Ralph Metzler | e878395 | 2011-07-03 13:36:17 -0300 | [diff] [blame^] | 1 | /* |
| 2 | * tda18271c2dd: Driver for the TDA18271C2 tuner |
| 3 | * |
| 4 | * Copyright (C) 2010 Digital Devices GmbH |
| 5 | * |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * version 2 only, as published by the Free Software Foundation. |
| 10 | * |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 21 | * 02110-1301, USA |
| 22 | * Or, point your browser to http://www.gnu.org/copyleft/gpl.html |
| 23 | */ |
| 24 | |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/moduleparam.h> |
| 28 | #include <linux/init.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/firmware.h> |
| 31 | #include <linux/i2c.h> |
| 32 | #include <linux/version.h> |
| 33 | #include <asm/div64.h> |
| 34 | |
| 35 | #include "dvb_frontend.h" |
| 36 | |
| 37 | struct SStandardParam { |
| 38 | s32 m_IFFrequency; |
| 39 | u32 m_BandWidth; |
| 40 | u8 m_EP3_4_0; |
| 41 | u8 m_EB22; |
| 42 | }; |
| 43 | |
| 44 | struct SMap { |
| 45 | u32 m_Frequency; |
| 46 | u8 m_Param; |
| 47 | }; |
| 48 | |
| 49 | struct SMapI { |
| 50 | u32 m_Frequency; |
| 51 | s32 m_Param; |
| 52 | }; |
| 53 | |
| 54 | struct SMap2 { |
| 55 | u32 m_Frequency; |
| 56 | u8 m_Param1; |
| 57 | u8 m_Param2; |
| 58 | }; |
| 59 | |
| 60 | struct SRFBandMap { |
| 61 | u32 m_RF_max; |
| 62 | u32 m_RF1_Default; |
| 63 | u32 m_RF2_Default; |
| 64 | u32 m_RF3_Default; |
| 65 | }; |
| 66 | |
| 67 | enum ERegister |
| 68 | { |
| 69 | ID = 0, |
| 70 | TM, |
| 71 | PL, |
| 72 | EP1, EP2, EP3, EP4, EP5, |
| 73 | CPD, CD1, CD2, CD3, |
| 74 | MPD, MD1, MD2, MD3, |
| 75 | EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, |
| 76 | EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, |
| 77 | EB21, EB22, EB23, |
| 78 | NUM_REGS |
| 79 | }; |
| 80 | |
| 81 | struct tda_state { |
| 82 | struct i2c_adapter *i2c; |
| 83 | u8 adr; |
| 84 | |
| 85 | u32 m_Frequency; |
| 86 | u32 IF; |
| 87 | |
| 88 | u8 m_IFLevelAnalog; |
| 89 | u8 m_IFLevelDigital; |
| 90 | u8 m_IFLevelDVBC; |
| 91 | u8 m_IFLevelDVBT; |
| 92 | |
| 93 | u8 m_EP4; |
| 94 | u8 m_EP3_Standby; |
| 95 | |
| 96 | bool m_bMaster; |
| 97 | |
| 98 | s32 m_SettlingTime; |
| 99 | |
| 100 | u8 m_Regs[NUM_REGS]; |
| 101 | |
| 102 | /* Tracking filter settings for band 0..6 */ |
| 103 | u32 m_RF1[7]; |
| 104 | s32 m_RF_A1[7]; |
| 105 | s32 m_RF_B1[7]; |
| 106 | u32 m_RF2[7]; |
| 107 | s32 m_RF_A2[7]; |
| 108 | s32 m_RF_B2[7]; |
| 109 | u32 m_RF3[7]; |
| 110 | |
| 111 | u8 m_TMValue_RFCal; /* Calibration temperatur */ |
| 112 | |
| 113 | bool m_bFMInput; /* true to use Pin 8 for FM Radio */ |
| 114 | |
| 115 | }; |
| 116 | |
| 117 | static int PowerScan(struct tda_state *state, |
| 118 | u8 RFBand,u32 RF_in, |
| 119 | u32 * pRF_Out, bool *pbcal); |
| 120 | |
| 121 | static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) |
| 122 | { |
| 123 | struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, |
| 124 | .buf = data, .len = len}}; |
| 125 | return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; |
| 126 | } |
| 127 | |
| 128 | static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) |
| 129 | { |
| 130 | struct i2c_msg msg = {.addr = adr, .flags = 0, |
| 131 | .buf = data, .len = len}; |
| 132 | |
| 133 | if (i2c_transfer(adap, &msg, 1) != 1) { |
| 134 | printk("i2c_write error\n"); |
| 135 | return -1; |
| 136 | } |
| 137 | return 0; |
| 138 | } |
| 139 | |
| 140 | static int WriteRegs(struct tda_state *state, |
| 141 | u8 SubAddr, u8 *Regs, u16 nRegs) |
| 142 | { |
| 143 | u8 data[nRegs+1]; |
| 144 | |
| 145 | data[0] = SubAddr; |
| 146 | memcpy(data + 1, Regs, nRegs); |
| 147 | return i2c_write(state->i2c, state->adr, data, nRegs+1); |
| 148 | } |
| 149 | |
| 150 | static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg) |
| 151 | { |
| 152 | u8 msg[2] = {SubAddr, Reg}; |
| 153 | |
| 154 | return i2c_write(state->i2c, state->adr, msg, 2); |
| 155 | } |
| 156 | |
| 157 | static int Read(struct tda_state *state, u8 * Regs) |
| 158 | { |
| 159 | return i2c_readn(state->i2c, state->adr, Regs, 16); |
| 160 | } |
| 161 | |
| 162 | static int ReadExtented(struct tda_state *state, u8 * Regs) |
| 163 | { |
| 164 | return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); |
| 165 | } |
| 166 | |
| 167 | static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo) |
| 168 | { |
| 169 | return WriteRegs(state, RegFrom, |
| 170 | &state->m_Regs[RegFrom], RegTo-RegFrom+1); |
| 171 | } |
| 172 | static int UpdateReg(struct tda_state *state, u8 Reg) |
| 173 | { |
| 174 | return WriteReg(state, Reg,state->m_Regs[Reg]); |
| 175 | } |
| 176 | |
| 177 | #include "tda18271c2dd_maps.h" |
| 178 | |
| 179 | #undef CHK_ERROR |
| 180 | #define CHK_ERROR(s) if ((status = s) < 0) break |
| 181 | |
| 182 | static void reset(struct tda_state *state) |
| 183 | { |
| 184 | u32 ulIFLevelAnalog = 0; |
| 185 | u32 ulIFLevelDigital = 2; |
| 186 | u32 ulIFLevelDVBC = 7; |
| 187 | u32 ulIFLevelDVBT = 6; |
| 188 | u32 ulXTOut = 0; |
| 189 | u32 ulStandbyMode = 0x06; // Send in stdb, but leave osc on |
| 190 | u32 ulSlave = 0; |
| 191 | u32 ulFMInput = 0; |
| 192 | u32 ulSettlingTime = 100; |
| 193 | |
| 194 | state->m_Frequency = 0; |
| 195 | state->m_SettlingTime = 100; |
| 196 | state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; |
| 197 | state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; |
| 198 | state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; |
| 199 | state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; |
| 200 | |
| 201 | state->m_EP4 = 0x20; |
| 202 | if( ulXTOut != 0 ) state->m_EP4 |= 0x40; |
| 203 | |
| 204 | state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; |
| 205 | state->m_bMaster = (ulSlave == 0); |
| 206 | |
| 207 | state->m_SettlingTime = ulSettlingTime; |
| 208 | |
| 209 | state->m_bFMInput = (ulFMInput == 2); |
| 210 | } |
| 211 | |
| 212 | static bool SearchMap1(struct SMap Map[], |
| 213 | u32 Frequency, u8 *pParam) |
| 214 | { |
| 215 | int i = 0; |
| 216 | |
| 217 | while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) ) |
| 218 | i += 1; |
| 219 | if (Map[i].m_Frequency == 0) |
| 220 | return false; |
| 221 | *pParam = Map[i].m_Param; |
| 222 | return true; |
| 223 | } |
| 224 | |
| 225 | static bool SearchMap2(struct SMapI Map[], |
| 226 | u32 Frequency, s32 *pParam) |
| 227 | { |
| 228 | int i = 0; |
| 229 | |
| 230 | while ((Map[i].m_Frequency != 0) && |
| 231 | (Frequency > Map[i].m_Frequency) ) |
| 232 | i += 1; |
| 233 | if (Map[i].m_Frequency == 0) |
| 234 | return false; |
| 235 | *pParam = Map[i].m_Param; |
| 236 | return true; |
| 237 | } |
| 238 | |
| 239 | static bool SearchMap3(struct SMap2 Map[],u32 Frequency, |
| 240 | u8 *pParam1, u8 *pParam2) |
| 241 | { |
| 242 | int i = 0; |
| 243 | |
| 244 | while ((Map[i].m_Frequency != 0) && |
| 245 | (Frequency > Map[i].m_Frequency) ) |
| 246 | i += 1; |
| 247 | if (Map[i].m_Frequency == 0) |
| 248 | return false; |
| 249 | *pParam1 = Map[i].m_Param1; |
| 250 | *pParam2 = Map[i].m_Param2; |
| 251 | return true; |
| 252 | } |
| 253 | |
| 254 | static bool SearchMap4(struct SRFBandMap Map[], |
| 255 | u32 Frequency, u8 *pRFBand) |
| 256 | { |
| 257 | int i = 0; |
| 258 | |
| 259 | while (i < 7 && (Frequency > Map[i].m_RF_max)) |
| 260 | i += 1; |
| 261 | if (i == 7) |
| 262 | return false; |
| 263 | *pRFBand = i; |
| 264 | return true; |
| 265 | } |
| 266 | |
| 267 | static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) |
| 268 | { |
| 269 | int status = 0; |
| 270 | |
| 271 | do { |
| 272 | u8 Regs[16]; |
| 273 | state->m_Regs[TM] |= 0x10; |
| 274 | CHK_ERROR(UpdateReg(state,TM)); |
| 275 | CHK_ERROR(Read(state,Regs)); |
| 276 | if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) || |
| 277 | ( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) { |
| 278 | state->m_Regs[TM] ^= 0x20; |
| 279 | CHK_ERROR(UpdateReg(state,TM)); |
| 280 | msleep(10); |
| 281 | CHK_ERROR(Read(state,Regs)); |
| 282 | } |
| 283 | *pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] : |
| 284 | m_Thermometer_Map_1[Regs[TM] & 0x0F] ; |
| 285 | state->m_Regs[TM] &= ~0x10; // Thermometer off |
| 286 | CHK_ERROR(UpdateReg(state,TM)); |
| 287 | state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0 ????????? |
| 288 | CHK_ERROR(UpdateReg(state,EP4)); |
| 289 | } while(0); |
| 290 | |
| 291 | return status; |
| 292 | } |
| 293 | |
| 294 | static int StandBy(struct tda_state *state) |
| 295 | { |
| 296 | int status = 0; |
| 297 | do { |
| 298 | state->m_Regs[EB12] &= ~0x20; // PD_AGC1_Det = 0 |
| 299 | CHK_ERROR(UpdateReg(state,EB12)); |
| 300 | state->m_Regs[EB18] &= ~0x83; // AGC1_loop_off = 0, AGC1_Gain = 6 dB |
| 301 | CHK_ERROR(UpdateReg(state,EB18)); |
| 302 | state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB |
| 303 | state->m_Regs[EP3] = state->m_EP3_Standby; |
| 304 | CHK_ERROR(UpdateReg(state,EP3)); |
| 305 | state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0 |
| 306 | CHK_ERROR(UpdateRegs(state,EB21,EB23)); |
| 307 | } while(0); |
| 308 | return status; |
| 309 | } |
| 310 | |
| 311 | static int CalcMainPLL(struct tda_state *state, u32 freq) |
| 312 | { |
| 313 | |
| 314 | u8 PostDiv; |
| 315 | u8 Div; |
| 316 | u64 OscFreq; |
| 317 | u32 MainDiv; |
| 318 | |
| 319 | if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) { |
| 320 | return -EINVAL; |
| 321 | } |
| 322 | |
| 323 | OscFreq = (u64) freq * (u64) Div; |
| 324 | OscFreq *= (u64) 16384; |
| 325 | do_div(OscFreq, (u64)16000000); |
| 326 | MainDiv = OscFreq; |
| 327 | |
| 328 | state->m_Regs[MPD] = PostDiv & 0x77; |
| 329 | state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); |
| 330 | state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF); |
| 331 | state->m_Regs[MD3] = ((MainDiv ) & 0xFF); |
| 332 | |
| 333 | return UpdateRegs(state, MPD, MD3); |
| 334 | } |
| 335 | |
| 336 | static int CalcCalPLL(struct tda_state *state, u32 freq) |
| 337 | { |
| 338 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq)); |
| 339 | |
| 340 | u8 PostDiv; |
| 341 | u8 Div; |
| 342 | u64 OscFreq; |
| 343 | u32 CalDiv; |
| 344 | |
| 345 | if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) ) |
| 346 | { |
| 347 | return -EINVAL; |
| 348 | } |
| 349 | |
| 350 | OscFreq = (u64)freq * (u64)Div; |
| 351 | //CalDiv = u32( OscFreq * 16384 / 16000000 ); |
| 352 | OscFreq*=(u64)16384; |
| 353 | do_div(OscFreq, (u64)16000000); |
| 354 | CalDiv=OscFreq; |
| 355 | |
| 356 | state->m_Regs[CPD] = PostDiv; |
| 357 | state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); |
| 358 | state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF); |
| 359 | state->m_Regs[CD3] = ((CalDiv ) & 0xFF); |
| 360 | |
| 361 | return UpdateRegs(state,CPD,CD3); |
| 362 | } |
| 363 | |
| 364 | static int CalibrateRF(struct tda_state *state, |
| 365 | u8 RFBand,u32 freq, s32 * pCprog) |
| 366 | { |
| 367 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID])); |
| 368 | int status = 0; |
| 369 | u8 Regs[NUM_REGS]; |
| 370 | do { |
| 371 | u8 BP_Filter=0; |
| 372 | u8 GainTaper=0; |
| 373 | u8 RFC_K=0; |
| 374 | u8 RFC_M=0; |
| 375 | |
| 376 | state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0 |
| 377 | CHK_ERROR(UpdateReg(state,EP4)); |
| 378 | state->m_Regs[EB18] |= 0x03; // AGC1_Gain = 3 |
| 379 | CHK_ERROR(UpdateReg(state,EB18)); |
| 380 | |
| 381 | // Switching off LT (as datasheet says) causes calibration on C1 to fail |
| 382 | // (Readout of Cprog is allways 255) |
| 383 | if( state->m_Regs[ID] != 0x83 ) // C1: ID == 83, C2: ID == 84 |
| 384 | { |
| 385 | state->m_Regs[EP3] |= 0x40; // SM_LT = 1 |
| 386 | } |
| 387 | |
| 388 | if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) && |
| 389 | SearchMap1(m_GainTaper_Map,freq,&GainTaper) && |
| 390 | SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) ) |
| 391 | { |
| 392 | return -EINVAL; |
| 393 | } |
| 394 | |
| 395 | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; |
| 396 | state->m_Regs[EP2] = (RFBand << 5) | GainTaper; |
| 397 | |
| 398 | state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); |
| 399 | |
| 400 | CHK_ERROR(UpdateRegs(state,EP1,EP3)); |
| 401 | CHK_ERROR(UpdateReg(state,EB13)); |
| 402 | |
| 403 | state->m_Regs[EB4] |= 0x20; // LO_ForceSrce = 1 |
| 404 | CHK_ERROR(UpdateReg(state,EB4)); |
| 405 | |
| 406 | state->m_Regs[EB7] |= 0x20; // CAL_ForceSrce = 1 |
| 407 | CHK_ERROR(UpdateReg(state,EB7)); |
| 408 | |
| 409 | state->m_Regs[EB14] = 0; // RFC_Cprog = 0 |
| 410 | CHK_ERROR(UpdateReg(state,EB14)); |
| 411 | |
| 412 | state->m_Regs[EB20] &= ~0x20; // ForceLock = 0; |
| 413 | CHK_ERROR(UpdateReg(state,EB20)); |
| 414 | |
| 415 | state->m_Regs[EP4] |= 0x03; // CAL_Mode = 3 |
| 416 | CHK_ERROR(UpdateRegs(state,EP4,EP5)); |
| 417 | |
| 418 | CHK_ERROR(CalcCalPLL(state,freq)); |
| 419 | CHK_ERROR(CalcMainPLL(state,freq + 1000000)); |
| 420 | |
| 421 | msleep(5); |
| 422 | CHK_ERROR(UpdateReg(state,EP2)); |
| 423 | CHK_ERROR(UpdateReg(state,EP1)); |
| 424 | CHK_ERROR(UpdateReg(state,EP2)); |
| 425 | CHK_ERROR(UpdateReg(state,EP1)); |
| 426 | |
| 427 | state->m_Regs[EB4] &= ~0x20; // LO_ForceSrce = 0 |
| 428 | CHK_ERROR(UpdateReg(state,EB4)); |
| 429 | |
| 430 | state->m_Regs[EB7] &= ~0x20; // CAL_ForceSrce = 0 |
| 431 | CHK_ERROR(UpdateReg(state,EB7)); |
| 432 | msleep(10); |
| 433 | |
| 434 | state->m_Regs[EB20] |= 0x20; // ForceLock = 1; |
| 435 | CHK_ERROR(UpdateReg(state,EB20)); |
| 436 | msleep(60); |
| 437 | |
| 438 | state->m_Regs[EP4] &= ~0x03; // CAL_Mode = 0 |
| 439 | state->m_Regs[EP3] &= ~0x40; // SM_LT = 0 |
| 440 | state->m_Regs[EB18] &= ~0x03; // AGC1_Gain = 0 |
| 441 | CHK_ERROR(UpdateReg(state,EB18)); |
| 442 | CHK_ERROR(UpdateRegs(state,EP3,EP4)); |
| 443 | CHK_ERROR(UpdateReg(state,EP1)); |
| 444 | |
| 445 | CHK_ERROR(ReadExtented(state,Regs)); |
| 446 | |
| 447 | *pCprog = Regs[EB14]; |
| 448 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14])); |
| 449 | |
| 450 | } while(0); |
| 451 | return status; |
| 452 | } |
| 453 | |
| 454 | static int RFTrackingFiltersInit(struct tda_state *state, |
| 455 | u8 RFBand) |
| 456 | { |
| 457 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n")); |
| 458 | int status = 0; |
| 459 | |
| 460 | u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; |
| 461 | u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; |
| 462 | u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; |
| 463 | bool bcal = false; |
| 464 | |
| 465 | s32 Cprog_cal1 = 0; |
| 466 | s32 Cprog_table1 = 0; |
| 467 | s32 Cprog_cal2 = 0; |
| 468 | s32 Cprog_table2 = 0; |
| 469 | s32 Cprog_cal3 = 0; |
| 470 | s32 Cprog_table3 = 0; |
| 471 | |
| 472 | state->m_RF_A1[RFBand] = 0; |
| 473 | state->m_RF_B1[RFBand] = 0; |
| 474 | state->m_RF_A2[RFBand] = 0; |
| 475 | state->m_RF_B2[RFBand] = 0; |
| 476 | |
| 477 | do { |
| 478 | CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal)); |
| 479 | if( bcal ) { |
| 480 | CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1)); |
| 481 | } |
| 482 | SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1); |
| 483 | if( !bcal ) { |
| 484 | Cprog_cal1 = Cprog_table1; |
| 485 | } |
| 486 | state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; |
| 487 | //state->m_RF_A1[RF_Band] = ???? |
| 488 | |
| 489 | if( RF2 == 0 ) break; |
| 490 | |
| 491 | CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal)); |
| 492 | if( bcal ) { |
| 493 | CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2)); |
| 494 | } |
| 495 | SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2); |
| 496 | if( !bcal ) |
| 497 | { |
| 498 | Cprog_cal2 = Cprog_table2; |
| 499 | } |
| 500 | |
| 501 | state->m_RF_A1[RFBand] = |
| 502 | (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / |
| 503 | ((s32)(RF2)-(s32)(RF1)); |
| 504 | |
| 505 | if( RF3 == 0 ) break; |
| 506 | |
| 507 | CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal)); |
| 508 | if( bcal ) |
| 509 | { |
| 510 | CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3)); |
| 511 | } |
| 512 | SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3); |
| 513 | if( !bcal ) |
| 514 | { |
| 515 | Cprog_cal3 = Cprog_table3; |
| 516 | } |
| 517 | state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2)); |
| 518 | state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; |
| 519 | |
| 520 | } while(0); |
| 521 | |
| 522 | state->m_RF1[RFBand] = RF1; |
| 523 | state->m_RF2[RFBand] = RF2; |
| 524 | state->m_RF3[RFBand] = RF3; |
| 525 | |
| 526 | #if 0 |
| 527 | printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__, |
| 528 | RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2, |
| 529 | state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3); |
| 530 | #endif |
| 531 | |
| 532 | return status; |
| 533 | } |
| 534 | |
| 535 | static int PowerScan(struct tda_state *state, |
| 536 | u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal) |
| 537 | { |
| 538 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in)); |
| 539 | int status = 0; |
| 540 | do { |
| 541 | u8 Gain_Taper=0; |
| 542 | s32 RFC_Cprog=0; |
| 543 | u8 CID_Target=0; |
| 544 | u8 CountLimit=0; |
| 545 | u32 freq_MainPLL; |
| 546 | u8 Regs[NUM_REGS]; |
| 547 | u8 CID_Gain; |
| 548 | s32 Count = 0; |
| 549 | int sign = 1; |
| 550 | bool wait = false; |
| 551 | |
| 552 | if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) && |
| 553 | SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) && |
| 554 | SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) { |
| 555 | printk("%s Search map failed\n", __FUNCTION__); |
| 556 | return -EINVAL; |
| 557 | } |
| 558 | |
| 559 | state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; |
| 560 | state->m_Regs[EB14] = (RFC_Cprog); |
| 561 | CHK_ERROR(UpdateReg(state,EP2)); |
| 562 | CHK_ERROR(UpdateReg(state,EB14)); |
| 563 | |
| 564 | freq_MainPLL = RF_in + 1000000; |
| 565 | CHK_ERROR(CalcMainPLL(state,freq_MainPLL)); |
| 566 | msleep(5); |
| 567 | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; // CAL_mode = 1 |
| 568 | CHK_ERROR(UpdateReg(state,EP4)); |
| 569 | CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement |
| 570 | CHK_ERROR(ReadExtented(state,Regs)); |
| 571 | CID_Gain = Regs[EB10] & 0x3F; |
| 572 | state->m_Regs[ID] = Regs[ID]; // Chip version, (needed for C1 workarround in CalibrateRF ) |
| 573 | |
| 574 | *pRF_Out = RF_in; |
| 575 | |
| 576 | while( CID_Gain < CID_Target ) { |
| 577 | freq_MainPLL = RF_in + sign * Count + 1000000; |
| 578 | CHK_ERROR(CalcMainPLL(state,freq_MainPLL)); |
| 579 | msleep( wait ? 5 : 1 ); |
| 580 | wait = false; |
| 581 | CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement |
| 582 | CHK_ERROR(ReadExtented(state,Regs)); |
| 583 | CID_Gain = Regs[EB10] & 0x3F; |
| 584 | Count += 200000; |
| 585 | |
| 586 | if( Count < CountLimit * 100000 ) continue; |
| 587 | if( sign < 0 ) break; |
| 588 | |
| 589 | sign = -sign; |
| 590 | Count = 200000; |
| 591 | wait = true; |
| 592 | } |
| 593 | CHK_ERROR(status); |
| 594 | if( CID_Gain >= CID_Target ) |
| 595 | { |
| 596 | *pbcal = true; |
| 597 | *pRF_Out = freq_MainPLL - 1000000; |
| 598 | } |
| 599 | else |
| 600 | { |
| 601 | *pbcal = false; |
| 602 | } |
| 603 | } while(0); |
| 604 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out)); |
| 605 | return status; |
| 606 | } |
| 607 | |
| 608 | static int PowerScanInit(struct tda_state *state) |
| 609 | { |
| 610 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n")); |
| 611 | int status = 0; |
| 612 | do |
| 613 | { |
| 614 | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; |
| 615 | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0 |
| 616 | CHK_ERROR(UpdateRegs(state,EP3,EP4)); |
| 617 | state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0 |
| 618 | CHK_ERROR(UpdateReg(state,EB18)); |
| 619 | state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3) |
| 620 | state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1 |
| 621 | CHK_ERROR(UpdateRegs(state,EB21,EB23)); |
| 622 | } while(0); |
| 623 | return status; |
| 624 | } |
| 625 | |
| 626 | static int CalcRFFilterCurve(struct tda_state *state) |
| 627 | { |
| 628 | //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n")); |
| 629 | int status = 0; |
| 630 | do |
| 631 | { |
| 632 | msleep(200); // Temperature stabilisation |
| 633 | CHK_ERROR(PowerScanInit(state)); |
| 634 | CHK_ERROR(RFTrackingFiltersInit(state,0)); |
| 635 | CHK_ERROR(RFTrackingFiltersInit(state,1)); |
| 636 | CHK_ERROR(RFTrackingFiltersInit(state,2)); |
| 637 | CHK_ERROR(RFTrackingFiltersInit(state,3)); |
| 638 | CHK_ERROR(RFTrackingFiltersInit(state,4)); |
| 639 | CHK_ERROR(RFTrackingFiltersInit(state,5)); |
| 640 | CHK_ERROR(RFTrackingFiltersInit(state,6)); |
| 641 | CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!! |
| 642 | } while(0); |
| 643 | |
| 644 | return status; |
| 645 | } |
| 646 | |
| 647 | static int FixedContentsI2CUpdate(struct tda_state *state) |
| 648 | { |
| 649 | static u8 InitRegs[] = { |
| 650 | 0x08,0x80,0xC6, |
| 651 | 0xDF,0x16,0x60,0x80, |
| 652 | 0x80,0x00,0x00,0x00, |
| 653 | 0x00,0x00,0x00,0x00, |
| 654 | 0xFC,0x01,0x84,0x41, |
| 655 | 0x01,0x84,0x40,0x07, |
| 656 | 0x00,0x00,0x96,0x3F, |
| 657 | 0xC1,0x00,0x8F,0x00, |
| 658 | 0x00,0x8C,0x00,0x20, |
| 659 | 0xB3,0x48,0xB0, |
| 660 | }; |
| 661 | int status = 0; |
| 662 | memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1); |
| 663 | do { |
| 664 | CHK_ERROR(UpdateRegs(state,TM,EB23)); |
| 665 | |
| 666 | // AGC1 gain setup |
| 667 | state->m_Regs[EB17] = 0x00; |
| 668 | CHK_ERROR(UpdateReg(state,EB17)); |
| 669 | state->m_Regs[EB17] = 0x03; |
| 670 | CHK_ERROR(UpdateReg(state,EB17)); |
| 671 | state->m_Regs[EB17] = 0x43; |
| 672 | CHK_ERROR(UpdateReg(state,EB17)); |
| 673 | state->m_Regs[EB17] = 0x4C; |
| 674 | CHK_ERROR(UpdateReg(state,EB17)); |
| 675 | |
| 676 | // IRC Cal Low band |
| 677 | state->m_Regs[EP3] = 0x1F; |
| 678 | state->m_Regs[EP4] = 0x66; |
| 679 | state->m_Regs[EP5] = 0x81; |
| 680 | state->m_Regs[CPD] = 0xCC; |
| 681 | state->m_Regs[CD1] = 0x6C; |
| 682 | state->m_Regs[CD2] = 0x00; |
| 683 | state->m_Regs[CD3] = 0x00; |
| 684 | state->m_Regs[MPD] = 0xC5; |
| 685 | state->m_Regs[MD1] = 0x77; |
| 686 | state->m_Regs[MD2] = 0x08; |
| 687 | state->m_Regs[MD3] = 0x00; |
| 688 | CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3) |
| 689 | |
| 690 | //state->m_Regs[EB4] = 0x61; // missing in sw |
| 691 | //CHK_ERROR(UpdateReg(state,EB4)); |
| 692 | //msleep(1); |
| 693 | //state->m_Regs[EB4] = 0x41; |
| 694 | //CHK_ERROR(UpdateReg(state,EB4)); |
| 695 | |
| 696 | msleep(5); |
| 697 | CHK_ERROR(UpdateReg(state,EP1)); |
| 698 | msleep(5); |
| 699 | |
| 700 | state->m_Regs[EP5] = 0x85; |
| 701 | state->m_Regs[CPD] = 0xCB; |
| 702 | state->m_Regs[CD1] = 0x66; |
| 703 | state->m_Regs[CD2] = 0x70; |
| 704 | CHK_ERROR(UpdateRegs(state,EP3,CD3)); |
| 705 | msleep(5); |
| 706 | CHK_ERROR(UpdateReg(state,EP2)); |
| 707 | msleep(30); |
| 708 | |
| 709 | // IRC Cal mid band |
| 710 | state->m_Regs[EP5] = 0x82; |
| 711 | state->m_Regs[CPD] = 0xA8; |
| 712 | state->m_Regs[CD2] = 0x00; |
| 713 | state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9 |
| 714 | state->m_Regs[MD1] = 0x73; |
| 715 | state->m_Regs[MD2] = 0x1A; |
| 716 | CHK_ERROR(UpdateRegs(state,EP3,MD3)); |
| 717 | |
| 718 | msleep(5); |
| 719 | CHK_ERROR(UpdateReg(state,EP1)); |
| 720 | msleep(5); |
| 721 | |
| 722 | state->m_Regs[EP5] = 0x86; |
| 723 | state->m_Regs[CPD] = 0xA8; |
| 724 | state->m_Regs[CD1] = 0x66; |
| 725 | state->m_Regs[CD2] = 0xA0; |
| 726 | CHK_ERROR(UpdateRegs(state,EP3,CD3)); |
| 727 | msleep(5); |
| 728 | CHK_ERROR(UpdateReg(state,EP2)); |
| 729 | msleep(30); |
| 730 | |
| 731 | // IRC Cal high band |
| 732 | state->m_Regs[EP5] = 0x83; |
| 733 | state->m_Regs[CPD] = 0x98; |
| 734 | state->m_Regs[CD1] = 0x65; |
| 735 | state->m_Regs[CD2] = 0x00; |
| 736 | state->m_Regs[MPD] = 0x91; // Datasheet = 0x91 |
| 737 | state->m_Regs[MD1] = 0x71; |
| 738 | state->m_Regs[MD2] = 0xCD; |
| 739 | CHK_ERROR(UpdateRegs(state,EP3,MD3)); |
| 740 | msleep(5); |
| 741 | CHK_ERROR(UpdateReg(state,EP1)); |
| 742 | msleep(5); |
| 743 | state->m_Regs[EP5] = 0x87; |
| 744 | state->m_Regs[CD1] = 0x65; |
| 745 | state->m_Regs[CD2] = 0x50; |
| 746 | CHK_ERROR(UpdateRegs(state,EP3,CD3)); |
| 747 | msleep(5); |
| 748 | CHK_ERROR(UpdateReg(state,EP2)); |
| 749 | msleep(30); |
| 750 | |
| 751 | // Back to normal |
| 752 | state->m_Regs[EP4] = 0x64; |
| 753 | CHK_ERROR(UpdateReg(state,EP4)); |
| 754 | CHK_ERROR(UpdateReg(state,EP1)); |
| 755 | |
| 756 | } while(0); |
| 757 | return status; |
| 758 | } |
| 759 | |
| 760 | static int InitCal(struct tda_state *state) |
| 761 | { |
| 762 | int status = 0; |
| 763 | |
| 764 | do |
| 765 | { |
| 766 | CHK_ERROR(FixedContentsI2CUpdate(state)); |
| 767 | CHK_ERROR(CalcRFFilterCurve(state)); |
| 768 | CHK_ERROR(StandBy(state)); |
| 769 | //m_bInitDone = true; |
| 770 | } while(0); |
| 771 | return status; |
| 772 | }; |
| 773 | |
| 774 | static int RFTrackingFiltersCorrection(struct tda_state *state, |
| 775 | u32 Frequency) |
| 776 | { |
| 777 | int status = 0; |
| 778 | s32 Cprog_table; |
| 779 | u8 RFBand; |
| 780 | u8 dCoverdT; |
| 781 | |
| 782 | if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) || |
| 783 | !SearchMap4(m_RF_Band_Map,Frequency,&RFBand) || |
| 784 | !SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) ) |
| 785 | { |
| 786 | return -EINVAL; |
| 787 | } |
| 788 | |
| 789 | do |
| 790 | { |
| 791 | u8 TMValue_Current; |
| 792 | u32 RF1 = state->m_RF1[RFBand]; |
| 793 | u32 RF2 = state->m_RF1[RFBand]; |
| 794 | u32 RF3 = state->m_RF1[RFBand]; |
| 795 | s32 RF_A1 = state->m_RF_A1[RFBand]; |
| 796 | s32 RF_B1 = state->m_RF_B1[RFBand]; |
| 797 | s32 RF_A2 = state->m_RF_A2[RFBand]; |
| 798 | s32 RF_B2 = state->m_RF_B2[RFBand]; |
| 799 | s32 Capprox = 0; |
| 800 | int TComp; |
| 801 | |
| 802 | state->m_Regs[EP3] &= ~0xE0; // Power up |
| 803 | CHK_ERROR(UpdateReg(state,EP3)); |
| 804 | |
| 805 | CHK_ERROR(ThermometerRead(state,&TMValue_Current)); |
| 806 | |
| 807 | if( RF3 == 0 || Frequency < RF2 ) |
| 808 | { |
| 809 | Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; |
| 810 | } |
| 811 | else |
| 812 | { |
| 813 | Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; |
| 814 | } |
| 815 | |
| 816 | TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; |
| 817 | |
| 818 | Capprox += TComp; |
| 819 | |
| 820 | if( Capprox < 0 ) Capprox = 0; |
| 821 | else if( Capprox > 255 ) Capprox = 255; |
| 822 | |
| 823 | |
| 824 | // TODO Temperature compensation. There is defenitely a scale factor |
| 825 | // missing in the datasheet, so leave it out for now. |
| 826 | state->m_Regs[EB14] = (Capprox ); |
| 827 | |
| 828 | CHK_ERROR(UpdateReg(state,EB14)); |
| 829 | |
| 830 | } while(0); |
| 831 | return status; |
| 832 | } |
| 833 | |
| 834 | static int ChannelConfiguration(struct tda_state *state, |
| 835 | u32 Frequency, int Standard) |
| 836 | { |
| 837 | |
| 838 | s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; |
| 839 | int status = 0; |
| 840 | |
| 841 | u8 BP_Filter = 0; |
| 842 | u8 RF_Band = 0; |
| 843 | u8 GainTaper = 0; |
| 844 | u8 IR_Meas; |
| 845 | |
| 846 | state->IF=IntermediateFrequency; |
| 847 | //printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency); |
| 848 | // get values from tables |
| 849 | |
| 850 | if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) && |
| 851 | SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) && |
| 852 | SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) && |
| 853 | SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) ) |
| 854 | { |
| 855 | printk("%s SearchMap failed\n", __FUNCTION__); |
| 856 | return -EINVAL; |
| 857 | } |
| 858 | |
| 859 | do |
| 860 | { |
| 861 | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; |
| 862 | state->m_Regs[EP3] &= ~0x04; // switch RFAGC to high speed mode |
| 863 | |
| 864 | // m_EP4 default for XToutOn, CAL_Mode (0) |
| 865 | state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog ); |
| 866 | //state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; |
| 867 | if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; |
| 868 | else if( Standard <= HF_ATSC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; |
| 869 | else if( Standard <= HF_DVBC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; |
| 870 | else state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; |
| 871 | |
| 872 | if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80; |
| 873 | |
| 874 | state->m_Regs[MPD] &= ~0x80; |
| 875 | if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital |
| 876 | |
| 877 | state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; |
| 878 | |
| 879 | // Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) |
| 880 | if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |= 0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1 |
| 881 | else state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0 |
| 882 | |
| 883 | CHK_ERROR(UpdateRegs(state,EB22,EB23)); |
| 884 | |
| 885 | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; // Dis_Power_level = 1, Filter |
| 886 | state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; |
| 887 | state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; |
| 888 | |
| 889 | state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | |
| 890 | (state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS |
| 891 | // AGC1_always_master = 0 |
| 892 | // AGC_firstn = 0 |
| 893 | CHK_ERROR(UpdateReg(state,EB1)); |
| 894 | |
| 895 | if( state->m_bMaster ) |
| 896 | { |
| 897 | CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency)); |
| 898 | CHK_ERROR(UpdateRegs(state,TM,EP5)); |
| 899 | state->m_Regs[EB4] |= 0x20; // LO_forceSrce = 1 |
| 900 | CHK_ERROR(UpdateReg(state,EB4)); |
| 901 | msleep(1); |
| 902 | state->m_Regs[EB4] &= ~0x20; // LO_forceSrce = 0 |
| 903 | CHK_ERROR(UpdateReg(state,EB4)); |
| 904 | } |
| 905 | else |
| 906 | { |
| 907 | u8 PostDiv; |
| 908 | u8 Div; |
| 909 | CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency)); |
| 910 | |
| 911 | SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div); |
| 912 | state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); |
| 913 | CHK_ERROR(UpdateReg(state,MPD)); |
| 914 | CHK_ERROR(UpdateRegs(state,TM,EP5)); |
| 915 | |
| 916 | state->m_Regs[EB7] |= 0x20; // CAL_forceSrce = 1 |
| 917 | CHK_ERROR(UpdateReg(state,EB7)); |
| 918 | msleep(1); |
| 919 | state->m_Regs[EB7] &= ~0x20; // CAL_forceSrce = 0 |
| 920 | CHK_ERROR(UpdateReg(state,EB7)); |
| 921 | } |
| 922 | msleep(20); |
| 923 | if( Standard != HF_FM_Radio ) |
| 924 | { |
| 925 | state->m_Regs[EP3] |= 0x04; // RFAGC to normal mode |
| 926 | } |
| 927 | CHK_ERROR(UpdateReg(state,EP3)); |
| 928 | |
| 929 | } while(0); |
| 930 | return status; |
| 931 | } |
| 932 | |
| 933 | static int sleep(struct dvb_frontend* fe) |
| 934 | { |
| 935 | struct tda_state *state = fe->tuner_priv; |
| 936 | |
| 937 | StandBy(state); |
| 938 | return 0; |
| 939 | } |
| 940 | |
| 941 | static int init(struct dvb_frontend* fe) |
| 942 | { |
| 943 | //struct tda_state *state = fe->tuner_priv; |
| 944 | return 0; |
| 945 | } |
| 946 | |
| 947 | static int release(struct dvb_frontend* fe) |
| 948 | { |
| 949 | kfree(fe->tuner_priv); |
| 950 | fe->tuner_priv = NULL; |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | static int set_params(struct dvb_frontend *fe, |
| 955 | struct dvb_frontend_parameters *params) |
| 956 | { |
| 957 | struct tda_state *state = fe->tuner_priv; |
| 958 | int status = 0; |
| 959 | int Standard; |
| 960 | |
| 961 | state->m_Frequency = params->frequency; |
| 962 | |
| 963 | if (fe->ops.info.type == FE_OFDM) |
| 964 | switch (params->u.ofdm.bandwidth) { |
| 965 | case BANDWIDTH_6_MHZ: |
| 966 | Standard = HF_DVBT_6MHZ; |
| 967 | break; |
| 968 | case BANDWIDTH_7_MHZ: |
| 969 | Standard = HF_DVBT_7MHZ; |
| 970 | break; |
| 971 | default: |
| 972 | case BANDWIDTH_8_MHZ: |
| 973 | Standard = HF_DVBT_8MHZ; |
| 974 | break; |
| 975 | } |
| 976 | else if (fe->ops.info.type == FE_QAM) { |
| 977 | Standard = HF_DVBC_8MHZ; |
| 978 | } else |
| 979 | return -EINVAL; |
| 980 | do { |
| 981 | CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency)); |
| 982 | CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard)); |
| 983 | |
| 984 | msleep(state->m_SettlingTime); // Allow AGC's to settle down |
| 985 | } while(0); |
| 986 | return status; |
| 987 | } |
| 988 | |
| 989 | #if 0 |
| 990 | static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc) |
| 991 | { |
| 992 | if( IFAgc < 500 ) { |
| 993 | // Scale this from 0 to 50000 |
| 994 | *pSignalStrength = IFAgc * 100; |
| 995 | } else { |
| 996 | // Scale range 500-1500 to 50000-80000 |
| 997 | *pSignalStrength = 50000 + (IFAgc - 500) * 30; |
| 998 | } |
| 999 | |
| 1000 | return 0; |
| 1001 | } |
| 1002 | #endif |
| 1003 | |
| 1004 | static int get_frequency(struct dvb_frontend *fe, u32 *frequency) |
| 1005 | { |
| 1006 | struct tda_state *state = fe->tuner_priv; |
| 1007 | |
| 1008 | *frequency = state->IF; |
| 1009 | return 0; |
| 1010 | } |
| 1011 | |
| 1012 | static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) |
| 1013 | { |
| 1014 | //struct tda_state *state = fe->tuner_priv; |
| 1015 | //*bandwidth = priv->bandwidth; |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | static struct dvb_tuner_ops tuner_ops = { |
| 1021 | .info = { |
| 1022 | .name = "NXP TDA18271C2D", |
| 1023 | .frequency_min = 47125000, |
| 1024 | .frequency_max = 865000000, |
| 1025 | .frequency_step = 62500 |
| 1026 | }, |
| 1027 | .init = init, |
| 1028 | .sleep = sleep, |
| 1029 | .set_params = set_params, |
| 1030 | .release = release, |
| 1031 | .get_frequency = get_frequency, |
| 1032 | .get_bandwidth = get_bandwidth, |
| 1033 | }; |
| 1034 | |
| 1035 | struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, |
| 1036 | struct i2c_adapter *i2c, u8 adr) |
| 1037 | { |
| 1038 | struct tda_state *state; |
| 1039 | |
| 1040 | state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); |
| 1041 | if (!state) |
| 1042 | return NULL; |
| 1043 | |
| 1044 | fe->tuner_priv = state; |
| 1045 | state->adr = adr; |
| 1046 | state->i2c = i2c; |
| 1047 | memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); |
| 1048 | reset(state); |
| 1049 | InitCal(state); |
| 1050 | |
| 1051 | return fe; |
| 1052 | } |
| 1053 | |
| 1054 | EXPORT_SYMBOL_GPL(tda18271c2dd_attach); |
| 1055 | MODULE_DESCRIPTION("TDA18271C2 driver"); |
| 1056 | MODULE_AUTHOR("DD"); |
| 1057 | MODULE_LICENSE("GPL"); |
| 1058 | |
| 1059 | /* |
| 1060 | * Local variables: |
| 1061 | * c-basic-offset: 8 |
| 1062 | * End: |
| 1063 | */ |