blob: 3196961862bc5cf3d9b3bdfd40902d9ba695537f [file] [log] [blame]
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
90void *xen_initial_gdt;
91
92RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94static int xen_cpu_up_prepare_pv(unsigned int cpu);
95static int xen_cpu_dead_pv(unsigned int cpu);
96
97struct tls_descs {
98 struct desc_struct desc[3];
99};
100
101/*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110/*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115void xen_vcpu_restore(void)
116{
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137}
138
139static void __init xen_banner(void)
140{
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
145 pr_info("Booting paravirtualized kernel %son %s\n",
146 xen_feature(XENFEAT_auto_translated_physmap) ?
147 "with PVH extensions " : "", pv_info.name);
148 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
149 version >> 16, version & 0xffff, extra.extraversion,
150 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
151}
152/* Check if running on Xen version (major, minor) or later */
153bool
154xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155{
156 unsigned int version;
157
158 if (!xen_domain())
159 return false;
160
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
166}
167
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100168static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
169
170static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
171static __read_mostly unsigned int cpuid_leaf5_ecx_val;
172static __read_mostly unsigned int cpuid_leaf5_edx_val;
173
174static void xen_cpuid(unsigned int *ax, unsigned int *bx,
175 unsigned int *cx, unsigned int *dx)
176{
177 unsigned maskebx = ~0;
178 unsigned maskecx = ~0;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100179 unsigned setecx = 0;
180 /*
181 * Mask out inconvenient features, to try and disable as many
182 * unsupported kernel subsystems as possible.
183 */
184 switch (*ax) {
185 case 1:
186 maskecx = cpuid_leaf1_ecx_mask;
187 setecx = cpuid_leaf1_ecx_set_mask;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100188 break;
189
190 case CPUID_MWAIT_LEAF:
191 /* Synthesize the values.. */
192 *ax = 0;
193 *bx = 0;
194 *cx = cpuid_leaf5_ecx_val;
195 *dx = cpuid_leaf5_edx_val;
196 return;
197
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100198 case 0xb:
199 /* Suppress extended topology stuff */
200 maskebx = 0;
201 break;
202 }
203
204 asm(XEN_EMULATE_PREFIX "cpuid"
205 : "=a" (*ax),
206 "=b" (*bx),
207 "=c" (*cx),
208 "=d" (*dx)
209 : "0" (*ax), "2" (*cx));
210
211 *bx &= maskebx;
212 *cx &= maskecx;
213 *cx |= setecx;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100214}
215STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
216
217static bool __init xen_check_mwait(void)
218{
219#ifdef CONFIG_ACPI
220 struct xen_platform_op op = {
221 .cmd = XENPF_set_processor_pminfo,
222 .u.set_pminfo.id = -1,
223 .u.set_pminfo.type = XEN_PM_PDC,
224 };
225 uint32_t buf[3];
226 unsigned int ax, bx, cx, dx;
227 unsigned int mwait_mask;
228
229 /* We need to determine whether it is OK to expose the MWAIT
230 * capability to the kernel to harvest deeper than C3 states from ACPI
231 * _CST using the processor_harvest_xen.c module. For this to work, we
232 * need to gather the MWAIT_LEAF values (which the cstate.c code
233 * checks against). The hypervisor won't expose the MWAIT flag because
234 * it would break backwards compatibility; so we will find out directly
235 * from the hardware and hypercall.
236 */
237 if (!xen_initial_domain())
238 return false;
239
240 /*
241 * When running under platform earlier than Xen4.2, do not expose
242 * mwait, to avoid the risk of loading native acpi pad driver
243 */
244 if (!xen_running_on_version_or_later(4, 2))
245 return false;
246
247 ax = 1;
248 cx = 0;
249
250 native_cpuid(&ax, &bx, &cx, &dx);
251
252 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
253 (1 << (X86_FEATURE_MWAIT % 32));
254
255 if ((cx & mwait_mask) != mwait_mask)
256 return false;
257
258 /* We need to emulate the MWAIT_LEAF and for that we need both
259 * ecx and edx. The hypercall provides only partial information.
260 */
261
262 ax = CPUID_MWAIT_LEAF;
263 bx = 0;
264 cx = 0;
265 dx = 0;
266
267 native_cpuid(&ax, &bx, &cx, &dx);
268
269 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
270 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
271 */
272 buf[0] = ACPI_PDC_REVISION_ID;
273 buf[1] = 1;
274 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
275
276 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
277
278 if ((HYPERVISOR_platform_op(&op) == 0) &&
279 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
280 cpuid_leaf5_ecx_val = cx;
281 cpuid_leaf5_edx_val = dx;
282 }
283 return true;
284#else
285 return false;
286#endif
287}
288static void __init xen_init_cpuid_mask(void)
289{
290 unsigned int ax, bx, cx, dx;
291 unsigned int xsave_mask;
292
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100293 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
294
295 ax = 1;
296 cx = 0;
297 cpuid(1, &ax, &bx, &cx, &dx);
298
299 xsave_mask =
300 (1 << (X86_FEATURE_XSAVE % 32)) |
301 (1 << (X86_FEATURE_OSXSAVE % 32));
302
303 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
304 if ((cx & xsave_mask) != xsave_mask)
305 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
306 if (xen_check_mwait())
307 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
308}
309
Juergen Gross0808e802017-04-13 08:55:41 +0200310static void __init xen_init_capabilities(void)
311{
312 setup_clear_cpu_cap(X86_BUG_SYSRET_SS_ATTRS);
313 setup_force_cpu_cap(X86_FEATURE_XENPV);
Juergen Gross3ee99df2017-04-12 08:20:29 +0200314 setup_clear_cpu_cap(X86_FEATURE_DCA);
Juergen Grossfd9145f2017-04-12 08:27:07 +0200315 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
Juergen Gross88f32562017-04-12 09:21:05 +0200316 setup_clear_cpu_cap(X86_FEATURE_MTRR);
Juergen Grossaa107152017-04-12 09:24:01 +0200317 setup_clear_cpu_cap(X86_FEATURE_ACC);
Juergen Grossb778d6b2017-04-12 09:27:47 +0200318
319 if (!xen_initial_domain())
320 setup_clear_cpu_cap(X86_FEATURE_ACPI);
Juergen Gross0808e802017-04-13 08:55:41 +0200321}
322
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100323static void xen_set_debugreg(int reg, unsigned long val)
324{
325 HYPERVISOR_set_debugreg(reg, val);
326}
327
328static unsigned long xen_get_debugreg(int reg)
329{
330 return HYPERVISOR_get_debugreg(reg);
331}
332
333static void xen_end_context_switch(struct task_struct *next)
334{
335 xen_mc_flush();
336 paravirt_end_context_switch(next);
337}
338
339static unsigned long xen_store_tr(void)
340{
341 return 0;
342}
343
344/*
345 * Set the page permissions for a particular virtual address. If the
346 * address is a vmalloc mapping (or other non-linear mapping), then
347 * find the linear mapping of the page and also set its protections to
348 * match.
349 */
350static void set_aliased_prot(void *v, pgprot_t prot)
351{
352 int level;
353 pte_t *ptep;
354 pte_t pte;
355 unsigned long pfn;
356 struct page *page;
357 unsigned char dummy;
358
359 ptep = lookup_address((unsigned long)v, &level);
360 BUG_ON(ptep == NULL);
361
362 pfn = pte_pfn(*ptep);
363 page = pfn_to_page(pfn);
364
365 pte = pfn_pte(pfn, prot);
366
367 /*
368 * Careful: update_va_mapping() will fail if the virtual address
369 * we're poking isn't populated in the page tables. We don't
370 * need to worry about the direct map (that's always in the page
371 * tables), but we need to be careful about vmap space. In
372 * particular, the top level page table can lazily propagate
373 * entries between processes, so if we've switched mms since we
374 * vmapped the target in the first place, we might not have the
375 * top-level page table entry populated.
376 *
377 * We disable preemption because we want the same mm active when
378 * we probe the target and when we issue the hypercall. We'll
379 * have the same nominal mm, but if we're a kernel thread, lazy
380 * mm dropping could change our pgd.
381 *
382 * Out of an abundance of caution, this uses __get_user() to fault
383 * in the target address just in case there's some obscure case
384 * in which the target address isn't readable.
385 */
386
387 preempt_disable();
388
389 probe_kernel_read(&dummy, v, 1);
390
391 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
392 BUG();
393
394 if (!PageHighMem(page)) {
395 void *av = __va(PFN_PHYS(pfn));
396
397 if (av != v)
398 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
399 BUG();
400 } else
401 kmap_flush_unused();
402
403 preempt_enable();
404}
405
406static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
407{
408 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
409 int i;
410
411 /*
412 * We need to mark the all aliases of the LDT pages RO. We
413 * don't need to call vm_flush_aliases(), though, since that's
414 * only responsible for flushing aliases out the TLBs, not the
415 * page tables, and Xen will flush the TLB for us if needed.
416 *
417 * To avoid confusing future readers: none of this is necessary
418 * to load the LDT. The hypervisor only checks this when the
419 * LDT is faulted in due to subsequent descriptor access.
420 */
421
422 for (i = 0; i < entries; i += entries_per_page)
423 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
424}
425
426static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
427{
428 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
429 int i;
430
431 for (i = 0; i < entries; i += entries_per_page)
432 set_aliased_prot(ldt + i, PAGE_KERNEL);
433}
434
435static void xen_set_ldt(const void *addr, unsigned entries)
436{
437 struct mmuext_op *op;
438 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
439
440 trace_xen_cpu_set_ldt(addr, entries);
441
442 op = mcs.args;
443 op->cmd = MMUEXT_SET_LDT;
444 op->arg1.linear_addr = (unsigned long)addr;
445 op->arg2.nr_ents = entries;
446
447 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
448
449 xen_mc_issue(PARAVIRT_LAZY_CPU);
450}
451
452static void xen_load_gdt(const struct desc_ptr *dtr)
453{
454 unsigned long va = dtr->address;
455 unsigned int size = dtr->size + 1;
456 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
457 unsigned long frames[pages];
458 int f;
459
460 /*
461 * A GDT can be up to 64k in size, which corresponds to 8192
462 * 8-byte entries, or 16 4k pages..
463 */
464
465 BUG_ON(size > 65536);
466 BUG_ON(va & ~PAGE_MASK);
467
468 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
469 int level;
470 pte_t *ptep;
471 unsigned long pfn, mfn;
472 void *virt;
473
474 /*
475 * The GDT is per-cpu and is in the percpu data area.
476 * That can be virtually mapped, so we need to do a
477 * page-walk to get the underlying MFN for the
478 * hypercall. The page can also be in the kernel's
479 * linear range, so we need to RO that mapping too.
480 */
481 ptep = lookup_address(va, &level);
482 BUG_ON(ptep == NULL);
483
484 pfn = pte_pfn(*ptep);
485 mfn = pfn_to_mfn(pfn);
486 virt = __va(PFN_PHYS(pfn));
487
488 frames[f] = mfn;
489
490 make_lowmem_page_readonly((void *)va);
491 make_lowmem_page_readonly(virt);
492 }
493
494 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
495 BUG();
496}
497
498/*
499 * load_gdt for early boot, when the gdt is only mapped once
500 */
501static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
502{
503 unsigned long va = dtr->address;
504 unsigned int size = dtr->size + 1;
505 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
506 unsigned long frames[pages];
507 int f;
508
509 /*
510 * A GDT can be up to 64k in size, which corresponds to 8192
511 * 8-byte entries, or 16 4k pages..
512 */
513
514 BUG_ON(size > 65536);
515 BUG_ON(va & ~PAGE_MASK);
516
517 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
518 pte_t pte;
519 unsigned long pfn, mfn;
520
521 pfn = virt_to_pfn(va);
522 mfn = pfn_to_mfn(pfn);
523
524 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
525
526 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
527 BUG();
528
529 frames[f] = mfn;
530 }
531
532 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
533 BUG();
534}
535
536static inline bool desc_equal(const struct desc_struct *d1,
537 const struct desc_struct *d2)
538{
539 return d1->a == d2->a && d1->b == d2->b;
540}
541
542static void load_TLS_descriptor(struct thread_struct *t,
543 unsigned int cpu, unsigned int i)
544{
545 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
546 struct desc_struct *gdt;
547 xmaddr_t maddr;
548 struct multicall_space mc;
549
550 if (desc_equal(shadow, &t->tls_array[i]))
551 return;
552
553 *shadow = t->tls_array[i];
554
555 gdt = get_cpu_gdt_rw(cpu);
556 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
557 mc = __xen_mc_entry(0);
558
559 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
560}
561
562static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
563{
564 /*
565 * XXX sleazy hack: If we're being called in a lazy-cpu zone
566 * and lazy gs handling is enabled, it means we're in a
567 * context switch, and %gs has just been saved. This means we
568 * can zero it out to prevent faults on exit from the
569 * hypervisor if the next process has no %gs. Either way, it
570 * has been saved, and the new value will get loaded properly.
571 * This will go away as soon as Xen has been modified to not
572 * save/restore %gs for normal hypercalls.
573 *
574 * On x86_64, this hack is not used for %gs, because gs points
575 * to KERNEL_GS_BASE (and uses it for PDA references), so we
576 * must not zero %gs on x86_64
577 *
578 * For x86_64, we need to zero %fs, otherwise we may get an
579 * exception between the new %fs descriptor being loaded and
580 * %fs being effectively cleared at __switch_to().
581 */
582 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
583#ifdef CONFIG_X86_32
584 lazy_load_gs(0);
585#else
586 loadsegment(fs, 0);
587#endif
588 }
589
590 xen_mc_batch();
591
592 load_TLS_descriptor(t, cpu, 0);
593 load_TLS_descriptor(t, cpu, 1);
594 load_TLS_descriptor(t, cpu, 2);
595
596 xen_mc_issue(PARAVIRT_LAZY_CPU);
597}
598
599#ifdef CONFIG_X86_64
600static void xen_load_gs_index(unsigned int idx)
601{
602 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
603 BUG();
604}
605#endif
606
607static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
608 const void *ptr)
609{
610 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
611 u64 entry = *(u64 *)ptr;
612
613 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
614
615 preempt_disable();
616
617 xen_mc_flush();
618 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
619 BUG();
620
621 preempt_enable();
622}
623
624static int cvt_gate_to_trap(int vector, const gate_desc *val,
625 struct trap_info *info)
626{
627 unsigned long addr;
628
629 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
630 return 0;
631
632 info->vector = vector;
633
634 addr = gate_offset(*val);
635#ifdef CONFIG_X86_64
636 /*
637 * Look for known traps using IST, and substitute them
638 * appropriately. The debugger ones are the only ones we care
639 * about. Xen will handle faults like double_fault,
640 * so we should never see them. Warn if
641 * there's an unexpected IST-using fault handler.
642 */
643 if (addr == (unsigned long)debug)
644 addr = (unsigned long)xen_debug;
645 else if (addr == (unsigned long)int3)
646 addr = (unsigned long)xen_int3;
647 else if (addr == (unsigned long)stack_segment)
648 addr = (unsigned long)xen_stack_segment;
649 else if (addr == (unsigned long)double_fault) {
650 /* Don't need to handle these */
651 return 0;
652#ifdef CONFIG_X86_MCE
653 } else if (addr == (unsigned long)machine_check) {
654 /*
655 * when xen hypervisor inject vMCE to guest,
656 * use native mce handler to handle it
657 */
658 ;
659#endif
660 } else if (addr == (unsigned long)nmi)
661 /*
662 * Use the native version as well.
663 */
664 ;
665 else {
666 /* Some other trap using IST? */
667 if (WARN_ON(val->ist != 0))
668 return 0;
669 }
670#endif /* CONFIG_X86_64 */
671 info->address = addr;
672
673 info->cs = gate_segment(*val);
674 info->flags = val->dpl;
675 /* interrupt gates clear IF */
676 if (val->type == GATE_INTERRUPT)
677 info->flags |= 1 << 2;
678
679 return 1;
680}
681
682/* Locations of each CPU's IDT */
683static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
684
685/* Set an IDT entry. If the entry is part of the current IDT, then
686 also update Xen. */
687static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
688{
689 unsigned long p = (unsigned long)&dt[entrynum];
690 unsigned long start, end;
691
692 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
693
694 preempt_disable();
695
696 start = __this_cpu_read(idt_desc.address);
697 end = start + __this_cpu_read(idt_desc.size) + 1;
698
699 xen_mc_flush();
700
701 native_write_idt_entry(dt, entrynum, g);
702
703 if (p >= start && (p + 8) <= end) {
704 struct trap_info info[2];
705
706 info[1].address = 0;
707
708 if (cvt_gate_to_trap(entrynum, g, &info[0]))
709 if (HYPERVISOR_set_trap_table(info))
710 BUG();
711 }
712
713 preempt_enable();
714}
715
716static void xen_convert_trap_info(const struct desc_ptr *desc,
717 struct trap_info *traps)
718{
719 unsigned in, out, count;
720
721 count = (desc->size+1) / sizeof(gate_desc);
722 BUG_ON(count > 256);
723
724 for (in = out = 0; in < count; in++) {
725 gate_desc *entry = (gate_desc *)(desc->address) + in;
726
727 if (cvt_gate_to_trap(in, entry, &traps[out]))
728 out++;
729 }
730 traps[out].address = 0;
731}
732
733void xen_copy_trap_info(struct trap_info *traps)
734{
735 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
736
737 xen_convert_trap_info(desc, traps);
738}
739
740/* Load a new IDT into Xen. In principle this can be per-CPU, so we
741 hold a spinlock to protect the static traps[] array (static because
742 it avoids allocation, and saves stack space). */
743static void xen_load_idt(const struct desc_ptr *desc)
744{
745 static DEFINE_SPINLOCK(lock);
746 static struct trap_info traps[257];
747
748 trace_xen_cpu_load_idt(desc);
749
750 spin_lock(&lock);
751
752 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
753
754 xen_convert_trap_info(desc, traps);
755
756 xen_mc_flush();
757 if (HYPERVISOR_set_trap_table(traps))
758 BUG();
759
760 spin_unlock(&lock);
761}
762
763/* Write a GDT descriptor entry. Ignore LDT descriptors, since
764 they're handled differently. */
765static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
766 const void *desc, int type)
767{
768 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
769
770 preempt_disable();
771
772 switch (type) {
773 case DESC_LDT:
774 case DESC_TSS:
775 /* ignore */
776 break;
777
778 default: {
779 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
780
781 xen_mc_flush();
782 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
783 BUG();
784 }
785
786 }
787
788 preempt_enable();
789}
790
791/*
792 * Version of write_gdt_entry for use at early boot-time needed to
793 * update an entry as simply as possible.
794 */
795static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
796 const void *desc, int type)
797{
798 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
799
800 switch (type) {
801 case DESC_LDT:
802 case DESC_TSS:
803 /* ignore */
804 break;
805
806 default: {
807 xmaddr_t maddr = virt_to_machine(&dt[entry]);
808
809 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
810 dt[entry] = *(struct desc_struct *)desc;
811 }
812
813 }
814}
815
816static void xen_load_sp0(struct tss_struct *tss,
817 struct thread_struct *thread)
818{
819 struct multicall_space mcs;
820
821 mcs = xen_mc_entry(0);
822 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
823 xen_mc_issue(PARAVIRT_LAZY_CPU);
824 tss->x86_tss.sp0 = thread->sp0;
825}
826
827void xen_set_iopl_mask(unsigned mask)
828{
829 struct physdev_set_iopl set_iopl;
830
831 /* Force the change at ring 0. */
832 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
833 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
834}
835
836static void xen_io_delay(void)
837{
838}
839
840static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
841
842static unsigned long xen_read_cr0(void)
843{
844 unsigned long cr0 = this_cpu_read(xen_cr0_value);
845
846 if (unlikely(cr0 == 0)) {
847 cr0 = native_read_cr0();
848 this_cpu_write(xen_cr0_value, cr0);
849 }
850
851 return cr0;
852}
853
854static void xen_write_cr0(unsigned long cr0)
855{
856 struct multicall_space mcs;
857
858 this_cpu_write(xen_cr0_value, cr0);
859
860 /* Only pay attention to cr0.TS; everything else is
861 ignored. */
862 mcs = xen_mc_entry(0);
863
864 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
865
866 xen_mc_issue(PARAVIRT_LAZY_CPU);
867}
868
869static void xen_write_cr4(unsigned long cr4)
870{
871 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
872
873 native_write_cr4(cr4);
874}
875#ifdef CONFIG_X86_64
876static inline unsigned long xen_read_cr8(void)
877{
878 return 0;
879}
880static inline void xen_write_cr8(unsigned long val)
881{
882 BUG_ON(val);
883}
884#endif
885
886static u64 xen_read_msr_safe(unsigned int msr, int *err)
887{
888 u64 val;
889
890 if (pmu_msr_read(msr, &val, err))
891 return val;
892
893 val = native_read_msr_safe(msr, err);
894 switch (msr) {
895 case MSR_IA32_APICBASE:
896#ifdef CONFIG_X86_X2APIC
897 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
898#endif
899 val &= ~X2APIC_ENABLE;
900 break;
901 }
902 return val;
903}
904
905static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
906{
907 int ret;
908
909 ret = 0;
910
911 switch (msr) {
912#ifdef CONFIG_X86_64
913 unsigned which;
914 u64 base;
915
916 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
917 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
918 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
919
920 set:
921 base = ((u64)high << 32) | low;
922 if (HYPERVISOR_set_segment_base(which, base) != 0)
923 ret = -EIO;
924 break;
925#endif
926
927 case MSR_STAR:
928 case MSR_CSTAR:
929 case MSR_LSTAR:
930 case MSR_SYSCALL_MASK:
931 case MSR_IA32_SYSENTER_CS:
932 case MSR_IA32_SYSENTER_ESP:
933 case MSR_IA32_SYSENTER_EIP:
934 /* Fast syscall setup is all done in hypercalls, so
935 these are all ignored. Stub them out here to stop
936 Xen console noise. */
937 break;
938
939 default:
940 if (!pmu_msr_write(msr, low, high, &ret))
941 ret = native_write_msr_safe(msr, low, high);
942 }
943
944 return ret;
945}
946
947static u64 xen_read_msr(unsigned int msr)
948{
949 /*
950 * This will silently swallow a #GP from RDMSR. It may be worth
951 * changing that.
952 */
953 int err;
954
955 return xen_read_msr_safe(msr, &err);
956}
957
958static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
959{
960 /*
961 * This will silently swallow a #GP from WRMSR. It may be worth
962 * changing that.
963 */
964 xen_write_msr_safe(msr, low, high);
965}
966
967void xen_setup_shared_info(void)
968{
969 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
970 set_fixmap(FIX_PARAVIRT_BOOTMAP,
971 xen_start_info->shared_info);
972
973 HYPERVISOR_shared_info =
974 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
975 } else
976 HYPERVISOR_shared_info =
977 (struct shared_info *)__va(xen_start_info->shared_info);
978
979#ifndef CONFIG_SMP
980 /* In UP this is as good a place as any to set up shared info */
981 xen_setup_vcpu_info_placement();
982#endif
983
984 xen_setup_mfn_list_list();
985}
986
987/* This is called once we have the cpu_possible_mask */
988void xen_setup_vcpu_info_placement(void)
989{
990 int cpu;
991
992 for_each_possible_cpu(cpu) {
993 /* Set up direct vCPU id mapping for PV guests. */
994 per_cpu(xen_vcpu_id, cpu) = cpu;
995 xen_vcpu_setup(cpu);
996 }
997
998 /*
999 * xen_vcpu_setup managed to place the vcpu_info within the
1000 * percpu area for all cpus, so make use of it.
1001 */
1002 if (xen_have_vcpu_info_placement) {
1003 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1004 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1005 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1006 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1007 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1008 }
1009}
1010
1011static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1012 unsigned long addr, unsigned len)
1013{
1014 char *start, *end, *reloc;
1015 unsigned ret;
1016
1017 start = end = reloc = NULL;
1018
1019#define SITE(op, x) \
1020 case PARAVIRT_PATCH(op.x): \
1021 if (xen_have_vcpu_info_placement) { \
1022 start = (char *)xen_##x##_direct; \
1023 end = xen_##x##_direct_end; \
1024 reloc = xen_##x##_direct_reloc; \
1025 } \
1026 goto patch_site
1027
1028 switch (type) {
1029 SITE(pv_irq_ops, irq_enable);
1030 SITE(pv_irq_ops, irq_disable);
1031 SITE(pv_irq_ops, save_fl);
1032 SITE(pv_irq_ops, restore_fl);
1033#undef SITE
1034
1035 patch_site:
1036 if (start == NULL || (end-start) > len)
1037 goto default_patch;
1038
1039 ret = paravirt_patch_insns(insnbuf, len, start, end);
1040
1041 /* Note: because reloc is assigned from something that
1042 appears to be an array, gcc assumes it's non-null,
1043 but doesn't know its relationship with start and
1044 end. */
1045 if (reloc > start && reloc < end) {
1046 int reloc_off = reloc - start;
1047 long *relocp = (long *)(insnbuf + reloc_off);
1048 long delta = start - (char *)addr;
1049
1050 *relocp += delta;
1051 }
1052 break;
1053
1054 default_patch:
1055 default:
1056 ret = paravirt_patch_default(type, clobbers, insnbuf,
1057 addr, len);
1058 break;
1059 }
1060
1061 return ret;
1062}
1063
1064static const struct pv_info xen_info __initconst = {
1065 .shared_kernel_pmd = 0,
1066
1067#ifdef CONFIG_X86_64
1068 .extra_user_64bit_cs = FLAT_USER_CS64,
1069#endif
1070 .name = "Xen",
1071};
1072
1073static const struct pv_init_ops xen_init_ops __initconst = {
1074 .patch = xen_patch,
1075};
1076
1077static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1078 .cpuid = xen_cpuid,
1079
1080 .set_debugreg = xen_set_debugreg,
1081 .get_debugreg = xen_get_debugreg,
1082
1083 .read_cr0 = xen_read_cr0,
1084 .write_cr0 = xen_write_cr0,
1085
1086 .read_cr4 = native_read_cr4,
1087 .write_cr4 = xen_write_cr4,
1088
1089#ifdef CONFIG_X86_64
1090 .read_cr8 = xen_read_cr8,
1091 .write_cr8 = xen_write_cr8,
1092#endif
1093
1094 .wbinvd = native_wbinvd,
1095
1096 .read_msr = xen_read_msr,
1097 .write_msr = xen_write_msr,
1098
1099 .read_msr_safe = xen_read_msr_safe,
1100 .write_msr_safe = xen_write_msr_safe,
1101
1102 .read_pmc = xen_read_pmc,
1103
1104 .iret = xen_iret,
1105#ifdef CONFIG_X86_64
1106 .usergs_sysret64 = xen_sysret64,
1107#endif
1108
1109 .load_tr_desc = paravirt_nop,
1110 .set_ldt = xen_set_ldt,
1111 .load_gdt = xen_load_gdt,
1112 .load_idt = xen_load_idt,
1113 .load_tls = xen_load_tls,
1114#ifdef CONFIG_X86_64
1115 .load_gs_index = xen_load_gs_index,
1116#endif
1117
1118 .alloc_ldt = xen_alloc_ldt,
1119 .free_ldt = xen_free_ldt,
1120
1121 .store_idt = native_store_idt,
1122 .store_tr = xen_store_tr,
1123
1124 .write_ldt_entry = xen_write_ldt_entry,
1125 .write_gdt_entry = xen_write_gdt_entry,
1126 .write_idt_entry = xen_write_idt_entry,
1127 .load_sp0 = xen_load_sp0,
1128
1129 .set_iopl_mask = xen_set_iopl_mask,
1130 .io_delay = xen_io_delay,
1131
1132 /* Xen takes care of %gs when switching to usermode for us */
1133 .swapgs = paravirt_nop,
1134
1135 .start_context_switch = paravirt_start_context_switch,
1136 .end_context_switch = xen_end_context_switch,
1137};
1138
1139static void xen_restart(char *msg)
1140{
1141 xen_reboot(SHUTDOWN_reboot);
1142}
1143
1144static void xen_machine_halt(void)
1145{
1146 xen_reboot(SHUTDOWN_poweroff);
1147}
1148
1149static void xen_machine_power_off(void)
1150{
1151 if (pm_power_off)
1152 pm_power_off();
1153 xen_reboot(SHUTDOWN_poweroff);
1154}
1155
1156static void xen_crash_shutdown(struct pt_regs *regs)
1157{
1158 xen_reboot(SHUTDOWN_crash);
1159}
1160
1161static const struct machine_ops xen_machine_ops __initconst = {
1162 .restart = xen_restart,
1163 .halt = xen_machine_halt,
1164 .power_off = xen_machine_power_off,
1165 .shutdown = xen_machine_halt,
1166 .crash_shutdown = xen_crash_shutdown,
1167 .emergency_restart = xen_emergency_restart,
1168};
1169
1170static unsigned char xen_get_nmi_reason(void)
1171{
1172 unsigned char reason = 0;
1173
1174 /* Construct a value which looks like it came from port 0x61. */
1175 if (test_bit(_XEN_NMIREASON_io_error,
1176 &HYPERVISOR_shared_info->arch.nmi_reason))
1177 reason |= NMI_REASON_IOCHK;
1178 if (test_bit(_XEN_NMIREASON_pci_serr,
1179 &HYPERVISOR_shared_info->arch.nmi_reason))
1180 reason |= NMI_REASON_SERR;
1181
1182 return reason;
1183}
1184
1185static void __init xen_boot_params_init_edd(void)
1186{
1187#if IS_ENABLED(CONFIG_EDD)
1188 struct xen_platform_op op;
1189 struct edd_info *edd_info;
1190 u32 *mbr_signature;
1191 unsigned nr;
1192 int ret;
1193
1194 edd_info = boot_params.eddbuf;
1195 mbr_signature = boot_params.edd_mbr_sig_buffer;
1196
1197 op.cmd = XENPF_firmware_info;
1198
1199 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1200 for (nr = 0; nr < EDDMAXNR; nr++) {
1201 struct edd_info *info = edd_info + nr;
1202
1203 op.u.firmware_info.index = nr;
1204 info->params.length = sizeof(info->params);
1205 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1206 &info->params);
1207 ret = HYPERVISOR_platform_op(&op);
1208 if (ret)
1209 break;
1210
1211#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1212 C(device);
1213 C(version);
1214 C(interface_support);
1215 C(legacy_max_cylinder);
1216 C(legacy_max_head);
1217 C(legacy_sectors_per_track);
1218#undef C
1219 }
1220 boot_params.eddbuf_entries = nr;
1221
1222 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1223 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1224 op.u.firmware_info.index = nr;
1225 ret = HYPERVISOR_platform_op(&op);
1226 if (ret)
1227 break;
1228 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1229 }
1230 boot_params.edd_mbr_sig_buf_entries = nr;
1231#endif
1232}
1233
1234/*
1235 * Set up the GDT and segment registers for -fstack-protector. Until
1236 * we do this, we have to be careful not to call any stack-protected
1237 * function, which is most of the kernel.
1238 */
1239static void xen_setup_gdt(int cpu)
1240{
1241 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1242 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1243
1244 setup_stack_canary_segment(0);
1245 switch_to_new_gdt(0);
1246
1247 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1248 pv_cpu_ops.load_gdt = xen_load_gdt;
1249}
1250
1251static void __init xen_dom0_set_legacy_features(void)
1252{
1253 x86_platform.legacy.rtc = 1;
1254}
1255
1256/* First C function to be called on Xen boot */
1257asmlinkage __visible void __init xen_start_kernel(void)
1258{
1259 struct physdev_set_iopl set_iopl;
1260 unsigned long initrd_start = 0;
1261 int rc;
1262
1263 if (!xen_start_info)
1264 return;
1265
1266 xen_domain_type = XEN_PV_DOMAIN;
1267
1268 xen_setup_features();
1269
1270 xen_setup_machphys_mapping();
1271
1272 /* Install Xen paravirt ops */
1273 pv_info = xen_info;
1274 pv_init_ops = xen_init_ops;
1275 pv_cpu_ops = xen_cpu_ops;
1276
1277 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1278
1279 x86_init.resources.memory_setup = xen_memory_setup;
1280 x86_init.oem.arch_setup = xen_arch_setup;
1281 x86_init.oem.banner = xen_banner;
1282
1283 xen_init_time_ops();
1284
1285 /*
1286 * Set up some pagetable state before starting to set any ptes.
1287 */
1288
1289 xen_init_mmu_ops();
1290
1291 /* Prevent unwanted bits from being set in PTEs. */
1292 __supported_pte_mask &= ~_PAGE_GLOBAL;
1293
1294 /*
1295 * Prevent page tables from being allocated in highmem, even
1296 * if CONFIG_HIGHPTE is enabled.
1297 */
1298 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1299
1300 /* Work out if we support NX */
1301 x86_configure_nx();
1302
1303 /* Get mfn list */
1304 xen_build_dynamic_phys_to_machine();
1305
1306 /*
1307 * Set up kernel GDT and segment registers, mainly so that
1308 * -fstack-protector code can be executed.
1309 */
1310 xen_setup_gdt(0);
1311
1312 xen_init_irq_ops();
1313 xen_init_cpuid_mask();
Juergen Gross0808e802017-04-13 08:55:41 +02001314 xen_init_capabilities();
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001315
1316#ifdef CONFIG_X86_LOCAL_APIC
1317 /*
1318 * set up the basic apic ops.
1319 */
1320 xen_init_apic();
1321#endif
1322
1323 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1324 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1325 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1326 }
1327
1328 machine_ops = xen_machine_ops;
1329
1330 /*
1331 * The only reliable way to retain the initial address of the
1332 * percpu gdt_page is to remember it here, so we can go and
1333 * mark it RW later, when the initial percpu area is freed.
1334 */
1335 xen_initial_gdt = &per_cpu(gdt_page, 0);
1336
1337 xen_smp_init();
1338
1339#ifdef CONFIG_ACPI_NUMA
1340 /*
1341 * The pages we from Xen are not related to machine pages, so
1342 * any NUMA information the kernel tries to get from ACPI will
1343 * be meaningless. Prevent it from trying.
1344 */
1345 acpi_numa = -1;
1346#endif
1347 /* Don't do the full vcpu_info placement stuff until we have a
1348 possible map and a non-dummy shared_info. */
1349 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1350
1351 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1352
1353 local_irq_disable();
1354 early_boot_irqs_disabled = true;
1355
1356 xen_raw_console_write("mapping kernel into physical memory\n");
1357 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1358 xen_start_info->nr_pages);
1359 xen_reserve_special_pages();
1360
1361 /* keep using Xen gdt for now; no urgent need to change it */
1362
1363#ifdef CONFIG_X86_32
1364 pv_info.kernel_rpl = 1;
1365 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1366 pv_info.kernel_rpl = 0;
1367#else
1368 pv_info.kernel_rpl = 0;
1369#endif
1370 /* set the limit of our address space */
1371 xen_reserve_top();
1372
1373 /*
1374 * We used to do this in xen_arch_setup, but that is too late
1375 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1376 * early_amd_init which pokes 0xcf8 port.
1377 */
1378 set_iopl.iopl = 1;
1379 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1380 if (rc != 0)
1381 xen_raw_printk("physdev_op failed %d\n", rc);
1382
1383#ifdef CONFIG_X86_32
1384 /* set up basic CPUID stuff */
1385 cpu_detect(&new_cpu_data);
1386 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1387 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1388#endif
1389
1390 if (xen_start_info->mod_start) {
1391 if (xen_start_info->flags & SIF_MOD_START_PFN)
1392 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1393 else
1394 initrd_start = __pa(xen_start_info->mod_start);
1395 }
1396
1397 /* Poke various useful things into boot_params */
1398 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1399 boot_params.hdr.ramdisk_image = initrd_start;
1400 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1401 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1402 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1403
1404 if (!xen_initial_domain()) {
1405 add_preferred_console("xenboot", 0, NULL);
1406 add_preferred_console("tty", 0, NULL);
1407 add_preferred_console("hvc", 0, NULL);
1408 if (pci_xen)
1409 x86_init.pci.arch_init = pci_xen_init;
1410 } else {
1411 const struct dom0_vga_console_info *info =
1412 (void *)((char *)xen_start_info +
1413 xen_start_info->console.dom0.info_off);
1414 struct xen_platform_op op = {
1415 .cmd = XENPF_firmware_info,
1416 .interface_version = XENPF_INTERFACE_VERSION,
1417 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1418 };
1419
1420 x86_platform.set_legacy_features =
1421 xen_dom0_set_legacy_features;
1422 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1423 xen_start_info->console.domU.mfn = 0;
1424 xen_start_info->console.domU.evtchn = 0;
1425
1426 if (HYPERVISOR_platform_op(&op) == 0)
1427 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1428
1429 /* Make sure ACS will be enabled */
1430 pci_request_acs();
1431
1432 xen_acpi_sleep_register();
1433
1434 /* Avoid searching for BIOS MP tables */
1435 x86_init.mpparse.find_smp_config = x86_init_noop;
1436 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1437
1438 xen_boot_params_init_edd();
1439 }
1440#ifdef CONFIG_PCI
1441 /* PCI BIOS service won't work from a PV guest. */
1442 pci_probe &= ~PCI_PROBE_BIOS;
1443#endif
1444 xen_raw_console_write("about to get started...\n");
1445
1446 /* Let's presume PV guests always boot on vCPU with id 0. */
1447 per_cpu(xen_vcpu_id, 0) = 0;
1448
1449 xen_setup_runstate_info(0);
1450
1451 xen_efi_init();
1452
1453 /* Start the world */
1454#ifdef CONFIG_X86_32
1455 i386_start_kernel();
1456#else
1457 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1458 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1459#endif
1460}
1461
1462static int xen_cpu_up_prepare_pv(unsigned int cpu)
1463{
1464 int rc;
1465
1466 xen_setup_timer(cpu);
1467
1468 rc = xen_smp_intr_init(cpu);
1469 if (rc) {
1470 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1471 cpu, rc);
1472 return rc;
1473 }
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001474
1475 rc = xen_smp_intr_init_pv(cpu);
1476 if (rc) {
1477 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1478 cpu, rc);
1479 return rc;
1480 }
1481
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001482 return 0;
1483}
1484
1485static int xen_cpu_dead_pv(unsigned int cpu)
1486{
1487 xen_smp_intr_free(cpu);
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001488 xen_smp_intr_free_pv(cpu);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001489
1490 xen_teardown_timer(cpu);
1491
1492 return 0;
1493}
1494
1495static uint32_t __init xen_platform_pv(void)
1496{
1497 if (xen_pv_domain())
1498 return xen_cpuid_base();
1499
1500 return 0;
1501}
1502
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001503const struct hypervisor_x86 x86_hyper_xen_pv = {
1504 .name = "Xen PV",
1505 .detect = xen_platform_pv,
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001506 .pin_vcpu = xen_pin_vcpu,
1507};
1508EXPORT_SYMBOL(x86_hyper_xen_pv);