NO_L4_CSUM_MASK); |
| 1078 | } |
| 1079 | |
| 1080 | |
| 1081 | /** Determine whether the L4 (TCP/UDP) checksum was calculated and found to |
| 1082 | * be correct. |
| 1083 | * @ingroup ingress |
| 1084 | * |
| 1085 | * @param[in] mda Pointer to packet's standard metadata. |
| 1086 | * @param[in] pkt Packet on which to operate. |
| 1087 | * @return Nonzero if the checksum was calculated and is correct. |
| 1088 | */ |
| 1089 | static __inline unsigned int |
| 1090 | NETIO_PKT_L4_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1091 | { |
| 1092 | return !(mda->__flags & |
| 1093 | (_NETIO_PKT_BAD_L4_CSUM_MASK | _NETIO_PKT_NO_L4_CSUM_MASK)); |
| 1094 | } |
| 1095 | |
| 1096 | |
| 1097 | /** Determine whether the L3 (IP) checksum was calculated. |
| 1098 | * @ingroup ingress |
| 1099 | * |
| 1100 | * @param[in] mda Pointer to packet's standard metadata. |
| 1101 | * @param[in] pkt Packet on which to operate. |
| 1102 | * @return Nonzero if the L3 (IP) checksum was calculated. |
| 1103 | */ |
| 1104 | static __inline unsigned int |
| 1105 | NETIO_PKT_L3_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1106 | { |
| 1107 | return !(mda->__flags & _NETIO_PKT_NO_L3_CSUM_MASK); |
| 1108 | } |
| 1109 | |
| 1110 | |
| 1111 | /** Determine whether the L3 (IP) checksum was calculated and found to be |
| 1112 | * correct. |
| 1113 | * @ingroup ingress |
| 1114 | * |
| 1115 | * @param[in] mda Pointer to packet's standard metadata. |
| 1116 | * @param[in] pkt Packet on which to operate. |
| 1117 | * @return Nonzero if the checksum was calculated and is correct. |
| 1118 | */ |
| 1119 | static __inline unsigned int |
| 1120 | NETIO_PKT_L3_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1121 | { |
| 1122 | return !(mda->__flags & |
| 1123 | (_NETIO_PKT_BAD_L3_CSUM_MASK | _NETIO_PKT_NO_L3_CSUM_MASK)); |
| 1124 | } |
| 1125 | |
| 1126 | |
| 1127 | /** Determine whether the ethertype was recognized and L3 packet data was |
| 1128 | * processed. |
| 1129 | * @ingroup ingress |
| 1130 | * |
| 1131 | * @param[in] mda Pointer to packet's standard metadata. |
| 1132 | * @param[in] pkt Packet on which to operate. |
| 1133 | * @return Nonzero if the ethertype was recognized and L3 packet data was |
| 1134 | * processed. |
| 1135 | */ |
| 1136 | static __inline unsigned int |
| 1137 | NETIO_PKT_ETHERTYPE_RECOGNIZED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1138 | { |
| 1139 | return !(mda->__flags & _NETIO_PKT_TYPE_UNRECOGNIZED_MASK); |
| 1140 | } |
| 1141 | |
| 1142 | |
| 1143 | /** Retrieve the status of a packet and any errors that may have occurred |
| 1144 | * during ingress processing (length mismatches, CRC errors, etc.). |
| 1145 | * @ingroup ingress |
| 1146 | * |
| 1147 | * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() |
| 1148 | * returns zero are always reported as underlength, as there is no a priori |
| 1149 | * means to determine their length. Normally, applications should use |
| 1150 | * @ref NETIO_PKT_BAD_M() instead of explicitly checking status with this |
| 1151 | * function. |
| 1152 | * |
| 1153 | * @param[in] mda Pointer to packet's standard metadata. |
| 1154 | * @param[in] pkt Packet on which to operate. |
| 1155 | * @return The packet's status. |
| 1156 | */ |
| 1157 | static __inline netio_pkt_status_t |
| 1158 | NETIO_PKT_STATUS_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1159 | { |
| 1160 | return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status; |
| 1161 | } |
| 1162 | |
| 1163 | |
| 1164 | /** Report whether a packet is bad (i.e., was shorter than expected based on |
| 1165 | * its headers, or had a bad CRC). |
| 1166 | * @ingroup ingress |
| 1167 | * |
| 1168 | * Note that this function does not verify L3 or L4 checksums. |
| 1169 | * |
| 1170 | * @param[in] mda Pointer to packet's standard metadata. |
| 1171 | * @param[in] pkt Packet on which to operate. |
| 1172 | * @return Nonzero if the packet is bad and should be discarded. |
| 1173 | */ |
| 1174 | static __inline unsigned int |
| 1175 | NETIO_PKT_BAD_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1176 | { |
| 1177 | return ((NETIO_PKT_STATUS_M(mda, pkt) & 1) && |
| 1178 | (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt) || |
| 1179 | NETIO_PKT_STATUS_M(mda, pkt) == NETIO_PKT_STATUS_BAD)); |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | /** Return the length of the packet, starting with the L2 (Ethernet) header. |
| 1184 | * @ingroup egress |
| 1185 | * |
| 1186 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1187 | * @param[in] pkt Packet on which to operate. |
| 1188 | * @return The length of the packet, in bytes. |
| 1189 | */ |
| 1190 | static __inline netio_size_t |
| 1191 | NETIO_PKT_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) |
| 1192 | { |
| 1193 | return mmd->l2_length; |
| 1194 | } |
| 1195 | |
| 1196 | |
| 1197 | /** Return the length of the L2 (Ethernet) header. |
| 1198 | * @ingroup egress |
| 1199 | * |
| 1200 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1201 | * @param[in] pkt Packet on which to operate. |
| 1202 | * @return The length of the packet's L2 header, in bytes. |
| 1203 | */ |
| 1204 | static __inline netio_size_t |
| 1205 | NETIO_PKT_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1206 | netio_pkt_t* pkt) |
| 1207 | { |
| 1208 | return mmd->l3_offset - mmd->l2_offset; |
| 1209 | } |
| 1210 | |
| 1211 | |
| 1212 | /** Return the length of the packet, starting with the L3 (IP) header. |
| 1213 | * @ingroup egress |
| 1214 | * |
| 1215 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1216 | * @param[in] pkt Packet on which to operate. |
| 1217 | * @return Length of the packet's L3 header and data, in bytes. |
| 1218 | */ |
| 1219 | static __inline netio_size_t |
| 1220 | NETIO_PKT_L3_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) |
| 1221 | { |
| 1222 | return (NETIO_PKT_L2_LENGTH_MM(mmd, pkt) - |
| 1223 | NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt)); |
| 1224 | } |
| 1225 | |
| 1226 | |
| 1227 | /** Return a pointer to the packet's L3 (generally, the IP) header. |
| 1228 | * @ingroup egress |
| 1229 | * |
| 1230 | * Note that we guarantee word alignment of the L3 header. |
| 1231 | * |
| 1232 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1233 | * @param[in] pkt Packet on which to operate. |
| 1234 | * @return A pointer to the packet's L3 header. |
| 1235 | */ |
| 1236 | static __inline unsigned char* |
| 1237 | NETIO_PKT_L3_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) |
| 1238 | { |
| 1239 | return _NETIO_PKT_BASE(pkt) + mmd->l3_offset; |
| 1240 | } |
| 1241 | |
| 1242 | |
| 1243 | /** Return a pointer to the packet's L2 (Ethernet) header. |
| 1244 | * @ingroup egress |
| 1245 | * |
| 1246 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1247 | * @param[in] pkt Packet on which to operate. |
| 1248 | * @return A pointer to start of the packet. |
| 1249 | */ |
| 1250 | static __inline unsigned char* |
| 1251 | NETIO_PKT_L2_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) |
| 1252 | { |
| 1253 | return _NETIO_PKT_BASE(pkt) + mmd->l2_offset; |
| 1254 | } |
| 1255 | |
| 1256 | |
| 1257 | /** Retrieve the status of a packet and any errors that may have occurred |
| 1258 | * during ingress processing (length mismatches, CRC errors, etc.). |
| 1259 | * @ingroup ingress |
| 1260 | * |
| 1261 | * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() |
| 1262 | * returns zero are always reported as underlength, as there is no a priori |
| 1263 | * means to determine their length. Normally, applications should use |
| 1264 | * @ref NETIO_PKT_BAD() instead of explicitly checking status with this |
| 1265 | * function. |
| 1266 | * |
| 1267 | * @param[in] pkt Packet on which to operate. |
| 1268 | * @return The packet's status. |
| 1269 | */ |
| 1270 | static __inline netio_pkt_status_t |
| 1271 | NETIO_PKT_STATUS(netio_pkt_t* pkt) |
| 1272 | { |
| 1273 | netio_assert(!pkt->__packet.bits.__minimal); |
| 1274 | |
| 1275 | return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status; |
| 1276 | } |
| 1277 | |
| 1278 | |
| 1279 | /** Report whether a packet is bad (i.e., was shorter than expected based on |
| 1280 | * its headers, or had a bad CRC). |
| 1281 | * @ingroup ingress |
| 1282 | * |
| 1283 | * Note that this function does not verify L3 or L4 checksums. |
| 1284 | * |
| 1285 | * @param[in] pkt Packet on which to operate. |
| 1286 | * @return Nonzero if the packet is bad and should be discarded. |
| 1287 | */ |
| 1288 | static __inline unsigned int |
| 1289 | NETIO_PKT_BAD(netio_pkt_t* pkt) |
| 1290 | { |
| 1291 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1292 | |
| 1293 | return NETIO_PKT_BAD_M(mda, pkt); |
| 1294 | } |
| 1295 | |
| 1296 | |
| 1297 | /** Return the length of the packet's custom header. |
| 1298 | * A custom header may or may not be present, depending upon the IPP; its |
| 1299 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 1300 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 1301 | * the custom header precedes the L2 header in the packet buffer. |
| 1302 | * @ingroup pktfuncs |
| 1303 | * |
| 1304 | * @param[in] pkt Packet on which to operate. |
| 1305 | * @return The length of the packet's custom header, in bytes. |
| 1306 | */ |
| 1307 | static __inline netio_size_t |
| 1308 | NETIO_PKT_CUSTOM_HEADER_LENGTH(netio_pkt_t* pkt) |
| 1309 | { |
| 1310 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1311 | |
| 1312 | return NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt); |
| 1313 | } |
| 1314 | |
| 1315 | |
| 1316 | /** Return the length of the packet, starting with the custom header. |
| 1317 | * A custom header may or may not be present, depending upon the IPP; its |
| 1318 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 1319 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 1320 | * the custom header precedes the L2 header in the packet buffer. |
| 1321 | * @ingroup pktfuncs |
| 1322 | * |
| 1323 | * @param[in] pkt Packet on which to operate. |
| 1324 | * @return The length of the packet, in bytes. |
| 1325 | */ |
| 1326 | static __inline netio_size_t |
| 1327 | NETIO_PKT_CUSTOM_LENGTH(netio_pkt_t* pkt) |
| 1328 | { |
| 1329 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1330 | |
| 1331 | return NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt); |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | /** Return a pointer to the packet's custom header. |
| 1336 | * A custom header may or may not be present, depending upon the IPP; its |
| 1337 | * contents and alignment are also IPP-dependent. Currently, none of the |
| 1338 | * standard IPPs supplied by Tilera produce a custom header. If present, |
| 1339 | * the custom header precedes the L2 header in the packet buffer. |
| 1340 | * @ingroup pktfuncs |
| 1341 | * |
| 1342 | * @param[in] pkt Packet on which to operate. |
| 1343 | * @return A pointer to start of the packet. |
| 1344 | */ |
| 1345 | static __inline unsigned char* |
| 1346 | NETIO_PKT_CUSTOM_DATA(netio_pkt_t* pkt) |
| 1347 | { |
| 1348 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1349 | |
| 1350 | return NETIO_PKT_CUSTOM_DATA_M(mda, pkt); |
| 1351 | } |
| 1352 | |
| 1353 | |
| 1354 | /** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header. |
| 1355 | * @ingroup pktfuncs |
| 1356 | * |
| 1357 | * @param[in] pkt Packet on which to operate. |
| 1358 | * @return The length of the packet's L2 header, in bytes. |
| 1359 | */ |
| 1360 | static __inline netio_size_t |
| 1361 | NETIO_PKT_L2_HEADER_LENGTH(netio_pkt_t* pkt) |
| 1362 | { |
| 1363 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1364 | { |
| 1365 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1366 | |
| 1367 | return NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt); |
| 1368 | } |
| 1369 | else |
| 1370 | { |
| 1371 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1372 | |
| 1373 | return NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt); |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | |
| 1378 | /** Return the length of the packet, starting with the L2 (Ethernet) header. |
| 1379 | * @ingroup pktfuncs |
| 1380 | * |
| 1381 | * @param[in] pkt Packet on which to operate. |
| 1382 | * @return The length of the packet, in bytes. |
| 1383 | */ |
| 1384 | static __inline netio_size_t |
| 1385 | NETIO_PKT_L2_LENGTH(netio_pkt_t* pkt) |
| 1386 | { |
| 1387 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1388 | { |
| 1389 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1390 | |
| 1391 | return NETIO_PKT_L2_LENGTH_MM(mmd, pkt); |
| 1392 | } |
| 1393 | else |
| 1394 | { |
| 1395 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1396 | |
| 1397 | return NETIO_PKT_L2_LENGTH_M(mda, pkt); |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | |
| 1402 | /** Return a pointer to the packet's L2 (Ethernet) header. |
| 1403 | * @ingroup pktfuncs |
| 1404 | * |
| 1405 | * @param[in] pkt Packet on which to operate. |
| 1406 | * @return A pointer to start of the packet. |
| 1407 | */ |
| 1408 | static __inline unsigned char* |
| 1409 | NETIO_PKT_L2_DATA(netio_pkt_t* pkt) |
| 1410 | { |
| 1411 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1412 | { |
| 1413 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1414 | |
| 1415 | return NETIO_PKT_L2_DATA_MM(mmd, pkt); |
| 1416 | } |
| 1417 | else |
| 1418 | { |
| 1419 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1420 | |
| 1421 | return NETIO_PKT_L2_DATA_M(mda, pkt); |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | |
| 1426 | /** Retrieve the length of the packet, starting with the L3 (generally, the IP) |
| 1427 | * header. |
| 1428 | * @ingroup pktfuncs |
| 1429 | * |
| 1430 | * @param[in] pkt Packet on which to operate. |
| 1431 | * @return Length of the packet's L3 header and data, in bytes. |
| 1432 | */ |
| 1433 | static __inline netio_size_t |
| 1434 | NETIO_PKT_L3_LENGTH(netio_pkt_t* pkt) |
| 1435 | { |
| 1436 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1437 | { |
| 1438 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1439 | |
| 1440 | return NETIO_PKT_L3_LENGTH_MM(mmd, pkt); |
| 1441 | } |
| 1442 | else |
| 1443 | { |
| 1444 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1445 | |
| 1446 | return NETIO_PKT_L3_LENGTH_M(mda, pkt); |
| 1447 | } |
| 1448 | } |
| 1449 | |
| 1450 | |
| 1451 | /** Return a pointer to the packet's L3 (generally, the IP) header. |
| 1452 | * @ingroup pktfuncs |
| 1453 | * |
| 1454 | * Note that we guarantee word alignment of the L3 header. |
| 1455 | * |
| 1456 | * @param[in] pkt Packet on which to operate. |
| 1457 | * @return A pointer to the packet's L3 header. |
| 1458 | */ |
| 1459 | static __inline unsigned char* |
| 1460 | NETIO_PKT_L3_DATA(netio_pkt_t* pkt) |
| 1461 | { |
| 1462 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1463 | { |
| 1464 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1465 | |
| 1466 | return NETIO_PKT_L3_DATA_MM(mmd, pkt); |
| 1467 | } |
| 1468 | else |
| 1469 | { |
| 1470 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1471 | |
| 1472 | return NETIO_PKT_L3_DATA_M(mda, pkt); |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | |
| 1477 | /** Return the ordinal of the packet. |
| 1478 | * @ingroup ingress |
| 1479 | * |
| 1480 | * Each packet is given an ordinal number when it is delivered by the IPP. |
| 1481 | * In the medium term, the ordinal is unique and monotonically increasing, |
| 1482 | * being incremented by 1 for each packet; the ordinal of the first packet |
| 1483 | * delivered after the IPP starts is zero. (Since the ordinal is of finite |
| 1484 | * size, given enough input packets, it will eventually wrap around to zero; |
| 1485 | * in the long term, therefore, ordinals are not unique.) The ordinals |
| 1486 | * handed out by different IPPs are not disjoint, so two packets from |
| 1487 | * different IPPs may have identical ordinals. Packets dropped by the |
| 1488 | * IPP or by the I/O shim are not assigned ordinals. |
| 1489 | * |
| 1490 | * |
| 1491 | * @param[in] pkt Packet on which to operate. |
| 1492 | * @return The packet's per-IPP packet ordinal. |
| 1493 | */ |
| 1494 | static __inline unsigned int |
| 1495 | NETIO_PKT_ORDINAL(netio_pkt_t* pkt) |
| 1496 | { |
| 1497 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1498 | |
| 1499 | return NETIO_PKT_ORDINAL_M(mda, pkt); |
| 1500 | } |
| 1501 | |
| 1502 | |
| 1503 | /** Return the per-group ordinal of the packet. |
| 1504 | * @ingroup ingress |
| 1505 | * |
| 1506 | * Each packet is given a per-group ordinal number when it is |
| 1507 | * delivered by the IPP. By default, the group is the packet's VLAN, |
| 1508 | * although IPP can be recompiled to use different values. In |
| 1509 | * the medium term, the ordinal is unique and monotonically |
| 1510 | * increasing, being incremented by 1 for each packet; the ordinal of |
| 1511 | * the first packet distributed to a particular group is zero. |
| 1512 | * (Since the ordinal is of finite size, given enough input packets, |
| 1513 | * it will eventually wrap around to zero; in the long term, |
| 1514 | * therefore, ordinals are not unique.) The ordinals handed out by |
| 1515 | * different IPPs are not disjoint, so two packets from different IPPs |
| 1516 | * may have identical ordinals; similarly, packets distributed to |
| 1517 | * different groups may have identical ordinals. Packets dropped by |
| 1518 | * the IPP or by the I/O shim are not assigned ordinals. |
| 1519 | * |
| 1520 | * @param[in] pkt Packet on which to operate. |
| 1521 | * @return The packet's per-IPP, per-group ordinal. |
| 1522 | */ |
| 1523 | static __inline unsigned int |
| 1524 | NETIO_PKT_GROUP_ORDINAL(netio_pkt_t* pkt) |
| 1525 | { |
| 1526 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1527 | |
| 1528 | return NETIO_PKT_GROUP_ORDINAL_M(mda, pkt); |
| 1529 | } |
| 1530 | |
| 1531 | |
| 1532 | /** Return the VLAN ID assigned to the packet. |
| 1533 | * @ingroup ingress |
| 1534 | * |
| 1535 | * This is usually also contained within the packet header. If the packet |
| 1536 | * does not have a VLAN tag, the VLAN ID returned by this function is zero. |
| 1537 | * |
| 1538 | * @param[in] pkt Packet on which to operate. |
| 1539 | * @return The packet's VLAN ID. |
| 1540 | */ |
| 1541 | static __inline unsigned short |
| 1542 | NETIO_PKT_VLAN_ID(netio_pkt_t* pkt) |
| 1543 | { |
| 1544 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1545 | |
| 1546 | return NETIO_PKT_VLAN_ID_M(mda, pkt); |
| 1547 | } |
| 1548 | |
| 1549 | |
| 1550 | /** Return the ethertype of the packet. |
| 1551 | * @ingroup ingress |
| 1552 | * |
| 1553 | * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() |
| 1554 | * returns true, and otherwise, may not be well defined. |
| 1555 | * |
| 1556 | * @param[in] pkt Packet on which to operate. |
| 1557 | * @return The packet's ethertype. |
| 1558 | */ |
| 1559 | static __inline unsigned short |
| 1560 | NETIO_PKT_ETHERTYPE(netio_pkt_t* pkt) |
| 1561 | { |
| 1562 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1563 | |
| 1564 | return NETIO_PKT_ETHERTYPE_M(mda, pkt); |
| 1565 | } |
| 1566 | |
| 1567 | |
| 1568 | /** Return the flow hash computed on the packet. |
| 1569 | * @ingroup ingress |
| 1570 | * |
| 1571 | * For TCP and UDP packets, this hash is calculated by hashing together |
| 1572 | * the "5-tuple" values, specifically the source IP address, destination |
| 1573 | * IP address, protocol type, source port and destination port. |
| 1574 | * The hash value is intended to be helpful for millions of distinct |
| 1575 | * flows. |
| 1576 | * |
| 1577 | * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is |
| 1578 | * derived by hashing together the source and destination IP addresses. |
| 1579 | * |
| 1580 | * For MPLS-encapsulated packets, the flow hash is derived by hashing |
| 1581 | * the first MPLS label. |
| 1582 | * |
| 1583 | * For all other packets the flow hash is computed from the source |
| 1584 | * and destination Ethernet addresses. |
| 1585 | * |
| 1586 | * The hash is symmetric, meaning it produces the same value if the |
| 1587 | * source and destination are swapped. The only exceptions are |
| 1588 | * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple |
| 1589 | * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32 |
| 1590 | * (Encap Security Payload), which use only the destination address |
| 1591 | * since the source address is not meaningful. |
| 1592 | * |
| 1593 | * @param[in] pkt Packet on which to operate. |
| 1594 | * @return The packet's 32-bit flow hash. |
| 1595 | */ |
| 1596 | static __inline unsigned int |
| 1597 | NETIO_PKT_FLOW_HASH(netio_pkt_t* pkt) |
| 1598 | { |
| 1599 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1600 | |
| 1601 | return NETIO_PKT_FLOW_HASH_M(mda, pkt); |
| 1602 | } |
| 1603 | |
| 1604 | |
| 1605 | /** Return the first word of "user data" for the packet. |
| 1606 | * |
| 1607 | * The contents of the user data words depend on the IPP. |
| 1608 | * |
| 1609 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first |
| 1610 | * word of user data contains the least significant bits of the 64-bit |
| 1611 | * arrival cycle count (see @c get_cycle_count_low()). |
| 1612 | * |
| 1613 | * See the <em>System Programmer's Guide</em> for details. |
| 1614 | * |
| 1615 | * @ingroup ingress |
| 1616 | * |
| 1617 | * @param[in] pkt Packet on which to operate. |
| 1618 | * @return The packet's first word of "user data". |
| 1619 | */ |
| 1620 | static __inline unsigned int |
| 1621 | NETIO_PKT_USER_DATA_0(netio_pkt_t* pkt) |
| 1622 | { |
| 1623 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1624 | |
| 1625 | return NETIO_PKT_USER_DATA_0_M(mda, pkt); |
| 1626 | } |
| 1627 | |
| 1628 | |
| 1629 | /** Return the second word of "user data" for the packet. |
| 1630 | * |
| 1631 | * The contents of the user data words depend on the IPP. |
| 1632 | * |
| 1633 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second |
| 1634 | * word of user data contains the most significant bits of the 64-bit |
| 1635 | * arrival cycle count (see @c get_cycle_count_high()). |
| 1636 | * |
| 1637 | * See the <em>System Programmer's Guide</em> for details. |
| 1638 | * |
| 1639 | * @ingroup ingress |
| 1640 | * |
| 1641 | * @param[in] pkt Packet on which to operate. |
| 1642 | * @return The packet's second word of "user data". |
| 1643 | */ |
| 1644 | static __inline unsigned int |
| 1645 | NETIO_PKT_USER_DATA_1(netio_pkt_t* pkt) |
| 1646 | { |
| 1647 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1648 | |
| 1649 | return NETIO_PKT_USER_DATA_1_M(mda, pkt); |
| 1650 | } |
| 1651 | |
| 1652 | |
| 1653 | /** Determine whether the L4 (TCP/UDP) checksum was calculated. |
| 1654 | * @ingroup ingress |
| 1655 | * |
| 1656 | * @param[in] pkt Packet on which to operate. |
| 1657 | * @return Nonzero if the L4 checksum was calculated. |
| 1658 | */ |
| 1659 | static __inline unsigned int |
| 1660 | NETIO_PKT_L4_CSUM_CALCULATED(netio_pkt_t* pkt) |
| 1661 | { |
| 1662 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1663 | |
| 1664 | return NETIO_PKT_L4_CSUM_CALCULATED_M(mda, pkt); |
| 1665 | } |
| 1666 | |
| 1667 | |
| 1668 | /** Determine whether the L4 (TCP/UDP) checksum was calculated and found to |
| 1669 | * be correct. |
| 1670 | * @ingroup ingress |
| 1671 | * |
| 1672 | * @param[in] pkt Packet on which to operate. |
| 1673 | * @return Nonzero if the checksum was calculated and is correct. |
| 1674 | */ |
| 1675 | static __inline unsigned int |
| 1676 | NETIO_PKT_L4_CSUM_CORRECT(netio_pkt_t* pkt) |
| 1677 | { |
| 1678 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1679 | |
| 1680 | return NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt); |
| 1681 | } |
| 1682 | |
| 1683 | |
| 1684 | /** Determine whether the L3 (IP) checksum was calculated. |
| 1685 | * @ingroup ingress |
| 1686 | * |
| 1687 | * @param[in] pkt Packet on which to operate. |
| 1688 | * @return Nonzero if the L3 (IP) checksum was calculated. |
| 1689 | */ |
| 1690 | static __inline unsigned int |
| 1691 | NETIO_PKT_L3_CSUM_CALCULATED(netio_pkt_t* pkt) |
| 1692 | { |
| 1693 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1694 | |
| 1695 | return NETIO_PKT_L3_CSUM_CALCULATED_M(mda, pkt); |
| 1696 | } |
| 1697 | |
| 1698 | |
| 1699 | /** Determine whether the L3 (IP) checksum was calculated and found to be |
| 1700 | * correct. |
| 1701 | * @ingroup ingress |
| 1702 | * |
| 1703 | * @param[in] pkt Packet on which to operate. |
| 1704 | * @return Nonzero if the checksum was calculated and is correct. |
| 1705 | */ |
| 1706 | static __inline unsigned int |
| 1707 | NETIO_PKT_L3_CSUM_CORRECT(netio_pkt_t* pkt) |
| 1708 | { |
| 1709 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1710 | |
| 1711 | return NETIO_PKT_L3_CSUM_CORRECT_M(mda, pkt); |
| 1712 | } |
| 1713 | |
| 1714 | |
| 1715 | /** Determine whether the Ethertype was recognized and L3 packet data was |
| 1716 | * processed. |
| 1717 | * @ingroup ingress |
| 1718 | * |
| 1719 | * @param[in] pkt Packet on which to operate. |
| 1720 | * @return Nonzero if the Ethertype was recognized and L3 packet data was |
| 1721 | * processed. |
| 1722 | */ |
| 1723 | static __inline unsigned int |
| 1724 | NETIO_PKT_ETHERTYPE_RECOGNIZED(netio_pkt_t* pkt) |
| 1725 | { |
| 1726 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1727 | |
| 1728 | return NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt); |
| 1729 | } |
| 1730 | |
| 1731 | |
| 1732 | /** Set an egress packet's L2 length, using a metadata pointer to speed the |
| 1733 | * computation. |
| 1734 | * @ingroup egress |
| 1735 | * |
| 1736 | * @param[in,out] mmd Pointer to packet's minimal metadata. |
| 1737 | * @param[in] pkt Packet on which to operate. |
| 1738 | * @param[in] len Packet L2 length, in bytes. |
| 1739 | */ |
| 1740 | static __inline void |
| 1741 | NETIO_PKT_SET_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt, |
| 1742 | int len) |
| 1743 | { |
| 1744 | mmd->l2_length = len; |
| 1745 | } |
| 1746 | |
| 1747 | |
| 1748 | /** Set an egress packet's L2 length. |
| 1749 | * @ingroup egress |
| 1750 | * |
| 1751 | * @param[in,out] pkt Packet on which to operate. |
| 1752 | * @param[in] len Packet L2 length, in bytes. |
| 1753 | */ |
| 1754 | static __inline void |
| 1755 | NETIO_PKT_SET_L2_LENGTH(netio_pkt_t* pkt, int len) |
| 1756 | { |
| 1757 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1758 | |
| 1759 | NETIO_PKT_SET_L2_LENGTH_MM(mmd, pkt, len); |
| 1760 | } |
| 1761 | |
| 1762 | |
| 1763 | /** Set an egress packet's L2 header length, using a metadata pointer to |
| 1764 | * speed the computation. |
| 1765 | * @ingroup egress |
| 1766 | * |
| 1767 | * It is not normally necessary to call this routine; only the L2 length, |
| 1768 | * not the header length, is needed to transmit a packet. It may be useful if |
| 1769 | * the egress packet will later be processed by code which expects to use |
| 1770 | * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload. |
| 1771 | * |
| 1772 | * @param[in,out] mmd Pointer to packet's minimal metadata. |
| 1773 | * @param[in] pkt Packet on which to operate. |
| 1774 | * @param[in] len Packet L2 header length, in bytes. |
| 1775 | */ |
| 1776 | static __inline void |
| 1777 | NETIO_PKT_SET_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1778 | netio_pkt_t* pkt, int len) |
| 1779 | { |
| 1780 | mmd->l3_offset = mmd->l2_offset + len; |
| 1781 | } |
| 1782 | |
| 1783 | |
| 1784 | /** Set an egress packet's L2 header length. |
| 1785 | * @ingroup egress |
| 1786 | * |
| 1787 | * It is not normally necessary to call this routine; only the L2 length, |
| 1788 | * not the header length, is needed to transmit a packet. It may be useful if |
| 1789 | * the egress packet will later be processed by code which expects to use |
| 1790 | * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload. |
| 1791 | * |
| 1792 | * @param[in,out] pkt Packet on which to operate. |
| 1793 | * @param[in] len Packet L2 header length, in bytes. |
| 1794 | */ |
| 1795 | static __inline void |
| 1796 | NETIO_PKT_SET_L2_HEADER_LENGTH(netio_pkt_t* pkt, int len) |
| 1797 | { |
| 1798 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1799 | |
| 1800 | NETIO_PKT_SET_L2_HEADER_LENGTH_MM(mmd, pkt, len); |
| 1801 | } |
| 1802 | |
| 1803 | |
| 1804 | /** Set up an egress packet for hardware checksum computation, using a |
| 1805 | * metadata pointer to speed the operation. |
| 1806 | * @ingroup egress |
| 1807 | * |
| 1808 | * NetIO provides the ability to automatically calculate a standard |
| 1809 | * 16-bit Internet checksum on transmitted packets. The application |
| 1810 | * may specify the point in the packet where the checksum starts, the |
| 1811 | * number of bytes to be checksummed, and the two bytes in the packet |
| 1812 | * which will be replaced with the completed checksum. (If the range |
| 1813 | * of bytes to be checksummed includes the bytes to be replaced, the |
| 1814 | * initial values of those bytes will be included in the checksum.) |
| 1815 | * |
| 1816 | * For some protocols, the packet checksum covers data which is not present |
| 1817 | * in the packet, or is at least not contiguous to the main data payload. |
| 1818 | * For instance, the TCP checksum includes a "pseudo-header" which includes |
| 1819 | * the source and destination IP addresses of the packet. To accommodate |
| 1820 | * this, the checksum engine may be "seeded" with an initial value, which |
| 1821 | * the application would need to compute based on the specific protocol's |
| 1822 | * requirements. Note that the seed is given in host byte order (little- |
| 1823 | * endian), not network byte order (big-endian); code written to compute a |
| 1824 | * pseudo-header checksum in network byte order will need to byte-swap it |
| 1825 | * before use as the seed. |
| 1826 | * |
| 1827 | * Note that the checksum is computed as part of the transmission process, |
| 1828 | * so it will not be present in the packet upon completion of this routine. |
| 1829 | * |
| 1830 | * @param[in,out] mmd Pointer to packet's minimal metadata. |
| 1831 | * @param[in] pkt Packet on which to operate. |
| 1832 | * @param[in] start Offset within L2 packet of the first byte to include in |
| 1833 | * the checksum. |
| 1834 | * @param[in] length Number of bytes to include in the checksum. |
| 1835 | * the checksum. |
| 1836 | * @param[in] location Offset within L2 packet of the first of the two bytes |
| 1837 | * to be replaced with the calculated checksum. |
| 1838 | * @param[in] seed Initial value of the running checksum before any of the |
| 1839 | * packet data is added. |
| 1840 | */ |
| 1841 | static __inline void |
| 1842 | NETIO_PKT_DO_EGRESS_CSUM_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1843 | netio_pkt_t* pkt, int start, int length, |
| 1844 | int location, uint16_t seed) |
| 1845 | { |
| 1846 | mmd->csum_start = start; |
| 1847 | mmd->csum_length = length; |
| 1848 | mmd->csum_location = location; |
| 1849 | mmd->csum_seed = seed; |
| 1850 | mmd->flags |= _NETIO_PKT_NEED_EDMA_CSUM_MASK; |
| 1851 | } |
| 1852 | |
| 1853 | |
| 1854 | /** Set up an egress packet for hardware checksum computation. |
| 1855 | * @ingroup egress |
| 1856 | * |
| 1857 | * NetIO provides the ability to automatically calculate a standard |
| 1858 | * 16-bit Internet checksum on transmitted packets. The application |
| 1859 | * may specify the point in the packet where the checksum starts, the |
| 1860 | * number of bytes to be checksummed, and the two bytes in the packet |
| 1861 | * which will be replaced with the completed checksum. (If the range |
| 1862 | * of bytes to be checksummed includes the bytes to be replaced, the |
| 1863 | * initial values of those bytes will be included in the checksum.) |
| 1864 | * |
| 1865 | * For some protocols, the packet checksum covers data which is not present |
| 1866 | * in the packet, or is at least not contiguous to the main data payload. |
| 1867 | * For instance, the TCP checksum includes a "pseudo-header" which includes |
| 1868 | * the source and destination IP addresses of the packet. To accommodate |
| 1869 | * this, the checksum engine may be "seeded" with an initial value, which |
| 1870 | * the application would need to compute based on the specific protocol's |
| 1871 | * requirements. Note that the seed is given in host byte order (little- |
| 1872 | * endian), not network byte order (big-endian); code written to compute a |
| 1873 | * pseudo-header checksum in network byte order will need to byte-swap it |
| 1874 | * before use as the seed. |
| 1875 | * |
| 1876 | * Note that the checksum is computed as part of the transmission process, |
| 1877 | * so it will not be present in the packet upon completion of this routine. |
| 1878 | * |
| 1879 | * @param[in,out] pkt Packet on which to operate. |
| 1880 | * @param[in] start Offset within L2 packet of the first byte to include in |
| 1881 | * the checksum. |
| 1882 | * @param[in] length Number of bytes to include in the checksum. |
| 1883 | * the checksum. |
| 1884 | * @param[in] location Offset within L2 packet of the first of the two bytes |
| 1885 | * to be replaced with the calculated checksum. |
| 1886 | * @param[in] seed Initial value of the running checksum before any of the |
| 1887 | * packet data is added. |
| 1888 | */ |
| 1889 | static __inline void |
| 1890 | NETIO_PKT_DO_EGRESS_CSUM(netio_pkt_t* pkt, int start, int length, |
| 1891 | int location, uint16_t seed) |
| 1892 | { |
| 1893 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1894 | |
| 1895 | NETIO_PKT_DO_EGRESS_CSUM_MM(mmd, pkt, start, length, location, seed); |
| 1896 | } |
| 1897 | |
| 1898 | |
| 1899 | /** Return the number of bytes which could be prepended to a packet, using a |
| 1900 | * metadata pointer to speed the operation. |
| 1901 | * See @ref netio_populate_prepend_buffer() to get a full description of |
| 1902 | * prepending. |
| 1903 | * |
| 1904 | * @param[in,out] mda Pointer to packet's standard metadata. |
| 1905 | * @param[in] pkt Packet on which to operate. |
| 1906 | */ |
| 1907 | static __inline int |
| 1908 | NETIO_PKT_PREPEND_AVAIL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 1909 | { |
| 1910 | return (pkt->__packet.bits.__offset << 6) + |
| 1911 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt); |
| 1912 | } |
| 1913 | |
| 1914 | |
| 1915 | /** Return the number of bytes which could be prepended to a packet, using a |
| 1916 | * metadata pointer to speed the operation. |
| 1917 | * See @ref netio_populate_prepend_buffer() to get a full description of |
| 1918 | * prepending. |
| 1919 | * @ingroup egress |
| 1920 | * |
| 1921 | * @param[in,out] mmd Pointer to packet's minimal metadata. |
| 1922 | * @param[in] pkt Packet on which to operate. |
| 1923 | */ |
| 1924 | static __inline int |
| 1925 | NETIO_PKT_PREPEND_AVAIL_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) |
| 1926 | { |
| 1927 | return (pkt->__packet.bits.__offset << 6) + mmd->l2_offset; |
| 1928 | } |
| 1929 | |
| 1930 | |
| 1931 | /** Return the number of bytes which could be prepended to a packet. |
| 1932 | * See @ref netio_populate_prepend_buffer() to get a full description of |
| 1933 | * prepending. |
| 1934 | * @ingroup egress |
| 1935 | * |
| 1936 | * @param[in] pkt Packet on which to operate. |
| 1937 | */ |
| 1938 | static __inline int |
| 1939 | NETIO_PKT_PREPEND_AVAIL(netio_pkt_t* pkt) |
| 1940 | { |
| 1941 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 1942 | { |
| 1943 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); |
| 1944 | |
| 1945 | return NETIO_PKT_PREPEND_AVAIL_MM(mmd, pkt); |
| 1946 | } |
| 1947 | else |
| 1948 | { |
| 1949 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); |
| 1950 | |
| 1951 | return NETIO_PKT_PREPEND_AVAIL_M(mda, pkt); |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | |
| 1956 | /** Flush a packet's minimal metadata from the cache, using a metadata pointer |
| 1957 | * to speed the operation. |
| 1958 | * @ingroup egress |
| 1959 | * |
| 1960 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1961 | * @param[in] pkt Packet on which to operate. |
| 1962 | */ |
| 1963 | static __inline void |
| 1964 | NETIO_PKT_FLUSH_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1965 | netio_pkt_t* pkt) |
| 1966 | { |
| 1967 | } |
| 1968 | |
| 1969 | |
| 1970 | /** Invalidate a packet's minimal metadata from the cache, using a metadata |
| 1971 | * pointer to speed the operation. |
| 1972 | * @ingroup egress |
| 1973 | * |
| 1974 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1975 | * @param[in] pkt Packet on which to operate. |
| 1976 | */ |
| 1977 | static __inline void |
| 1978 | NETIO_PKT_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1979 | netio_pkt_t* pkt) |
| 1980 | { |
| 1981 | } |
| 1982 | |
| 1983 | |
| 1984 | /** Flush and then invalidate a packet's minimal metadata from the cache, |
| 1985 | * using a metadata pointer to speed the operation. |
| 1986 | * @ingroup egress |
| 1987 | * |
| 1988 | * @param[in] mmd Pointer to packet's minimal metadata. |
| 1989 | * @param[in] pkt Packet on which to operate. |
| 1990 | */ |
| 1991 | static __inline void |
| 1992 | NETIO_PKT_FLUSH_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, |
| 1993 | netio_pkt_t* pkt) |
| 1994 | { |
| 1995 | } |
| 1996 | |
| 1997 | |
| 1998 | /** Flush a packet's metadata from the cache, using a metadata pointer |
| 1999 | * to speed the operation. |
| 2000 | * @ingroup ingress |
| 2001 | * |
| 2002 | * @param[in] mda Pointer to packet's minimal metadata. |
| 2003 | * @param[in] pkt Packet on which to operate. |
| 2004 | */ |
| 2005 | static __inline void |
| 2006 | NETIO_PKT_FLUSH_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 2007 | { |
| 2008 | } |
| 2009 | |
| 2010 | |
| 2011 | /** Invalidate a packet's metadata from the cache, using a metadata |
| 2012 | * pointer to speed the operation. |
| 2013 | * @ingroup ingress |
| 2014 | * |
| 2015 | * @param[in] mda Pointer to packet's metadata. |
| 2016 | * @param[in] pkt Packet on which to operate. |
| 2017 | */ |
| 2018 | static __inline void |
| 2019 | NETIO_PKT_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 2020 | { |
| 2021 | } |
| 2022 | |
| 2023 | |
| 2024 | /** Flush and then invalidate a packet's metadata from the cache, |
| 2025 | * using a metadata pointer to speed the operation. |
| 2026 | * @ingroup ingress |
| 2027 | * |
| 2028 | * @param[in] mda Pointer to packet's metadata. |
| 2029 | * @param[in] pkt Packet on which to operate. |
| 2030 | */ |
| 2031 | static __inline void |
| 2032 | NETIO_PKT_FLUSH_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) |
| 2033 | { |
| 2034 | } |
| 2035 | |
| 2036 | |
| 2037 | /** Flush a packet's minimal metadata from the cache. |
| 2038 | * @ingroup egress |
| 2039 | * |
| 2040 | * @param[in] pkt Packet on which to operate. |
| 2041 | */ |
| 2042 | static __inline void |
| 2043 | NETIO_PKT_FLUSH_MINIMAL_METADATA(netio_pkt_t* pkt) |
| 2044 | { |
| 2045 | } |
| 2046 | |
| 2047 | |
| 2048 | /** Invalidate a packet's minimal metadata from the cache. |
| 2049 | * @ingroup egress |
| 2050 | * |
| 2051 | * @param[in] pkt Packet on which to operate. |
| 2052 | */ |
| 2053 | static __inline void |
| 2054 | NETIO_PKT_INV_MINIMAL_METADATA(netio_pkt_t* pkt) |
| 2055 | { |
| 2056 | } |
| 2057 | |
| 2058 | |
| 2059 | /** Flush and then invalidate a packet's minimal metadata from the cache. |
| 2060 | * @ingroup egress |
| 2061 | * |
| 2062 | * @param[in] pkt Packet on which to operate. |
| 2063 | */ |
| 2064 | static __inline void |
| 2065 | NETIO_PKT_FLUSH_INV_MINIMAL_METADATA(netio_pkt_t* pkt) |
| 2066 | { |
| 2067 | } |
| 2068 | |
| 2069 | |
| 2070 | /** Flush a packet's metadata from the cache. |
| 2071 | * @ingroup ingress |
| 2072 | * |
| 2073 | * @param[in] pkt Packet on which to operate. |
| 2074 | */ |
| 2075 | static __inline void |
| 2076 | NETIO_PKT_FLUSH_METADATA(netio_pkt_t* pkt) |
| 2077 | { |
| 2078 | } |
| 2079 | |
| 2080 | |
| 2081 | /** Invalidate a packet's metadata from the cache. |
| 2082 | * @ingroup ingress |
| 2083 | * |
| 2084 | * @param[in] pkt Packet on which to operate. |
| 2085 | */ |
| 2086 | static __inline void |
| 2087 | NETIO_PKT_INV_METADATA(netio_pkt_t* pkt) |
| 2088 | { |
| 2089 | } |
| 2090 | |
| 2091 | |
| 2092 | /** Flush and then invalidate a packet's metadata from the cache. |
| 2093 | * @ingroup ingress |
| 2094 | * |
| 2095 | * @param[in] pkt Packet on which to operate. |
| 2096 | */ |
| 2097 | static __inline void |
| 2098 | NETIO_PKT_FLUSH_INV_METADATA(netio_pkt_t* pkt) |
| 2099 | { |
| 2100 | } |
| 2101 | |
| 2102 | /** Number of NUMA nodes we can distribute buffers to. |
| 2103 | * @ingroup setup */ |
| 2104 | #define NETIO_NUM_NODE_WEIGHTS 16 |
| 2105 | |
| 2106 | /** |
| 2107 | * @brief An object for specifying the characteristics of NetIO communication |
| 2108 | * endpoint. |
| 2109 | * |
| 2110 | * @ingroup setup |
| 2111 | * |
| 2112 | * The @ref netio_input_register() function uses this structure to define |
| 2113 | * how an application tile will communicate with an IPP. |
| 2114 | * |
| 2115 | * |
| 2116 | * Future updates to NetIO may add new members to this structure, |
| 2117 | * which can affect the success of the registration operation. Thus, |
| 2118 | * if dynamically initializing the structure, applications are urged to |
| 2119 | * zero it out first, for example: |
| 2120 | * |
| 2121 | * @code |
| 2122 | * netio_input_config_t config; |
| 2123 | * memset(&config, 0, sizeof (config)); |
| 2124 | * config.flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE; |
| 2125 | * config.num_receive_packets = NETIO_MAX_RECEIVE_PKTS; |
| 2126 | * config.queue_id = 0; |
| 2127 | * . |
| 2128 | * . |
| 2129 | * . |
| 2130 | * @endcode |
| 2131 | * |
| 2132 | * since that guarantees that any unused structure members, including |
| 2133 | * members which did not exist when the application was first developed, |
| 2134 | * will not have unexpected values. |
| 2135 | * |
| 2136 | * If statically initializing the structure, we strongly recommend use of |
| 2137 | * C99-style named initializers, for example: |
| 2138 | * |
| 2139 | * @code |
| 2140 | * netio_input_config_t config = { |
| 2141 | * .flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, |
| 2142 | * .num_receive_packets = NETIO_MAX_RECEIVE_PKTS, |
| 2143 | * .queue_id = 0, |
| 2144 | * }, |
| 2145 | * @endcode |
| 2146 | * |
| 2147 | * instead of the old-style structure initialization: |
| 2148 | * |
| 2149 | * @code |
| 2150 | * // Bad example! Currently equivalent to the above, but don't do this. |
| 2151 | * netio_input_config_t config = { |
| 2152 | * NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, NETIO_MAX_RECEIVE_PKTS, 0 |
| 2153 | * }, |
| 2154 | * @endcode |
| 2155 | * |
| 2156 | * since the C99 style requires no changes to the code if elements of the |
| 2157 | * config structure are rearranged. (It also makes the initialization much |
| 2158 | * easier to understand.) |
| 2159 | * |
| 2160 | * Except for items which address a particular tile's transmit or receive |
| 2161 | * characteristics, such as the ::NETIO_RECV flag, applications are advised |
| 2162 | * to specify the same set of configuration data on all registrations. |
| 2163 | * This prevents differing results if multiple tiles happen to do their |
| 2164 | * registration operations in a different order on different invocations of |
| 2165 | * the application. This is particularly important for things like link |
| 2166 | * management flags, and buffer size and homing specifications. |
| 2167 | * |
| 2168 | * Unless the ::NETIO_FIXED_BUFFER_VA flag is specified in flags, the NetIO |
| 2169 | * buffer pool is automatically created and mapped into the application's |
| 2170 | * virtual address space at an address chosen by the operating system, |
| 2171 | * using the common memory (cmem) facility in the Tilera Multicore |
| 2172 | * Components library. The cmem facility allows multiple processes to gain |
| 2173 | * access to shared memory which is mapped into each process at an |
| 2174 | * identical virtual address. In order for this to work, the processes |
| 2175 | * must have a common ancestor, which must create the common memory using |
| 2176 | * tmc_cmem_init(). |
| 2177 | * |
| 2178 | * In programs using the iLib process creation API, or in programs which use |
| 2179 | * only one process (which include programs using the pthreads library), |
| 2180 | * tmc_cmem_init() is called automatically. All other applications |
| 2181 | * must call it explicitly, before any child processes which might call |
| 2182 | * netio_input_register() are created. |
| 2183 | */ |
| 2184 | typedef struct |
| 2185 | { |
| 2186 | /** Registration characteristics. |
| 2187 | |
| 2188 | This value determines several characteristics of the registration; |
| 2189 | flags for different types of behavior are ORed together to make the |
| 2190 | final flag value. Generally applications should specify exactly |
| 2191 | one flag from each of the following categories: |
| 2192 | |
| 2193 | - Whether the application will be receiving packets on this queue |
| 2194 | (::NETIO_RECV or ::NETIO_NO_RECV). |
| 2195 | |
| 2196 | - Whether the application will be transmitting packets on this queue, |
| 2197 | and if so, whether it will request egress checksum calculation |
| 2198 | (::NETIO_XMIT, ::NETIO_XMIT_CSUM, or ::NETIO_NO_XMIT). It is |
| 2199 | legal to call netio_get_buffer() without one of the XMIT flags, |
| 2200 | as long as ::NETIO_RECV is specified; in this case, the retrieved |
| 2201 | buffers must be passed to another tile for transmission. |
| 2202 | |
| 2203 | - Whether the application expects any vendor-specific tags in |
| 2204 | its packets' L2 headers (::NETIO_TAG_NONE, ::NETIO_TAG_BRCM, |
| 2205 | or ::NETIO_TAG_MRVL). This must match the configuration of the |
| 2206 | target IPP. |
| 2207 | |
| 2208 | To accommodate applications written to previous versions of the NetIO |
| 2209 | interface, none of the flags above are currently required; if omitted, |
| 2210 | NetIO behaves more or less as if ::NETIO_RECV | ::NETIO_XMIT_CSUM | |
| 2211 | ::NETIO_TAG_NONE were used. However, explicit specification of |
| 2212 | the relevant flags allows NetIO to do a better job of resource |
| 2213 | allocation, allows earlier detection of certain configuration errors, |
| 2214 | and may enable advanced features or higher performance in the future, |
| 2215 | so their use is strongly recommended. |
| 2216 | |
| 2217 | Note that specifying ::NETIO_NO_RECV along with ::NETIO_NO_XMIT |
| 2218 | is a special case, intended primarily for use by programs which |
| 2219 | retrieve network statistics or do link management operations. |
| 2220 | When these flags are both specified, the resulting queue may not |
| 2221 | be used with NetIO routines other than netio_get(), netio_set(), |
| 2222 | and netio_input_unregister(). See @ref link for more information |
| 2223 | on link management. |
| 2224 | |
| 2225 | Other flags are optional; their use is described below. |
| 2226 | */ |
| 2227 | int flags; |
| 2228 | |
| 2229 | /** Interface name. This is a string which identifies the specific |
| 2230 | Ethernet controller hardware to be used. The format of the string |
| 2231 | is a device type and a device index, separated by a slash; so, |
| 2232 | the first 10 Gigabit Ethernet controller is named "xgbe/0", while |
| 2233 | the second 10/100/1000 Megabit Ethernet controller is named "gbe/1". |
| 2234 | */ |
| 2235 | const char* interface; |
| 2236 | |
| 2237 | /** Receive packet queue size. This specifies the maximum number |
| 2238 | of ingress packets that can be received on this queue without |
| 2239 | being retrieved by @ref netio_get_packet(). If the IPP's distribution |
| 2240 | algorithm calls for a packet to be sent to this queue, and this |
| 2241 | number of packets are already pending there, the new packet |
| 2242 | will either be discarded, or sent to another tile registered |
| 2243 | for the same queue_id (see @ref drops). This value must |
| 2244 | be at least ::NETIO_MIN_RECEIVE_PKTS, can always be at least |
| 2245 | ::NETIO_MAX_RECEIVE_PKTS, and may be larger than that on certain |
| 2246 | interfaces. |
| 2247 | */ |
| 2248 | int num_receive_packets; |
| 2249 | |
| 2250 | /** The queue ID being requested. Legal values for this range from 0 |
| 2251 | to ::NETIO_MAX_QUEUE_ID, inclusive. ::NETIO_MAX_QUEUE_ID is always |
| 2252 | greater than or equal to the number of tiles; this allows one queue |
| 2253 | for each tile, plus at least one additional queue. Some applications |
| 2254 | may wish to use the additional queue as a destination for unwanted |
| 2255 | packets, since packets delivered to queues for which no tiles have |
| 2256 | registered are discarded. |
| 2257 | */ |
| 2258 | unsigned int queue_id; |
| 2259 | |
| 2260 | /** Maximum number of small send buffers to be held in the local empty |
| 2261 | buffer cache. This specifies the size of the area which holds |
| 2262 | empty small egress buffers requested from the IPP but not yet |
| 2263 | retrieved via @ref netio_get_buffer(). This value must be greater |
| 2264 | than zero if the application will ever use @ref netio_get_buffer() |
| 2265 | to allocate empty small egress buffers; it may be no larger than |
| 2266 | ::NETIO_MAX_SEND_BUFFERS. See @ref epp for more details on empty |
| 2267 | buffer caching. |
| 2268 | */ |
| 2269 | int num_send_buffers_small_total; |
| 2270 | |
| 2271 | /** Number of small send buffers to be preallocated at registration. |
| 2272 | If this value is nonzero, the specified number of empty small egress |
| 2273 | buffers will be requested from the IPP during the netio_input_register |
| 2274 | operation; this may speed the execution of @ref netio_get_buffer(). |
| 2275 | This may be no larger than @ref num_send_buffers_small_total. See @ref |
| 2276 | epp for more details on empty buffer caching. |
| 2277 | */ |
| 2278 | int num_send_buffers_small_prealloc; |
| 2279 | |
| 2280 | /** Maximum number of large send buffers to be held in the local empty |
| 2281 | buffer cache. This specifies the size of the area which holds empty |
| 2282 | large egress buffers requested from the IPP but not yet retrieved via |
| 2283 | @ref netio_get_buffer(). This value must be greater than zero if the |
| 2284 | application will ever use @ref netio_get_buffer() to allocate empty |
| 2285 | large egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS. |
| 2286 | See @ref epp for more details on empty buffer caching. |
| 2287 | */ |
| 2288 | int num_send_buffers_large_total; |
| 2289 | |
| 2290 | /** Number of large send buffers to be preallocated at registration. |
| 2291 | If this value is nonzero, the specified number of empty large egress |
| 2292 | buffers will be requested from the IPP during the netio_input_register |
| 2293 | operation; this may speed the execution of @ref netio_get_buffer(). |
| 2294 | This may be no larger than @ref num_send_buffers_large_total. See @ref |
| 2295 | epp for more details on empty buffer caching. |
| 2296 | */ |
| 2297 | int num_send_buffers_large_prealloc; |
| 2298 | |
| 2299 | /** Maximum number of jumbo send buffers to be held in the local empty |
| 2300 | buffer cache. This specifies the size of the area which holds empty |
| 2301 | jumbo egress buffers requested from the IPP but not yet retrieved via |
| 2302 | @ref netio_get_buffer(). This value must be greater than zero if the |
| 2303 | application will ever use @ref netio_get_buffer() to allocate empty |
| 2304 | jumbo egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS. |
| 2305 | See @ref epp for more details on empty buffer caching. |
| 2306 | */ |
| 2307 | int num_send_buffers_jumbo_total; |
| 2308 | |
| 2309 | /** Number of jumbo send buffers to be preallocated at registration. |
| 2310 | If this value is nonzero, the specified number of empty jumbo egress |
| 2311 | buffers will be requested from the IPP during the netio_input_register |
| 2312 | operation; this may speed the execution of @ref netio_get_buffer(). |
| 2313 | This may be no larger than @ref num_send_buffers_jumbo_total. See @ref |
| 2314 | epp for more details on empty buffer caching. |
| 2315 | */ |
| 2316 | int num_send_buffers_jumbo_prealloc; |
| 2317 | |
| 2318 | /** Total packet buffer size. This determines the total size, in bytes, |
| 2319 | of the NetIO buffer pool. Note that the maximum number of available |
| 2320 | buffers of each size is determined during hypervisor configuration |
| 2321 | (see the <em>System Programmer's Guide</em> for details); this just |
| 2322 | influences how much host memory is allocated for those buffers. |
| 2323 | |
| 2324 | The buffer pool is allocated from common memory, which will be |
| 2325 | automatically initialized if needed. If your buffer pool is larger |
| 2326 | than 240 MB, you might need to explicitly call @c tmc_cmem_init(), |
| 2327 | as described in the Application Libraries Reference Manual (UG227). |
| 2328 | |
| 2329 | Packet buffers are currently allocated in chunks of 16 MB; this |
| 2330 | value will be rounded up to the next larger multiple of 16 MB. |
| 2331 | If this value is zero, a default of 32 MB will be used; this was |
| 2332 | the value used by previous versions of NetIO. Note that taking this |
| 2333 | default also affects the placement of buffers on Linux NUMA nodes. |
| 2334 | See @ref buffer_node_weights for an explanation of buffer placement. |
| 2335 | |
| 2336 | In order to successfully allocate packet buffers, Linux must have |
| 2337 | available huge pages on the relevant Linux NUMA nodes. See the |
| 2338 | <em>System Programmer's Guide</em> for information on configuring |
| 2339 | huge page support in Linux. |
| 2340 | */ |
| 2341 | uint64_t total_buffer_size; |
| 2342 | |
| 2343 | /** Buffer placement weighting factors. |
| 2344 | |
| 2345 | This array specifies the relative amount of buffering to place |
| 2346 | on each of the available Linux NUMA nodes. This array is |
| 2347 | indexed by the NUMA node, and the values in the array are |
| 2348 | proportional to the amount of buffer space to allocate on that |
| 2349 | node. |
| 2350 | |
| 2351 | If memory striping is enabled in the Hypervisor, then there is |
| 2352 | only one logical NUMA node (node 0). In that case, NetIO will by |
| 2353 | default ignore the suggested buffer node weights, and buffers |
| 2354 | will be striped across the physical memory controllers. See |
| 2355 | UG209 System Programmer's Guide for a description of the |
| 2356 | hypervisor option that controls memory striping. |
| 2357 | |
| 2358 | If memory striping is disabled, then there are up to four NUMA |
| 2359 | nodes, corresponding to the four DDRAM controllers in the TILE |
| 2360 | processor architecture. See UG100 Tile Processor Architecture |
| 2361 | Overview for a diagram showing the location of each of the DDRAM |
| 2362 | controllers relative to the tile array. |
| 2363 | |
| 2364 | For instance, if memory striping is disabled, the following |
| 2365 | configuration strucure: |
| 2366 | |
| 2367 | @code |
| 2368 | netio_input_config_t config = { |
| 2369 | . |
| 2370 | . |
| 2371 | . |
| 2372 | .total_buffer_size = 4 * 16 * 1024 * 1024; |
| 2373 | .buffer_node_weights = { 1, 0, 1, 0 }, |
| 2374 | }, |
| 2375 | @endcode |
| 2376 | |
| 2377 | would result in 32 MB of buffers being placed on controller 0, and |
| 2378 | 32 MB on controller 2. (Since buffers are allocated in units of |
| 2379 | 16 MB, some sets of weights will not be able to be matched exactly.) |
| 2380 | |
| 2381 | For the weights to be effective, @ref total_buffer_size must be |
| 2382 | nonzero. If @ref total_buffer_size is zero, causing the default |
| 2383 | 32 MB of buffer space to be used, then any specified weights will |
| 2384 | be ignored, and buffers will positioned as they were in previous |
| 2385 | versions of NetIO: |
| 2386 | |
| 2387 | - For xgbe/0 and gbe/0, 16 MB of buffers will be placed on controller 1, |
| 2388 | and the other 16 MB will be placed on controller 2. |
| 2389 | |
| 2390 | - For xgbe/1 and gbe/1, 16 MB of buffers will be placed on controller 2, |
| 2391 | and the other 16 MB will be placed on controller 3. |
| 2392 | |
| 2393 | If @ref total_buffer_size is nonzero, but all weights are zero, |
| 2394 | then all buffer space will be allocated on Linux NUMA node zero. |
| 2395 | |
| 2396 | By default, the specified buffer placement is treated as a hint; |
| 2397 | if sufficient free memory is not available on the specified |
| 2398 | controllers, the buffers will be allocated elsewhere. However, |
| 2399 | if the ::NETIO_STRICT_HOMING flag is specified in @ref flags, then a |
| 2400 | failure to allocate buffer space exactly as requested will cause the |
| 2401 | registration operation to fail with an error of ::NETIO_CANNOT_HOME. |
| 2402 | |
| 2403 | Note that maximal network performance cannot be achieved with |
| 2404 | only one memory controller. |
| 2405 | */ |
| 2406 | uint8_t buffer_node_weights[NETIO_NUM_NODE_WEIGHTS]; |
| 2407 | |
| 2408 | /** Fixed virtual address for packet buffers. Only valid when |
| 2409 | ::NETIO_FIXED_BUFFER_VA is specified in @ref flags; see the |
| 2410 | description of that flag for details. |
| 2411 | */ |
| 2412 | void* fixed_buffer_va; |
| 2413 | |
| 2414 | /** |
| 2415 | Maximum number of outstanding send packet requests. This value is |
| 2416 | only relevant when an EPP is in use; it determines the number of |
| 2417 | slots in the EPP's outgoing packet queue which this tile is allowed |
| 2418 | to consume, and thus the number of packets which may be sent before |
| 2419 | the sending tile must wait for an acknowledgment from the EPP. |
| 2420 | Modifying this value is generally only helpful when using @ref |
| 2421 | netio_send_packet_vector(), where it can help improve performance by |
| 2422 | allowing a single vector send operation to process more packets. |
| 2423 | Typically it is not specified, and the default, which divides the |
| 2424 | outgoing packet slots evenly between all tiles on the chip, is used. |
| 2425 | |
| 2426 | If a registration asks for more outgoing packet queue slots than are |
| 2427 | available, ::NETIO_TOOMANY_XMIT will be returned. The total number |
| 2428 | of packet queue slots which are available for all tiles for each EPP |
| 2429 | is subject to change, but is currently ::NETIO_TOTAL_SENDS_OUTSTANDING. |
| 2430 | |
| 2431 | |
| 2432 | This value is ignored if ::NETIO_XMIT is not specified in flags. |
| 2433 | If you want to specify a large value here for a specific tile, you are |
| 2434 | advised to specify NETIO_NO_XMIT on other, non-transmitting tiles so |
| 2435 | that they do not consume a default number of packet slots. Any tile |
| 2436 | transmitting is required to have at least ::NETIO_MIN_SENDS_OUTSTANDING |
| 2437 | slots allocated to it; values less than that will be silently |
| 2438 | increased by the NetIO library. |
| 2439 | */ |
| 2440 | int num_sends_outstanding; |
| 2441 | } |
| 2442 | netio_input_config_t; |
| 2443 | |
| 2444 | |
| 2445 | /** Registration flags; used in the @ref netio_input_config_t structure. |
| 2446 | * @addtogroup setup |
| 2447 | */ |
| 2448 | /** @{ */ |
| 2449 | |
| 2450 | /** Fail a registration request if we can't put packet buffers |
| 2451 | on the specified memory controllers. */ |
| 2452 | #define NETIO_STRICT_HOMING 0x00000002 |
| 2453 | |
| 2454 | /** This application expects no tags on its L2 headers. */ |
| 2455 | #define NETIO_TAG_NONE 0x00000004 |
| 2456 | |
| 2457 | /** This application expects Marvell extended tags on its L2 headers. */ |
| 2458 | #define NETIO_TAG_MRVL 0x00000008 |
| 2459 | |
| 2460 | /** This application expects Broadcom tags on its L2 headers. */ |
| 2461 | #define NETIO_TAG_BRCM 0x00000010 |
| 2462 | |
| 2463 | /** This registration may call routines which receive packets. */ |
| 2464 | #define NETIO_RECV 0x00000020 |
| 2465 | |
| 2466 | /** This registration may not call routines which receive packets. */ |
| 2467 | #define NETIO_NO_RECV 0x00000040 |
| 2468 | |
| 2469 | /** This registration may call routines which transmit packets. */ |
| 2470 | #define NETIO_XMIT 0x00000080 |
| 2471 | |
| 2472 | /** This registration may call routines which transmit packets with |
| 2473 | checksum acceleration. */ |
| 2474 | #define NETIO_XMIT_CSUM 0x00000100 |
| 2475 | |
| 2476 | /** This registration may not call routines which transmit packets. */ |
| 2477 | #define NETIO_NO_XMIT 0x00000200 |
| 2478 | |
| 2479 | /** This registration wants NetIO buffers mapped at an application-specified |
| 2480 | virtual address. |
| 2481 | |
| 2482 | NetIO buffers are by default created by the TMC common memory facility, |
| 2483 | which must be configured by a common ancestor of all processes sharing |
| 2484 | a network interface. When this flag is specified, NetIO buffers are |
| 2485 | instead mapped at an address chosen by the application (and specified |
| 2486 | in @ref netio_input_config_t::fixed_buffer_va). This allows multiple |
| 2487 | unrelated but cooperating processes to share a NetIO interface. |
| 2488 | All processes sharing the same interface must specify this flag, |
| 2489 | and all must specify the same fixed virtual address. |
| 2490 | |
| 2491 | @ref netio_input_config_t::fixed_buffer_va must be a |
| 2492 | multiple of 16 MB, and the packet buffers will occupy @ref |
| 2493 | netio_input_config_t::total_buffer_size bytes of virtual address |
| 2494 | space, beginning at that address. If any of those virtual addresses |
| 2495 | are currently occupied by other memory objects, like application or |
| 2496 | shared library code or data, @ref netio_input_register() will return |
| 2497 | ::NETIO_FAULT. While it is impossible to provide a fixed_buffer_va |
| 2498 | which will work for all applications, a good first guess might be to |
| 2499 | use 0xb0000000 minus @ref netio_input_config_t::total_buffer_size. |
| 2500 | If that fails, it might be helpful to consult the running application's |
| 2501 | virtual address description file (/proc/<em>pid</em>/maps) to see |
| 2502 | which regions of virtual address space are available. |
| 2503 | */ |
| 2504 | #define NETIO_FIXED_BUFFER_VA 0x00000400 |
| 2505 | |
| 2506 | /** This registration call will not complete unless the network link |
| 2507 | is up. The process will wait several seconds for this to happen (the |
| 2508 | precise interval is link-dependent), but if the link does not come up, |
| 2509 | ::NETIO_LINK_DOWN will be returned. This flag is the default if |
| 2510 | ::NETIO_NOREQUIRE_LINK_UP is not specified. Note that this flag by |
| 2511 | itself does not request that the link be brought up; that can be done |
| 2512 | with the ::NETIO_AUTO_LINK_UPDN or ::NETIO_AUTO_LINK_UP flags (the |
| 2513 | latter is the default if no NETIO_AUTO_LINK_xxx flags are specified), |
| 2514 | or by explicitly setting the link's desired state via netio_set(). |
| 2515 | If the link is not brought up by one of those methods, and this flag |
| 2516 | is specified, the registration operation will return ::NETIO_LINK_DOWN. |
| 2517 | This flag is ignored if it is specified along with ::NETIO_NO_XMIT and |
| 2518 | ::NETIO_NO_RECV. See @ref link for more information on link |
| 2519 | management. |
| 2520 | */ |
| 2521 | #define NETIO_REQUIRE_LINK_UP 0x00000800 |
| 2522 | |
| 2523 | /** This registration call will complete even if the network link is not up. |
| 2524 | Whenever the link is not up, packets will not be sent or received: |
| 2525 | netio_get_packet() will return ::NETIO_NOPKT once all queued packets |
| 2526 | have been drained, and netio_send_packet() and similar routines will |
| 2527 | return NETIO_QUEUE_FULL once the outgoing packet queue in the EPP |
| 2528 | or the I/O shim is full. See @ref link for more information on link |
| 2529 | management. |
| 2530 | */ |
| 2531 | #define NETIO_NOREQUIRE_LINK_UP 0x00001000 |
| 2532 | |
| 2533 | #ifndef __DOXYGEN__ |
| 2534 | /* |
| 2535 | * These are part of the implementation of the NETIO_AUTO_LINK_xxx flags, |
| 2536 | * but should not be used directly by applications, and are thus not |
| 2537 | * documented. |
| 2538 | */ |
| 2539 | #define _NETIO_AUTO_UP 0x00002000 |
| 2540 | #define _NETIO_AUTO_DN 0x00004000 |
| 2541 | #define _NETIO_AUTO_PRESENT 0x00008000 |
| 2542 | #endif |
| 2543 | |
| 2544 | /** Set the desired state of the link to up, allowing any speeds which are |
| 2545 | supported by the link hardware, as part of this registration operation. |
| 2546 | Do not take down the link automatically. This is the default if |
| 2547 | no other NETIO_AUTO_LINK_xxx flags are specified. This flag is ignored |
| 2548 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. |
| 2549 | See @ref link for more information on link management. |
| 2550 | */ |
| 2551 | #define NETIO_AUTO_LINK_UP (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP) |
| 2552 | |
| 2553 | /** Set the desired state of the link to up, allowing any speeds which are |
| 2554 | supported by the link hardware, as part of this registration operation. |
| 2555 | Set the desired state of the link to down the next time no tiles are |
| 2556 | registered for packet reception or transmission. This flag is ignored |
| 2557 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. |
| 2558 | See @ref link for more information on link management. |
| 2559 | */ |
| 2560 | #define NETIO_AUTO_LINK_UPDN (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP | \ |
| 2561 | _NETIO_AUTO_DN) |
| 2562 | |
| 2563 | /** Set the desired state of the link to down the next time no tiles are |
| 2564 | registered for packet reception or transmission. This flag is ignored |
| 2565 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. |
| 2566 | See @ref link for more information on link management. |
| 2567 | */ |
| 2568 | #define NETIO_AUTO_LINK_DN (_NETIO_AUTO_PRESENT | _NETIO_AUTO_DN) |
| 2569 | |
| 2570 | /** Do not bring up the link automatically as part of this registration |
| 2571 | operation. Do not take down the link automatically. This flag |
| 2572 | is ignored if it is specified along with ::NETIO_NO_XMIT and |
| 2573 | ::NETIO_NO_RECV. See @ref link for more information on link management. |
| 2574 | */ |
| 2575 | #define NETIO_AUTO_LINK_NONE _NETIO_AUTO_PRESENT |
| 2576 | |
| 2577 | |
| 2578 | /** Minimum number of receive packets. */ |
| 2579 | #define NETIO_MIN_RECEIVE_PKTS 16 |
| 2580 | |
| 2581 | /** Lower bound on the maximum number of receive packets; may be higher |
| 2582 | than this on some interfaces. */ |
| 2583 | #define NETIO_MAX_RECEIVE_PKTS 128 |
| 2584 | |
| 2585 | /** Maximum number of send buffers, per packet size. */ |
| 2586 | #define NETIO_MAX_SEND_BUFFERS 16 |
| 2587 | |
| 2588 | /** Number of EPP queue slots, and thus outstanding sends, per EPP. */ |
| 2589 | #define NETIO_TOTAL_SENDS_OUTSTANDING 2015 |
| 2590 | |
| 2591 | /** Minimum number of EPP queue slots, and thus outstanding sends, per |
| 2592 | * transmitting tile. */ |
| 2593 | #define NETIO_MIN_SENDS_OUTSTANDING 16 |
| 2594 | |
| 2595 | |
| 2596 | /**@}*/ |
| 2597 | |
| 2598 | #ifndef __DOXYGEN__ |
| 2599 | |
| 2600 | /** |
| 2601 | * An object for providing Ethernet packets to a process. |
| 2602 | */ |
| 2603 | struct __netio_queue_impl_t; |
| 2604 | |
| 2605 | /** |
| 2606 | * An object for managing the user end of a NetIO queue. |
| 2607 | */ |
| 2608 | struct __netio_queue_user_impl_t; |
| 2609 | |
| 2610 | #endif /* !__DOXYGEN__ */ |
| 2611 | |
| 2612 | |
| 2613 | /** A netio_queue_t describes a NetIO communications endpoint. |
| 2614 | * @ingroup setup |
| 2615 | */ |
| 2616 | typedef struct |
| 2617 | { |
| 2618 | #ifdef __DOXYGEN__ |
| 2619 | uint8_t opaque[8]; /**< This is an opaque structure. */ |
| 2620 | #else |
| 2621 | struct __netio_queue_impl_t* __system_part; /**< The system part. */ |
| 2622 | struct __netio_queue_user_impl_t* __user_part; /**< The user part. */ |
| 2623 | #ifdef _NETIO_PTHREAD |
| 2624 | _netio_percpu_mutex_t lock; /**< Queue lock. */ |
| 2625 | #endif |
| 2626 | #endif |
| 2627 | } |
| 2628 | netio_queue_t; |
| 2629 | |
| 2630 | |
| 2631 | /** |
| 2632 | * @brief Packet send context. |
| 2633 | * |
| 2634 | * @ingroup egress |
| 2635 | * |
| 2636 | * Packet send context for use with netio_send_packet_prepare and _commit. |
| 2637 | */ |
| 2638 | typedef struct |
| 2639 | { |
| 2640 | #ifdef __DOXYGEN__ |
| 2641 | uint8_t opaque[44]; /**< This is an opaque structure. */ |
| 2642 | #else |
| 2643 | uint8_t flags; /**< Defined below */ |
| 2644 | uint8_t datalen; /**< Number of valid words pointed to by data. */ |
| 2645 | uint32_t request[9]; /**< Request to be sent to the EPP or shim. Note |
| 2646 | that this is smaller than the 11-word maximum |
| 2647 | request size, since some constant values are |
| 2648 | not saved in the context. */ |
| 2649 | uint32_t *data; /**< Data to be sent to the EPP or shim via IDN. */ |
| 2650 | #endif |
| 2651 | } |
| 2652 | netio_send_pkt_context_t; |
| 2653 | |
| 2654 | |
| 2655 | #ifndef __DOXYGEN__ |
| 2656 | #define SEND_PKT_CTX_USE_EPP 1 /**< We're sending to an EPP. */ |
| 2657 | #define SEND_PKT_CTX_SEND_CSUM 2 /**< Request includes a checksum. */ |
| 2658 | #endif |
| 2659 | |
| 2660 | /** |
| 2661 | * @brief Packet vector entry. |
| 2662 | * |
| 2663 | * @ingroup egress |
| 2664 | * |
| 2665 | * This data structure is used with netio_send_packet_vector() to send multiple |
| 2666 | * packets with one NetIO call. The structure should be initialized by |
| 2667 | * calling netio_pkt_vector_set(), rather than by setting the fields |
| 2668 | * directly. |
| 2669 | * |
| 2670 | * This structure is guaranteed to be a power of two in size, no |
| 2671 | * bigger than one L2 cache line, and to be aligned modulo its size. |
| 2672 | */ |
| 2673 | typedef struct |
| 2674 | #ifndef __DOXYGEN__ |
| 2675 | __attribute__((aligned(8))) |
| 2676 | #endif |
| 2677 | { |
| 2678 | /** Reserved for use by the user application. When initialized with |
| 2679 | * the netio_set_pkt_vector_entry() function, this field is guaranteed |
| 2680 | * to be visible to readers only after all other fields are already |
| 2681 | * visible. This way it can be used as a valid flag or generation |
| 2682 | * counter. */ |
| 2683 | uint8_t user_data; |
| 2684 | |
| 2685 | /* Structure members below this point should not be accessed directly by |
| 2686 | * applications, as they may change in the future. */ |
| 2687 | |
| 2688 | /** Low 8 bits of the packet address to send. The high bits are |
| 2689 | * acquired from the 'handle' field. */ |
| 2690 | uint8_t buffer_address_low; |
| 2691 | |
| 2692 | /** Number of bytes to transmit. */ |
| 2693 | uint16_t size; |
| 2694 | |
| 2695 | /** The raw handle from a netio_pkt_t. If this is NETIO_PKT_HANDLE_NONE, |
| 2696 | * this vector entry will be skipped and no packet will be transmitted. */ |
| 2697 | netio_pkt_handle_t handle; |
| 2698 | } |
| 2699 | netio_pkt_vector_entry_t; |
| 2700 | |
| 2701 | |
| 2702 | /** |
| 2703 | * @brief Initialize fields in a packet vector entry. |
| 2704 | * |
| 2705 | * @ingroup egress |
| 2706 | * |
| 2707 | * @param[out] v Pointer to the vector entry to be initialized. |
| 2708 | * @param[in] pkt Packet to be transmitted when the vector entry is passed to |
| 2709 | * netio_send_packet_vector(). Note that the packet's attributes |
| 2710 | * (e.g., its L2 offset and length) are captured at the time this |
| 2711 | * routine is called; subsequent changes in those attributes will not |
| 2712 | * be reflected in the packet which is actually transmitted. |
| 2713 | * Changes in the packet's contents, however, will be so reflected. |
| 2714 | * If this is NULL, no packet will be transmitted. |
| 2715 | * @param[in] user_data User data to be set in the vector entry. |
| 2716 | * This function guarantees that the "user_data" field will become |
| 2717 | * visible to a reader only after all other fields have become visible. |
| 2718 | * This allows a structure in a ring buffer to be written and read |
| 2719 | * by a polling reader without any locks or other synchronization. |
| 2720 | */ |
| 2721 | static __inline void |
| 2722 | netio_pkt_vector_set(volatile netio_pkt_vector_entry_t* v, netio_pkt_t* pkt, |
| 2723 | uint8_t user_data) |
| 2724 | { |
| 2725 | if (pkt) |
| 2726 | { |
| 2727 | if (NETIO_PKT_IS_MINIMAL(pkt)) |
| 2728 | { |
| 2729 | netio_pkt_minimal_metadata_t* mmd = |
| 2730 | (netio_pkt_minimal_metadata_t*) &pkt->__metadata; |
| 2731 | v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_MM(mmd, pkt) & 0xFF; |
| 2732 | v->size = NETIO_PKT_L2_LENGTH_MM(mmd, pkt); |
| 2733 | } |
| 2734 | else |
| 2735 | { |
| 2736 | netio_pkt_metadata_t* mda = &pkt->__metadata; |
| 2737 | v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_M(mda, pkt) & 0xFF; |
| 2738 | v->size = NETIO_PKT_L2_LENGTH_M(mda, pkt); |
| 2739 | } |
| 2740 | v->handle.word = pkt->__packet.word; |
| 2741 | } |
| 2742 | else |
| 2743 | { |
| 2744 | v->handle.word = 0; /* Set handle to NETIO_PKT_HANDLE_NONE. */ |
| 2745 | } |
| 2746 | |
| 2747 | __asm__("" : : : "memory"); |
| 2748 | |
| 2749 | v->user_data = user_data; |
| 2750 | } |
| 2751 | |
| 2752 | |
| 2753 | /** |
| 2754 | * Flags and structures for @ref netio_get() and @ref netio_set(). |
| 2755 | * @ingroup config |
| 2756 | */ |
| 2757 | |
| 2758 | /** @{ */ |
| 2759 | /** Parameter class; addr is a NETIO_PARAM_xxx value. */ |
| 2760 | #define NETIO_PARAM 0 |
| 2761 | /** Interface MAC address. This address is only valid with @ref netio_get(). |
| 2762 | * The value is a 6-byte MAC address. Depending upon the overall system |
| 2763 | * design, a MAC address may or may not be available for each interface. */ |
| 2764 | #define NETIO_PARAM_MAC 0 |
| 2765 | |
| 2766 | /** Determine whether to suspend output on the receipt of pause frames. |
| 2767 | * If the value is nonzero, the I/O shim will suspend output when a pause |
| 2768 | * frame is received. If the value is zero, pause frames will be ignored. */ |
| 2769 | #define NETIO_PARAM_PAUSE_IN 1 |
| 2770 | |
| 2771 | /** Determine whether to send pause frames if the I/O shim packet FIFOs are |
| 2772 | * nearly full. If the value is zero, pause frames are not sent. If |
| 2773 | * the value is nonzero, it is the delay value which will be sent in any |
| 2774 | * pause frames which are output, in units of 512 bit times. */ |
| 2775 | #define NETIO_PARAM_PAUSE_OUT 2 |
| 2776 | |
| 2777 | /** Jumbo frame support. The value is a 4-byte integer. If the value is |
| 2778 | * nonzero, the MAC will accept frames of up to 10240 bytes. If the value |
| 2779 | * is zero, the MAC will only accept frames of up to 1544 bytes. */ |
| 2780 | #define NETIO_PARAM_JUMBO 3 |
| 2781 | |
| 2782 | /** I/O shim's overflow statistics register. The value is two 16-bit integers. |
| 2783 | * The first 16-bit value (or the low 16 bits, if the value is treated as a |
| 2784 | * 32-bit number) is the count of packets which were completely dropped and |
| 2785 | * not delivered by the shim. The second 16-bit value (or the high 16 bits, |
| 2786 | * if the value is treated as a 32-bit number) is the count of packets |
| 2787 | * which were truncated and thus only partially delivered by the shim. This |
| 2788 | * register is automatically reset to zero after it has been read. |
| 2789 | */ |
| 2790 | #define NETIO_PARAM_OVERFLOW 4 |
| 2791 | |
| 2792 | /** IPP statistics. This address is only valid with @ref netio_get(). The |
| 2793 | * value is a netio_stat_t structure. Unlike the I/O shim statistics, the |
| 2794 | * IPP statistics are not all reset to zero on read; see the description |
| 2795 | * of the netio_stat_t for details. */ |
| 2796 | #define NETIO_PARAM_STAT 5 |
| 2797 | |
| 2798 | /** Possible link state. The value is a combination of "NETIO_LINK_xxx" |
| 2799 | * flags. With @ref netio_get(), this will indicate which flags are |
| 2800 | * actually supported by the hardware. |
| 2801 | * |
| 2802 | * For historical reasons, specifying this value to netio_set() will have |
| 2803 | * the same behavior as using ::NETIO_PARAM_LINK_CONFIG, but this usage is |
| 2804 | * discouraged. |
| 2805 | */ |
| 2806 | #define NETIO_PARAM_LINK_POSSIBLE_STATE 6 |
| 2807 | |
| 2808 | /** Link configuration. The value is a combination of "NETIO_LINK_xxx" flags. |
| 2809 | * With @ref netio_set(), this will attempt to immediately bring up the |
| 2810 | * link using whichever of the requested flags are supported by the |
| 2811 | * hardware, or take down the link if the flags are zero; if this is |
| 2812 | * not possible, an error will be returned. Many programs will want |
| 2813 | * to use ::NETIO_PARAM_LINK_DESIRED_STATE instead. |
| 2814 | * |
| 2815 | * For historical reasons, specifying this value to netio_get() will |
| 2816 | * have the same behavior as using ::NETIO_PARAM_LINK_POSSIBLE_STATE, |
| 2817 | * but this usage is discouraged. |
| 2818 | */ |
| 2819 | #define NETIO_PARAM_LINK_CONFIG NETIO_PARAM_LINK_POSSIBLE_STATE |
| 2820 | |
| 2821 | /** Current link state. This address is only valid with @ref netio_get(). |
| 2822 | * The value is zero or more of the "NETIO_LINK_xxx" flags, ORed together. |
| 2823 | * If the link is down, the value ANDed with NETIO_LINK_SPEED will be |
| 2824 | * zero; if the link is up, the value ANDed with NETIO_LINK_SPEED will |
| 2825 | * result in exactly one of the NETIO_LINK_xxx values, indicating the |
| 2826 | * current speed. */ |
| 2827 | #define NETIO_PARAM_LINK_CURRENT_STATE 7 |
| 2828 | |
| 2829 | /** Variant symbol for current state, retained for compatibility with |
| 2830 | * pre-MDE-2.1 programs. */ |
| 2831 | #define NETIO_PARAM_LINK_STATUS NETIO_PARAM_LINK_CURRENT_STATE |
| 2832 | |
| 2833 | /** Packet Coherence protocol. This address is only valid with @ref netio_get(). |
| 2834 | * The value is nonzero if the interface is configured for cache-coherent DMA. |
| 2835 | */ |
| 2836 | #define NETIO_PARAM_COHERENT 8 |
| 2837 | |
| 2838 | /** Desired link state. The value is a conbination of "NETIO_LINK_xxx" |
| 2839 | * flags, which specify the desired state for the link. With @ref |
| 2840 | * netio_set(), this will, in the background, attempt to bring up the link |
| 2841 | * using whichever of the requested flags are reasonable, or take down the |
| 2842 | * link if the flags are zero. The actual link up or down operation may |
| 2843 | * happen after this call completes. If the link state changes in the |
| 2844 | * future, the system will continue to try to get back to the desired link |
| 2845 | * state; for instance, if the link is brought up successfully, and then |
| 2846 | * the network cable is disconnected, the link will go down. However, the |
| 2847 | * desired state of the link is still up, so if the cable is reconnected, |
| 2848 | * the link will be brought up again. |
| 2849 | * |
| 2850 | * With @ref netio_get(), this will indicate the desired state for the |
| 2851 | * link, as set with a previous netio_set() call, or implicitly by a |
| 2852 | * netio_input_register() or netio_input_unregister() operation. This may |
| 2853 | * not reflect the current state of the link; to get that, use |
| 2854 | * ::NETIO_PARAM_LINK_CURRENT_STATE. */ |
| 2855 | #define NETIO_PARAM_LINK_DESIRED_STATE 9 |
| 2856 | |
| 2857 | /** NetIO statistics structure. Retrieved using the ::NETIO_PARAM_STAT |
| 2858 | * address passed to @ref netio_get(). */ |
| 2859 | typedef struct |
| 2860 | { |
| 2861 | /** Number of packets which have been received by the IPP and forwarded |
| 2862 | * to a tile's receive queue for processing. This value wraps at its |
| 2863 | * maximum, and is not cleared upon read. */ |
| 2864 | uint32_t packets_received; |
| 2865 | |
| 2866 | /** Number of packets which have been dropped by the IPP, because they could |
| 2867 | * not be received, or could not be forwarded to a tile. The former happens |
| 2868 | * when the IPP does not have a free packet buffer of suitable size for an |
| 2869 | * incoming frame. The latter happens when all potential destination tiles |
| 2870 | * for a packet, as defined by the group, bucket, and queue configuration, |
| 2871 | * have full receive queues. This value wraps at its maximum, and is not |
| 2872 | * cleared upon read. */ |
| 2873 | uint32_t packets_dropped; |
| 2874 | |
| 2875 | /* |
| 2876 | * Note: the #defines after each of the following four one-byte values |
| 2877 | * denote their location within the third word of the netio_stat_t. They |
| 2878 | * are intended for use only by the IPP implementation and are thus omitted |
| 2879 | * from the Doxygen output. |
| 2880 | */ |
| 2881 | |
| 2882 | /** Number of packets dropped because no worker was able to accept a new |
| 2883 | * packet. This value saturates at its maximum, and is cleared upon |
| 2884 | * read. */ |
| 2885 | uint8_t drops_no_worker; |
| 2886 | #ifndef __DOXYGEN__ |
| 2887 | #define NETIO_STAT_DROPS_NO_WORKER 0 |
| 2888 | #endif |
| 2889 | |
| 2890 | /** Number of packets dropped because no small buffers were available. |
| 2891 | * This value saturates at its maximum, and is cleared upon read. */ |
| 2892 | uint8_t drops_no_smallbuf; |
| 2893 | #ifndef __DOXYGEN__ |
| 2894 | #define NETIO_STAT_DROPS_NO_SMALLBUF 1 |
| 2895 | #endif |
| 2896 | |
| 2897 | /** Number of packets dropped because no large buffers were available. |
| 2898 | * This value saturates at its maximum, and is cleared upon read. */ |
| 2899 | uint8_t drops_no_largebuf; |
| 2900 | #ifndef __DOXYGEN__ |
| 2901 | #define NETIO_STAT_DROPS_NO_LARGEBUF 2 |
| 2902 | #endif |
| 2903 | |
| 2904 | /** Number of packets dropped because no jumbo buffers were available. |
| 2905 | * This value saturates at its maximum, and is cleared upon read. */ |
| 2906 | uint8_t drops_no_jumbobuf; |
| 2907 | #ifndef __DOXYGEN__ |
| 2908 | #define NETIO_STAT_DROPS_NO_JUMBOBUF 3 |
| 2909 | #endif |
| 2910 | } |
| 2911 | netio_stat_t; |
| 2912 | |
| 2913 | |
| 2914 | /** Link can run, should run, or is running at 10 Mbps. */ |
| 2915 | #define NETIO_LINK_10M 0x01 |
| 2916 | |
| 2917 | /** Link can run, should run, or is running at 100 Mbps. */ |
| 2918 | #define NETIO_LINK_100M 0x02 |
| 2919 | |
| 2920 | /** Link can run, should run, or is running at 1 Gbps. */ |
| 2921 | #define NETIO_LINK_1G 0x04 |
| 2922 | |
| 2923 | /** Link can run, should run, or is running at 10 Gbps. */ |
| 2924 | #define NETIO_LINK_10G 0x08 |
| 2925 | |
| 2926 | /** Link should run at the highest speed supported by the link and by |
| 2927 | * the device connected to the link. Only usable as a value for |
| 2928 | * the link's desired state; never returned as a value for the current |
| 2929 | * or possible states. */ |
| 2930 | #define NETIO_LINK_ANYSPEED 0x10 |
| 2931 | |
| 2932 | /** All legal link speeds. */ |
| 2933 | #define NETIO_LINK_SPEED (NETIO_LINK_10M | \ |
| 2934 | NETIO_LINK_100M | \ |
| 2935 | NETIO_LINK_1G | \ |
| 2936 | NETIO_LINK_10G | \ |
| 2937 | NETIO_LINK_ANYSPEED) |
| 2938 | |
| 2939 | |
| 2940 | /** MAC register class. Addr is a register offset within the MAC. |
| 2941 | * Registers within the XGbE and GbE MACs are documented in the Tile |
| 2942 | * Processor I/O Device Guide (UG104). MAC registers start at address |
| 2943 | * 0x4000, and do not include the MAC_INTERFACE registers. */ |
| 2944 | #define NETIO_MAC 1 |
| 2945 | |
| 2946 | /** MDIO register class (IEEE 802.3 clause 22 format). Addr is the "addr" |
| 2947 | * member of a netio_mdio_addr_t structure. */ |
| 2948 | #define NETIO_MDIO 2 |
| 2949 | |
| 2950 | /** MDIO register class (IEEE 802.3 clause 45 format). Addr is the "addr" |
| 2951 | * member of a netio_mdio_addr_t structure. */ |
| 2952 | #define NETIO_MDIO_CLAUSE45 3 |
| 2953 | |
| 2954 | /** NetIO MDIO address type. Retrieved or provided using the ::NETIO_MDIO |
| 2955 | * address passed to @ref netio_get() or @ref netio_set(). */ |
| 2956 | typedef union |
| 2957 | { |
| 2958 | struct |
| 2959 | { |
| 2960 | unsigned int reg:16; /**< MDIO register offset. For clause 22 access, |
| 2961 | must be less than 32. */ |
| 2962 | unsigned int phy:5; /**< Which MDIO PHY to access. */ |
| 2963 | unsigned int dev:5; /**< Which MDIO device to access within that PHY. |
| 2964 | Applicable for clause 45 access only; ignored |
| 2965 | for clause 22 access. */ |
| 2966 | } |
| 2967 | bits; /**< Container for bitfields. */ |
| 2968 | uint64_t addr; /**< Value to pass to @ref netio_get() or |
| 2969 | * @ref netio_set(). */ |
| 2970 | } |
| 2971 | netio_mdio_addr_t; |
| 2972 | |
| 2973 | /** @} */ |
| 2974 | |
| 2975 | #endif /* __NETIO_INTF_H__ */ |