Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 1 | # event_analyzing_sample.py: general event handler in python |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 2 | # |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 3 | # Current perf report is already very powerful with the annotation integrated, |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 4 | # and this script is not trying to be as powerful as perf report, but |
| 5 | # providing end user/developer a flexible way to analyze the events other |
| 6 | # than trace points. |
| 7 | # |
| 8 | # The 2 database related functions in this script just show how to gather |
| 9 | # the basic information, and users can modify and write their own functions |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 10 | # according to their specific requirement. |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 11 | # |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 12 | # The first function "show_general_events" just does a basic grouping for all |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 13 | # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is |
| 14 | # for a x86 HW PMU event: PEBS with load latency data. |
| 15 | # |
| 16 | |
| 17 | import os |
| 18 | import sys |
| 19 | import math |
| 20 | import struct |
| 21 | import sqlite3 |
| 22 | |
| 23 | sys.path.append(os.environ['PERF_EXEC_PATH'] + \ |
| 24 | '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') |
| 25 | |
| 26 | from perf_trace_context import * |
| 27 | from EventClass import * |
| 28 | |
| 29 | # |
| 30 | # If the perf.data has a big number of samples, then the insert operation |
| 31 | # will be very time consuming (about 10+ minutes for 10000 samples) if the |
| 32 | # .db database is on disk. Move the .db file to RAM based FS to speedup |
| 33 | # the handling, which will cut the time down to several seconds. |
| 34 | # |
| 35 | con = sqlite3.connect("/dev/shm/perf.db") |
| 36 | con.isolation_level = None |
| 37 | |
| 38 | def trace_begin(): |
| 39 | print "In trace_begin:\n" |
| 40 | |
| 41 | # |
| 42 | # Will create several tables at the start, pebs_ll is for PEBS data with |
| 43 | # load latency info, while gen_events is for general event. |
| 44 | # |
| 45 | con.execute(""" |
| 46 | create table if not exists gen_events ( |
| 47 | name text, |
| 48 | symbol text, |
| 49 | comm text, |
| 50 | dso text |
| 51 | );""") |
| 52 | con.execute(""" |
| 53 | create table if not exists pebs_ll ( |
| 54 | name text, |
| 55 | symbol text, |
| 56 | comm text, |
| 57 | dso text, |
| 58 | flags integer, |
| 59 | ip integer, |
| 60 | status integer, |
| 61 | dse integer, |
| 62 | dla integer, |
| 63 | lat integer |
| 64 | );""") |
| 65 | |
| 66 | # |
| 67 | # Create and insert event object to a database so that user could |
| 68 | # do more analysis with simple database commands. |
| 69 | # |
| 70 | def process_event(param_dict): |
| 71 | event_attr = param_dict["attr"] |
| 72 | sample = param_dict["sample"] |
| 73 | raw_buf = param_dict["raw_buf"] |
| 74 | comm = param_dict["comm"] |
| 75 | name = param_dict["ev_name"] |
| 76 | |
| 77 | # Symbol and dso info are not always resolved |
| 78 | if (param_dict.has_key("dso")): |
| 79 | dso = param_dict["dso"] |
| 80 | else: |
| 81 | dso = "Unknown_dso" |
| 82 | |
| 83 | if (param_dict.has_key("symbol")): |
| 84 | symbol = param_dict["symbol"] |
| 85 | else: |
| 86 | symbol = "Unknown_symbol" |
| 87 | |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 88 | # Create the event object and insert it to the right table in database |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 89 | event = create_event(name, comm, dso, symbol, raw_buf) |
| 90 | insert_db(event) |
| 91 | |
| 92 | def insert_db(event): |
| 93 | if event.ev_type == EVTYPE_GENERIC: |
| 94 | con.execute("insert into gen_events values(?, ?, ?, ?)", |
| 95 | (event.name, event.symbol, event.comm, event.dso)) |
| 96 | elif event.ev_type == EVTYPE_PEBS_LL: |
| 97 | event.ip &= 0x7fffffffffffffff |
| 98 | event.dla &= 0x7fffffffffffffff |
| 99 | con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", |
| 100 | (event.name, event.symbol, event.comm, event.dso, event.flags, |
| 101 | event.ip, event.status, event.dse, event.dla, event.lat)) |
| 102 | |
| 103 | def trace_end(): |
| 104 | print "In trace_end:\n" |
| 105 | # We show the basic info for the 2 type of event classes |
| 106 | show_general_events() |
| 107 | show_pebs_ll() |
| 108 | con.close() |
| 109 | |
| 110 | # |
| 111 | # As the event number may be very big, so we can't use linear way |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 112 | # to show the histogram in real number, but use a log2 algorithm. |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 113 | # |
| 114 | |
| 115 | def num2sym(num): |
| 116 | # Each number will have at least one '#' |
| 117 | snum = '#' * (int)(math.log(num, 2) + 1) |
| 118 | return snum |
| 119 | |
| 120 | def show_general_events(): |
| 121 | |
| 122 | # Check the total record number in the table |
| 123 | count = con.execute("select count(*) from gen_events") |
| 124 | for t in count: |
| 125 | print "There is %d records in gen_events table" % t[0] |
| 126 | if t[0] == 0: |
| 127 | return |
| 128 | |
| 129 | print "Statistics about the general events grouped by thread/symbol/dso: \n" |
| 130 | |
| 131 | # Group by thread |
| 132 | commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)") |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 133 | print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 134 | for row in commq: |
| 135 | print "%16s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 136 | |
| 137 | # Group by symbol |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 138 | print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 139 | symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)") |
| 140 | for row in symbolq: |
| 141 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 142 | |
| 143 | # Group by dso |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 144 | print "\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 145 | dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)") |
| 146 | for row in dsoq: |
| 147 | print "%40s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 148 | |
| 149 | # |
| 150 | # This function just shows the basic info, and we could do more with the |
| 151 | # data in the tables, like checking the function parameters when some |
| 152 | # big latency events happen. |
| 153 | # |
| 154 | def show_pebs_ll(): |
| 155 | |
| 156 | count = con.execute("select count(*) from pebs_ll") |
| 157 | for t in count: |
| 158 | print "There is %d records in pebs_ll table" % t[0] |
| 159 | if t[0] == 0: |
| 160 | return |
| 161 | |
| 162 | print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n" |
| 163 | |
| 164 | # Group by thread |
| 165 | commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)") |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 166 | print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 167 | for row in commq: |
| 168 | print "%16s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 169 | |
| 170 | # Group by symbol |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 171 | print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 172 | symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)") |
| 173 | for row in symbolq: |
| 174 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 175 | |
| 176 | # Group by dse |
| 177 | dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)") |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 178 | print "\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 179 | for row in dseq: |
| 180 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 181 | |
| 182 | # Group by latency |
| 183 | latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat") |
Feng Tang | 87b6a3a | 2012-08-09 13:46:13 +0800 | [diff] [blame] | 184 | print "\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58) |
Feng Tang | 0076d54 | 2012-08-08 17:57:55 +0800 | [diff] [blame] | 185 | for row in latq: |
| 186 | print "%32s %8d %s" % (row[0], row[1], num2sym(row[1])) |
| 187 | |
| 188 | def trace_unhandled(event_name, context, event_fields_dict): |
| 189 | print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())]) |