blob: a1906a772df9b66594bb39da22866e0097317d11 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __ASM_SH64_PGTABLE_H
2#define __ASM_SH64_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6/*
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * include/asm-sh64/pgtable.h
12 *
13 * Copyright (C) 2000, 2001 Paolo Alberelli
14 * Copyright (C) 2003, 2004 Paul Mundt
15 * Copyright (C) 2003, 2004 Richard Curnow
16 *
17 * This file contains the functions and defines necessary to modify and use
18 * the SuperH page table tree.
19 */
20
21#ifndef __ASSEMBLY__
22#include <asm/processor.h>
23#include <asm/page.h>
24#include <linux/threads.h>
25#include <linux/config.h>
26
Tim Schmielau8c65b4a2005-11-07 00:59:43 -080027struct vm_area_struct;
28
Linus Torvalds1da177e2005-04-16 15:20:36 -070029extern void paging_init(void);
30
31/* We provide our own get_unmapped_area to avoid cache synonym issue */
32#define HAVE_ARCH_UNMAPPED_AREA
33
34/*
35 * Basically we have the same two-level (which is the logical three level
36 * Linux page table layout folded) page tables as the i386.
37 */
38
39/*
40 * ZERO_PAGE is a global shared page that is always zero: used
41 * for zero-mapped memory areas etc..
42 */
43extern unsigned char empty_zero_page[PAGE_SIZE];
44#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
45
46#endif /* !__ASSEMBLY__ */
47
48/*
49 * NEFF and NPHYS related defines.
50 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
51 * implement 32 bits effective and 32 bits physical. But future implementations may
52 * extend beyond this.
53 */
54#define NEFF 32
55#define NEFF_SIGN (1LL << (NEFF - 1))
56#define NEFF_MASK (-1LL << NEFF)
57
58#define NPHYS 32
59#define NPHYS_SIGN (1LL << (NPHYS - 1))
60#define NPHYS_MASK (-1LL << NPHYS)
61
62/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
63 that 3-level would be appropriate. */
64#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
65/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
66#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
67#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
68#define PTE_SHIFT PAGE_SHIFT
69#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
70
71/* top level: PMD. */
72#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
73#define PGD_BITS (NEFF - PGDIR_SHIFT)
74#define PTRS_PER_PGD (1<<PGD_BITS)
75
76/* middle level: PMD. This doesn't do anything for the 2-level case. */
77#define PTRS_PER_PMD (1)
78
79#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
80#define PGDIR_MASK (~(PGDIR_SIZE-1))
81#define PMD_SHIFT PGDIR_SHIFT
82#define PMD_SIZE PGDIR_SIZE
83#define PMD_MASK PGDIR_MASK
84
85#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
86/*
87 * three-level asymmetric paging structure: PGD is top level.
88 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
89 */
90/* bottom level: PTE. It's 9 bits = 512 pointers */
91#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
92#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
93#define PTE_SHIFT PAGE_SHIFT
94#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
95
96/* middle level: PMD. It's 10 bits = 1024 pointers */
97#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
98#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
99#define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
100#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
101
102/* top level: PMD. It's 1 bit = 2 pointers */
103#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
104#define PGD_BITS (NEFF - PGDIR_SHIFT)
105#define PTRS_PER_PGD (1<<PGD_BITS)
106
107#define PMD_SIZE (1UL << PMD_SHIFT)
108#define PMD_MASK (~(PMD_SIZE-1))
109#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
110#define PGDIR_MASK (~(PGDIR_SIZE-1))
111
112#else
113#error "No defined number of page table levels"
114#endif
115
116/*
117 * Error outputs.
118 */
119#define pte_ERROR(e) \
120 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
121#define pmd_ERROR(e) \
122 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
123#define pgd_ERROR(e) \
124 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
125
126/*
127 * Table setting routines. Used within arch/mm only.
128 */
129#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
130#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
131
132static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
133{
134 unsigned long long x = ((unsigned long long) pteval.pte);
135 unsigned long long *xp = (unsigned long long *) pteptr;
136 /*
137 * Sign-extend based on NPHYS.
138 */
139 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
140}
141#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
142
143static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
144{
145 pmd_val(*pmdp) = (unsigned long) ptep;
146}
147
148/*
149 * PGD defines. Top level.
150 */
151
152/* To find an entry in a generic PGD. */
153#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
154#define __pgd_offset(address) pgd_index(address)
155#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
156
157/* To find an entry in a kernel PGD. */
158#define pgd_offset_k(address) pgd_offset(&init_mm, address)
159
160/*
161 * PGD level access routines.
162 *
163 * Note1:
164 * There's no need to use physical addresses since the tree walk is all
165 * in performed in software, until the PTE translation.
166 *
167 * Note 2:
168 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
169 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
170 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
171 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
172 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
173 * bad pgd that must be notified via printk().
174 *
175 */
176#define _PGD_EMPTY 0x0
177
178#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
179static inline int pgd_none(pgd_t pgd) { return 0; }
180static inline int pgd_bad(pgd_t pgd) { return 0; }
181#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
182#define pgd_clear(xx) do { } while(0)
183
184#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
185#define pgd_present(pgd_entry) (1)
186#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
187/* TODO: Think later about what a useful definition of 'bad' would be now. */
188#define pgd_bad(pgd_entry) (0)
189#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
190
191#endif
192
193
194#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
195
196/*
197 * PMD defines. Middle level.
198 */
199
200/* PGD to PMD dereferencing */
201#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
202static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
203{
204 return (pmd_t *) dir;
205}
206#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
207#define __pmd_offset(address) \
208 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
209#define pmd_offset(dir, addr) \
210 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
211#endif
212
213/*
214 * PMD level access routines. Same notes as above.
215 */
216#define _PMD_EMPTY 0x0
217/* Either the PMD is empty or present, it's not paged out */
218#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
219#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
220#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
221#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
222
223#define pmd_page_kernel(pmd_entry) \
224 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
225
226#define pmd_page(pmd) \
227 (virt_to_page(pmd_val(pmd)))
228
229/* PMD to PTE dereferencing */
230#define pte_index(address) \
231 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
232
233#define pte_offset_kernel(dir, addr) \
234 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
235
236#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
237#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
238#define pte_unmap(pte) do { } while (0)
239#define pte_unmap_nested(pte) do { } while (0)
240
241/* Round it up ! */
242#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
Hugh Dickinsd455a362005-04-19 13:29:23 -0700243#define FIRST_USER_ADDRESS 0
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244
245#ifndef __ASSEMBLY__
246#define VMALLOC_END 0xff000000
247#define VMALLOC_START 0xf0000000
248#define VMALLOC_VMADDR(x) ((unsigned long)(x))
249
250#define IOBASE_VADDR 0xff000000
251#define IOBASE_END 0xffffffff
252
253/*
254 * PTEL coherent flags.
255 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
256 */
257/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
258 positions, to avoid expensive bit shuffling on every refill. The remaining
259 bits are used for s/w purposes and masked out on each refill.
260
261 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
262 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
263 swapped out, and it must be placed so that it doesn't overlap either the
264 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
265 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
266 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
267 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
268 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
269#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
270#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
271#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
272#define _PAGE_PRESENT 0x004 /* software: page referenced */
273#define _PAGE_FILE 0x004 /* software: only when !present */
274#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
275#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
276#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
277#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
278#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
279#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
280#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
281#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
282#define _PAGE_ACCESSED 0x800 /* software: page referenced */
283
284/* Mask which drops software flags */
285#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
286
287/*
288 * HugeTLB support
289 */
290#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
291#define _PAGE_SZHUGE (_PAGE_SIZE0)
292#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
293#define _PAGE_SZHUGE (_PAGE_SIZE1)
294#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
295#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
296#endif
297
298/*
299 * Default flags for a Kernel page.
300 * This is fundametally also SHARED because the main use of this define
301 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
302 * contextless.
303 *
304 * _PAGE_EXECUTE is required for modules
305 *
306 */
307#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
308 _PAGE_EXECUTE | \
309 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
310 _PAGE_SHARED)
311
312/* Default flags for a User page */
313#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
314
315#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
316
317#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
318#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
319 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
320 _PAGE_SHARED)
321/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
322 * protection mode for the stack. */
323#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
324 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
325#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
326 _PAGE_ACCESSED | _PAGE_USER)
327#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
328
329
330/*
331 * In ST50 we have full permissions (Read/Write/Execute/Shared).
332 * Just match'em all. These are for mmap(), therefore all at least
333 * User/Cachable/Present/Accessed. No point in making Fault on Write.
334 */
335#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
336 /* sxwr */
337#define __P000 __pgprot(__MMAP_COMMON)
338#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
339#define __P010 __pgprot(__MMAP_COMMON)
340#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
341#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
342#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
343#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
344#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
345
346#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
347#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
348#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
349#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
350#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
351#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
352#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
353#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
354
355/* Make it a device mapping for maximum safety (e.g. for mapping device
356 registers into user-space via /dev/map). */
357#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
358#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
359
360/*
361 * Handling allocation failures during page table setup.
362 */
363extern void __handle_bad_pmd_kernel(pmd_t * pmd);
364#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
365
366/*
367 * PTE level access routines.
368 *
369 * Note1:
370 * It's the tree walk leaf. This is physical address to be stored.
371 *
372 * Note 2:
373 * Regarding the choice of _PTE_EMPTY:
374
375 We must choose a bit pattern that cannot be valid, whether or not the page
376 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
377 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
378 left for us to select. If we force bit[7]==0 when swapped out, we could use
379 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
380 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
381 empty. This is convenient, because the page tables get cleared to zero
382 when they are allocated.
383
384 */
385#define _PTE_EMPTY 0x0
386#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
387#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
388#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
389
390/*
391 * Some definitions to translate between mem_map, PTEs, and page
392 * addresses:
393 */
394
395/*
396 * Given a PTE, return the index of the mem_map[] entry corresponding
397 * to the page frame the PTE. Get the absolute physical address, make
398 * a relative physical address and translate it to an index.
399 */
400#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
401 __MEMORY_START) >> PAGE_SHIFT)
402
403/*
404 * Given a PTE, return the "struct page *".
405 */
406#define pte_page(x) (mem_map + pte_pagenr(x))
407
408/*
409 * Return number of (down rounded) MB corresponding to x pages.
410 */
411#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
412
413
414/*
415 * The following have defined behavior only work if pte_present() is true.
416 */
417static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
418static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
419static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
420static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
421static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
422static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
423
424extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
425extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
426extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
427extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
428extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
429
430extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
431extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
432extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
433extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
434extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
David Gibson63551ae2005-06-21 17:14:44 -0700435extern inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
436
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437
438/*
439 * Conversion functions: convert a page and protection to a page entry.
440 *
441 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
442 */
443#define mk_pte(page,pgprot) \
444({ \
445 pte_t __pte; \
446 \
447 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
448 __MEMORY_START | pgprot_val((pgprot)))); \
449 __pte; \
450})
451
452/*
453 * This takes a (absolute) physical page address that is used
454 * by the remapping functions
455 */
456#define mk_pte_phys(physpage, pgprot) \
457({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
458
459extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
460{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
461
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462typedef pte_t *pte_addr_t;
463#define pgtable_cache_init() do { } while (0)
464
465extern void update_mmu_cache(struct vm_area_struct * vma,
466 unsigned long address, pte_t pte);
467
468/* Encode and decode a swap entry */
469#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
470#define __swp_offset(x) ((x).val >> 8)
471#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
472#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
473#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
474
475/* Encode and decode a nonlinear file mapping entry */
476#define PTE_FILE_MAX_BITS 29
477#define pte_to_pgoff(pte) (pte_val(pte))
478#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
479
480/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
481#define PageSkip(page) (0)
482#define kern_addr_valid(addr) (1)
483
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
485 remap_pfn_range(vma, vaddr, pfn, size, prot)
486
487#define MK_IOSPACE_PFN(space, pfn) (pfn)
488#define GET_IOSPACE(pfn) 0
489#define GET_PFN(pfn) (pfn)
490
491#endif /* !__ASSEMBLY__ */
492
493/*
494 * No page table caches to initialise
495 */
496#define pgtable_cache_init() do { } while (0)
497
498#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT)
499#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
500#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
501
502extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
503
504#include <asm-generic/pgtable.h>
505
506#endif /* __ASM_SH64_PGTABLE_H */