Richard Purdie | e842f1c | 2006-03-27 01:16:46 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx |
| 3 | * |
| 4 | * Copyright (c) 2000 Nils Faerber |
| 5 | * |
| 6 | * Based on rtc.c by Paul Gortmaker |
| 7 | * |
| 8 | * Original Driver by Nils Faerber <nils@kernelconcepts.de> |
| 9 | * |
| 10 | * Modifications from: |
| 11 | * CIH <cih@coventive.com> |
| 12 | * Nicolas Pitre <nico@cam.org> |
| 13 | * Andrew Christian <andrew.christian@hp.com> |
| 14 | * |
| 15 | * Converted to the RTC subsystem and Driver Model |
| 16 | * by Richard Purdie <rpurdie@rpsys.net> |
| 17 | * |
| 18 | * This program is free software; you can redistribute it and/or |
| 19 | * modify it under the terms of the GNU General Public License |
| 20 | * as published by the Free Software Foundation; either version |
| 21 | * 2 of the License, or (at your option) any later version. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/platform_device.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/rtc.h> |
| 27 | #include <linux/init.h> |
| 28 | #include <linux/fs.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/string.h> |
| 31 | #include <linux/pm.h> |
| 32 | |
| 33 | #include <asm/bitops.h> |
| 34 | #include <asm/hardware.h> |
| 35 | #include <asm/irq.h> |
| 36 | #include <asm/rtc.h> |
| 37 | |
| 38 | #ifdef CONFIG_ARCH_PXA |
| 39 | #include <asm/arch/pxa-regs.h> |
| 40 | #endif |
| 41 | |
| 42 | #define TIMER_FREQ CLOCK_TICK_RATE |
| 43 | #define RTC_DEF_DIVIDER 32768 - 1 |
| 44 | #define RTC_DEF_TRIM 0 |
| 45 | |
| 46 | static unsigned long rtc_freq = 1024; |
| 47 | static struct rtc_time rtc_alarm; |
| 48 | static spinlock_t sa1100_rtc_lock = SPIN_LOCK_UNLOCKED; |
| 49 | |
| 50 | static int rtc_update_alarm(struct rtc_time *alrm) |
| 51 | { |
| 52 | struct rtc_time alarm_tm, now_tm; |
| 53 | unsigned long now, time; |
| 54 | int ret; |
| 55 | |
| 56 | do { |
| 57 | now = RCNR; |
| 58 | rtc_time_to_tm(now, &now_tm); |
| 59 | rtc_next_alarm_time(&alarm_tm, &now_tm, alrm); |
| 60 | ret = rtc_tm_to_time(&alarm_tm, &time); |
| 61 | if (ret != 0) |
| 62 | break; |
| 63 | |
| 64 | RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL); |
| 65 | RTAR = time; |
| 66 | } while (now != RCNR); |
| 67 | |
| 68 | return ret; |
| 69 | } |
| 70 | |
| 71 | static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id, |
| 72 | struct pt_regs *regs) |
| 73 | { |
| 74 | struct platform_device *pdev = to_platform_device(dev_id); |
| 75 | struct rtc_device *rtc = platform_get_drvdata(pdev); |
| 76 | unsigned int rtsr; |
| 77 | unsigned long events = 0; |
| 78 | |
| 79 | spin_lock(&sa1100_rtc_lock); |
| 80 | |
| 81 | rtsr = RTSR; |
| 82 | /* clear interrupt sources */ |
| 83 | RTSR = 0; |
| 84 | RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2); |
| 85 | |
| 86 | /* clear alarm interrupt if it has occurred */ |
| 87 | if (rtsr & RTSR_AL) |
| 88 | rtsr &= ~RTSR_ALE; |
| 89 | RTSR = rtsr & (RTSR_ALE | RTSR_HZE); |
| 90 | |
| 91 | /* update irq data & counter */ |
| 92 | if (rtsr & RTSR_AL) |
| 93 | events |= RTC_AF | RTC_IRQF; |
| 94 | if (rtsr & RTSR_HZ) |
| 95 | events |= RTC_UF | RTC_IRQF; |
| 96 | |
| 97 | rtc_update_irq(&rtc->class_dev, 1, events); |
| 98 | |
| 99 | if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm)) |
| 100 | rtc_update_alarm(&rtc_alarm); |
| 101 | |
| 102 | spin_unlock(&sa1100_rtc_lock); |
| 103 | |
| 104 | return IRQ_HANDLED; |
| 105 | } |
| 106 | |
| 107 | static int rtc_timer1_count; |
| 108 | |
| 109 | static irqreturn_t timer1_interrupt(int irq, void *dev_id, |
| 110 | struct pt_regs *regs) |
| 111 | { |
| 112 | struct platform_device *pdev = to_platform_device(dev_id); |
| 113 | struct rtc_device *rtc = platform_get_drvdata(pdev); |
| 114 | |
| 115 | /* |
| 116 | * If we match for the first time, rtc_timer1_count will be 1. |
| 117 | * Otherwise, we wrapped around (very unlikely but |
| 118 | * still possible) so compute the amount of missed periods. |
| 119 | * The match reg is updated only when the data is actually retrieved |
| 120 | * to avoid unnecessary interrupts. |
| 121 | */ |
| 122 | OSSR = OSSR_M1; /* clear match on timer1 */ |
| 123 | |
| 124 | rtc_update_irq(&rtc->class_dev, rtc_timer1_count, RTC_PF | RTC_IRQF); |
| 125 | |
| 126 | if (rtc_timer1_count == 1) |
| 127 | rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2))); |
| 128 | |
| 129 | return IRQ_HANDLED; |
| 130 | } |
| 131 | |
| 132 | static int sa1100_rtc_read_callback(struct device *dev, int data) |
| 133 | { |
| 134 | if (data & RTC_PF) { |
| 135 | /* interpolate missed periods and set match for the next */ |
| 136 | unsigned long period = TIMER_FREQ/rtc_freq; |
| 137 | unsigned long oscr = OSCR; |
| 138 | unsigned long osmr1 = OSMR1; |
| 139 | unsigned long missed = (oscr - osmr1)/period; |
| 140 | data += missed << 8; |
| 141 | OSSR = OSSR_M1; /* clear match on timer 1 */ |
| 142 | OSMR1 = osmr1 + (missed + 1)*period; |
| 143 | /* Ensure we didn't miss another match in the mean time. |
| 144 | * Here we compare (match - OSCR) 8 instead of 0 -- |
| 145 | * see comment in pxa_timer_interrupt() for explanation. |
| 146 | */ |
| 147 | while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) { |
| 148 | data += 0x100; |
| 149 | OSSR = OSSR_M1; /* clear match on timer 1 */ |
| 150 | OSMR1 = osmr1 + period; |
| 151 | } |
| 152 | } |
| 153 | return data; |
| 154 | } |
| 155 | |
| 156 | static int sa1100_rtc_open(struct device *dev) |
| 157 | { |
| 158 | int ret; |
| 159 | |
| 160 | ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, SA_INTERRUPT, |
| 161 | "rtc 1Hz", dev); |
| 162 | if (ret) { |
| 163 | printk(KERN_ERR "rtc: IRQ%d already in use.\n", IRQ_RTC1Hz); |
| 164 | goto fail_ui; |
| 165 | } |
| 166 | ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, SA_INTERRUPT, |
| 167 | "rtc Alrm", dev); |
| 168 | if (ret) { |
| 169 | printk(KERN_ERR "rtc: IRQ%d already in use.\n", IRQ_RTCAlrm); |
| 170 | goto fail_ai; |
| 171 | } |
| 172 | ret = request_irq(IRQ_OST1, timer1_interrupt, SA_INTERRUPT, |
| 173 | "rtc timer", dev); |
| 174 | if (ret) { |
| 175 | printk(KERN_ERR "rtc: IRQ%d already in use.\n", IRQ_OST1); |
| 176 | goto fail_pi; |
| 177 | } |
| 178 | return 0; |
| 179 | |
| 180 | fail_pi: |
| 181 | free_irq(IRQ_RTCAlrm, NULL); |
| 182 | fail_ai: |
| 183 | free_irq(IRQ_RTC1Hz, NULL); |
| 184 | fail_ui: |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | static void sa1100_rtc_release(struct device *dev) |
| 189 | { |
| 190 | spin_lock_irq(&sa1100_rtc_lock); |
| 191 | RTSR = 0; |
| 192 | OIER &= ~OIER_E1; |
| 193 | OSSR = OSSR_M1; |
| 194 | spin_unlock_irq(&sa1100_rtc_lock); |
| 195 | |
| 196 | free_irq(IRQ_OST1, dev); |
| 197 | free_irq(IRQ_RTCAlrm, dev); |
| 198 | free_irq(IRQ_RTC1Hz, dev); |
| 199 | } |
| 200 | |
| 201 | |
| 202 | static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd, |
| 203 | unsigned long arg) |
| 204 | { |
| 205 | switch(cmd) { |
| 206 | case RTC_AIE_OFF: |
| 207 | spin_lock_irq(&sa1100_rtc_lock); |
| 208 | RTSR &= ~RTSR_ALE; |
| 209 | spin_unlock_irq(&sa1100_rtc_lock); |
| 210 | return 0; |
| 211 | case RTC_AIE_ON: |
| 212 | spin_lock_irq(&sa1100_rtc_lock); |
| 213 | RTSR |= RTSR_ALE; |
| 214 | spin_unlock_irq(&sa1100_rtc_lock); |
| 215 | return 0; |
| 216 | case RTC_UIE_OFF: |
| 217 | spin_lock_irq(&sa1100_rtc_lock); |
| 218 | RTSR &= ~RTSR_HZE; |
| 219 | spin_unlock_irq(&sa1100_rtc_lock); |
| 220 | return 0; |
| 221 | case RTC_UIE_ON: |
| 222 | spin_lock_irq(&sa1100_rtc_lock); |
| 223 | RTSR |= RTSR_HZE; |
| 224 | spin_unlock_irq(&sa1100_rtc_lock); |
| 225 | return 0; |
| 226 | case RTC_PIE_OFF: |
| 227 | spin_lock_irq(&sa1100_rtc_lock); |
| 228 | OIER &= ~OIER_E1; |
| 229 | spin_unlock_irq(&sa1100_rtc_lock); |
| 230 | return 0; |
| 231 | case RTC_PIE_ON: |
| 232 | if ((rtc_freq > 64) && !capable(CAP_SYS_RESOURCE)) |
| 233 | return -EACCES; |
| 234 | spin_lock_irq(&sa1100_rtc_lock); |
| 235 | OSMR1 = TIMER_FREQ/rtc_freq + OSCR; |
| 236 | OIER |= OIER_E1; |
| 237 | rtc_timer1_count = 1; |
| 238 | spin_unlock_irq(&sa1100_rtc_lock); |
| 239 | return 0; |
| 240 | case RTC_IRQP_READ: |
| 241 | return put_user(rtc_freq, (unsigned long *)arg); |
| 242 | case RTC_IRQP_SET: |
| 243 | if (arg < 1 || arg > TIMER_FREQ) |
| 244 | return -EINVAL; |
| 245 | if ((arg > 64) && (!capable(CAP_SYS_RESOURCE))) |
| 246 | return -EACCES; |
| 247 | rtc_freq = arg; |
| 248 | return 0; |
| 249 | } |
| 250 | return -EINVAL; |
| 251 | } |
| 252 | |
| 253 | static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| 254 | { |
| 255 | rtc_time_to_tm(RCNR, tm); |
| 256 | return 0; |
| 257 | } |
| 258 | |
| 259 | static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| 260 | { |
| 261 | unsigned long time; |
| 262 | int ret; |
| 263 | |
| 264 | ret = rtc_tm_to_time(tm, &time); |
| 265 | if (ret == 0) |
| 266 | RCNR = time; |
| 267 | return ret; |
| 268 | } |
| 269 | |
| 270 | static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| 271 | { |
| 272 | memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time)); |
| 273 | alrm->pending = RTSR & RTSR_AL ? 1 : 0; |
| 274 | return 0; |
| 275 | } |
| 276 | |
| 277 | static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| 278 | { |
| 279 | int ret; |
| 280 | |
| 281 | spin_lock_irq(&sa1100_rtc_lock); |
| 282 | ret = rtc_update_alarm(&alrm->time); |
| 283 | if (ret == 0) { |
| 284 | memcpy(&rtc_alarm, &alrm->time, sizeof(struct rtc_time)); |
| 285 | |
| 286 | if (alrm->enabled) |
| 287 | enable_irq_wake(IRQ_RTCAlrm); |
| 288 | else |
| 289 | disable_irq_wake(IRQ_RTCAlrm); |
| 290 | } |
| 291 | spin_unlock_irq(&sa1100_rtc_lock); |
| 292 | |
| 293 | return ret; |
| 294 | } |
| 295 | |
| 296 | static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) |
| 297 | { |
| 298 | seq_printf(seq, "trim/divider\t: 0x%08x\n", RTTR); |
| 299 | seq_printf(seq, "alarm_IRQ\t: %s\n", |
| 300 | (RTSR & RTSR_ALE) ? "yes" : "no" ); |
| 301 | seq_printf(seq, "update_IRQ\t: %s\n", |
| 302 | (RTSR & RTSR_HZE) ? "yes" : "no"); |
| 303 | seq_printf(seq, "periodic_IRQ\t: %s\n", |
| 304 | (OIER & OIER_E1) ? "yes" : "no"); |
| 305 | seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq); |
| 306 | |
| 307 | return 0; |
| 308 | } |
| 309 | |
| 310 | static struct rtc_class_ops sa1100_rtc_ops = { |
| 311 | .open = sa1100_rtc_open, |
| 312 | .read_callback = sa1100_rtc_read_callback, |
| 313 | .release = sa1100_rtc_release, |
| 314 | .ioctl = sa1100_rtc_ioctl, |
| 315 | .read_time = sa1100_rtc_read_time, |
| 316 | .set_time = sa1100_rtc_set_time, |
| 317 | .read_alarm = sa1100_rtc_read_alarm, |
| 318 | .set_alarm = sa1100_rtc_set_alarm, |
| 319 | .proc = sa1100_rtc_proc, |
| 320 | }; |
| 321 | |
| 322 | static int sa1100_rtc_probe(struct platform_device *pdev) |
| 323 | { |
| 324 | struct rtc_device *rtc; |
| 325 | |
| 326 | /* |
| 327 | * According to the manual we should be able to let RTTR be zero |
| 328 | * and then a default diviser for a 32.768KHz clock is used. |
| 329 | * Apparently this doesn't work, at least for my SA1110 rev 5. |
| 330 | * If the clock divider is uninitialized then reset it to the |
| 331 | * default value to get the 1Hz clock. |
| 332 | */ |
| 333 | if (RTTR == 0) { |
| 334 | RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); |
| 335 | printk(KERN_WARNING "rtc: warning: initializing default clock divider/trim value\n"); |
| 336 | /* The current RTC value probably doesn't make sense either */ |
| 337 | RCNR = 0; |
| 338 | } |
| 339 | |
| 340 | rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops, |
| 341 | THIS_MODULE); |
| 342 | |
| 343 | if (IS_ERR(rtc)) { |
| 344 | dev_err(&pdev->dev, "Unable to register the RTC device\n"); |
| 345 | return PTR_ERR(rtc); |
| 346 | } |
| 347 | |
| 348 | platform_set_drvdata(pdev, rtc); |
| 349 | |
| 350 | dev_info(&pdev->dev, "SA11xx/PXA2xx RTC Registered\n"); |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | static int sa1100_rtc_remove(struct platform_device *pdev) |
| 356 | { |
| 357 | struct rtc_device *rtc = platform_get_drvdata(pdev); |
| 358 | |
| 359 | if (rtc) |
| 360 | rtc_device_unregister(rtc); |
| 361 | |
| 362 | return 0; |
| 363 | } |
| 364 | |
| 365 | static struct platform_driver sa1100_rtc_driver = { |
| 366 | .probe = sa1100_rtc_probe, |
| 367 | .remove = sa1100_rtc_remove, |
| 368 | .driver = { |
| 369 | .name = "sa1100-rtc", |
| 370 | }, |
| 371 | }; |
| 372 | |
| 373 | static int __init sa1100_rtc_init(void) |
| 374 | { |
| 375 | return platform_driver_register(&sa1100_rtc_driver); |
| 376 | } |
| 377 | |
| 378 | static void __exit sa1100_rtc_exit(void) |
| 379 | { |
| 380 | platform_driver_unregister(&sa1100_rtc_driver); |
| 381 | } |
| 382 | |
| 383 | module_init(sa1100_rtc_init); |
| 384 | module_exit(sa1100_rtc_exit); |
| 385 | |
| 386 | MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); |
| 387 | MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)"); |
| 388 | MODULE_LICENSE("GPL"); |