Sean Paul | ee5e5e7 | 2018-01-08 14:55:39 -0500 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: MIT */ |
| 2 | /* |
| 3 | * Copyright (C) 2017 Google, Inc. |
| 4 | * |
| 5 | * Authors: |
| 6 | * Sean Paul <seanpaul@chromium.org> |
| 7 | */ |
| 8 | |
| 9 | #include <drm/drmP.h> |
| 10 | #include <drm/drm_hdcp.h> |
| 11 | #include <linux/i2c.h> |
| 12 | #include <linux/random.h> |
| 13 | |
| 14 | #include "intel_drv.h" |
| 15 | #include "i915_reg.h" |
| 16 | |
| 17 | #define KEY_LOAD_TRIES 5 |
| 18 | |
| 19 | static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port, |
| 20 | const struct intel_hdcp_shim *shim) |
| 21 | { |
| 22 | int ret, read_ret; |
| 23 | bool ksv_ready; |
| 24 | |
| 25 | /* Poll for ksv list ready (spec says max time allowed is 5s) */ |
| 26 | ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port, |
| 27 | &ksv_ready), |
| 28 | read_ret || ksv_ready, 5 * 1000 * 1000, 1000, |
| 29 | 100 * 1000); |
| 30 | if (ret) |
| 31 | return ret; |
| 32 | if (read_ret) |
| 33 | return read_ret; |
| 34 | if (!ksv_ready) |
| 35 | return -ETIMEDOUT; |
| 36 | |
| 37 | return 0; |
| 38 | } |
| 39 | |
| 40 | static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv) |
| 41 | { |
| 42 | I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); |
| 43 | I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | |
| 44 | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); |
| 45 | } |
| 46 | |
| 47 | static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv) |
| 48 | { |
| 49 | int ret; |
| 50 | u32 val; |
| 51 | |
| 52 | /* Initiate loading the HDCP key from fuses */ |
| 53 | mutex_lock(&dev_priv->pcu_lock); |
| 54 | ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_LOAD_HDCP_KEYS, 1); |
| 55 | mutex_unlock(&dev_priv->pcu_lock); |
| 56 | if (ret) { |
| 57 | DRM_ERROR("Failed to initiate HDCP key load (%d)\n", ret); |
| 58 | return ret; |
| 59 | } |
| 60 | |
| 61 | /* Wait for the keys to load (500us) */ |
| 62 | ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS, |
| 63 | HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, |
| 64 | 10, 1, &val); |
| 65 | if (ret) |
| 66 | return ret; |
| 67 | else if (!(val & HDCP_KEY_LOAD_STATUS)) |
| 68 | return -ENXIO; |
| 69 | |
| 70 | /* Send Aksv over to PCH display for use in authentication */ |
| 71 | I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); |
| 72 | |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | /* Returns updated SHA-1 index */ |
| 77 | static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text) |
| 78 | { |
| 79 | I915_WRITE(HDCP_SHA_TEXT, sha_text); |
| 80 | if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, |
| 81 | HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) { |
| 82 | DRM_ERROR("Timed out waiting for SHA1 ready\n"); |
| 83 | return -ETIMEDOUT; |
| 84 | } |
| 85 | return 0; |
| 86 | } |
| 87 | |
| 88 | static |
| 89 | u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port) |
| 90 | { |
| 91 | enum port port = intel_dig_port->base.port; |
| 92 | switch (port) { |
| 93 | case PORT_A: |
| 94 | return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; |
| 95 | case PORT_B: |
| 96 | return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; |
| 97 | case PORT_C: |
| 98 | return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; |
| 99 | case PORT_D: |
| 100 | return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; |
| 101 | case PORT_E: |
| 102 | return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; |
| 103 | default: |
| 104 | break; |
| 105 | } |
| 106 | DRM_ERROR("Unknown port %d\n", port); |
| 107 | return -EINVAL; |
| 108 | } |
| 109 | |
| 110 | static |
| 111 | bool intel_hdcp_is_ksv_valid(u8 *ksv) |
| 112 | { |
| 113 | int i, ones = 0; |
| 114 | /* KSV has 20 1's and 20 0's */ |
| 115 | for (i = 0; i < DRM_HDCP_KSV_LEN; i++) |
| 116 | ones += hweight8(ksv[i]); |
| 117 | if (ones != 20) |
| 118 | return false; |
| 119 | return true; |
| 120 | } |
| 121 | |
| 122 | /* Implements Part 2 of the HDCP authorization procedure */ |
| 123 | static |
| 124 | int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port, |
| 125 | const struct intel_hdcp_shim *shim) |
| 126 | { |
| 127 | struct drm_i915_private *dev_priv; |
| 128 | u32 vprime, sha_text, sha_leftovers, rep_ctl; |
| 129 | u8 bstatus[2], num_downstream, *ksv_fifo; |
| 130 | int ret, i, j, sha_idx; |
| 131 | |
| 132 | dev_priv = intel_dig_port->base.base.dev->dev_private; |
| 133 | |
| 134 | ret = shim->read_bstatus(intel_dig_port, bstatus); |
| 135 | if (ret) |
| 136 | return ret; |
| 137 | |
| 138 | /* If there are no downstream devices, we're all done. */ |
| 139 | num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); |
| 140 | if (num_downstream == 0) { |
| 141 | DRM_INFO("HDCP is enabled (no downstream devices)\n"); |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim); |
| 146 | if (ret) { |
| 147 | DRM_ERROR("KSV list failed to become ready (%d)\n", ret); |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | ksv_fifo = kzalloc(num_downstream * DRM_HDCP_KSV_LEN, GFP_KERNEL); |
| 152 | if (!ksv_fifo) |
| 153 | return -ENOMEM; |
| 154 | |
| 155 | ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo); |
| 156 | if (ret) |
| 157 | return ret; |
| 158 | |
| 159 | /* Process V' values from the receiver */ |
| 160 | for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { |
| 161 | ret = shim->read_v_prime_part(intel_dig_port, i, &vprime); |
| 162 | if (ret) |
| 163 | return ret; |
| 164 | I915_WRITE(HDCP_SHA_V_PRIME(i), vprime); |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * We need to write the concatenation of all device KSVs, BINFO (DP) || |
| 169 | * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte |
| 170 | * stream is written via the HDCP_SHA_TEXT register in 32-bit |
| 171 | * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This |
| 172 | * index will keep track of our progress through the 64 bytes as well as |
| 173 | * helping us work the 40-bit KSVs through our 32-bit register. |
| 174 | * |
| 175 | * NOTE: data passed via HDCP_SHA_TEXT should be big-endian |
| 176 | */ |
| 177 | sha_idx = 0; |
| 178 | sha_text = 0; |
| 179 | sha_leftovers = 0; |
| 180 | rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port); |
| 181 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| 182 | for (i = 0; i < num_downstream; i++) { |
| 183 | unsigned int sha_empty; |
| 184 | u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; |
| 185 | |
| 186 | /* Fill up the empty slots in sha_text and write it out */ |
| 187 | sha_empty = sizeof(sha_text) - sha_leftovers; |
| 188 | for (j = 0; j < sha_empty; j++) |
| 189 | sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8); |
| 190 | |
| 191 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 192 | if (ret < 0) |
| 193 | return ret; |
| 194 | |
| 195 | /* Programming guide writes this every 64 bytes */ |
| 196 | sha_idx += sizeof(sha_text); |
| 197 | if (!(sha_idx % 64)) |
| 198 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| 199 | |
| 200 | /* Store the leftover bytes from the ksv in sha_text */ |
| 201 | sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; |
| 202 | sha_text = 0; |
| 203 | for (j = 0; j < sha_leftovers; j++) |
| 204 | sha_text |= ksv[sha_empty + j] << |
| 205 | ((sizeof(sha_text) - j - 1) * 8); |
| 206 | |
| 207 | /* |
| 208 | * If we still have room in sha_text for more data, continue. |
| 209 | * Otherwise, write it out immediately. |
| 210 | */ |
| 211 | if (sizeof(sha_text) > sha_leftovers) |
| 212 | continue; |
| 213 | |
| 214 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 215 | if (ret < 0) |
| 216 | return ret; |
| 217 | sha_leftovers = 0; |
| 218 | sha_text = 0; |
| 219 | sha_idx += sizeof(sha_text); |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * We need to write BINFO/BSTATUS, and M0 now. Depending on how many |
| 224 | * bytes are leftover from the last ksv, we might be able to fit them |
| 225 | * all in sha_text (first 2 cases), or we might need to split them up |
| 226 | * into 2 writes (last 2 cases). |
| 227 | */ |
| 228 | if (sha_leftovers == 0) { |
| 229 | /* Write 16 bits of text, 16 bits of M0 */ |
| 230 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); |
| 231 | ret = intel_write_sha_text(dev_priv, |
| 232 | bstatus[0] << 8 | bstatus[1]); |
| 233 | if (ret < 0) |
| 234 | return ret; |
| 235 | sha_idx += sizeof(sha_text); |
| 236 | |
| 237 | /* Write 32 bits of M0 */ |
| 238 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| 239 | ret = intel_write_sha_text(dev_priv, 0); |
| 240 | if (ret < 0) |
| 241 | return ret; |
| 242 | sha_idx += sizeof(sha_text); |
| 243 | |
| 244 | /* Write 16 bits of M0 */ |
| 245 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); |
| 246 | ret = intel_write_sha_text(dev_priv, 0); |
| 247 | if (ret < 0) |
| 248 | return ret; |
| 249 | sha_idx += sizeof(sha_text); |
| 250 | |
| 251 | } else if (sha_leftovers == 1) { |
| 252 | /* Write 24 bits of text, 8 bits of M0 */ |
| 253 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); |
| 254 | sha_text |= bstatus[0] << 16 | bstatus[1] << 8; |
| 255 | /* Only 24-bits of data, must be in the LSB */ |
| 256 | sha_text = (sha_text & 0xffffff00) >> 8; |
| 257 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 258 | if (ret < 0) |
| 259 | return ret; |
| 260 | sha_idx += sizeof(sha_text); |
| 261 | |
| 262 | /* Write 32 bits of M0 */ |
| 263 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| 264 | ret = intel_write_sha_text(dev_priv, 0); |
| 265 | if (ret < 0) |
| 266 | return ret; |
| 267 | sha_idx += sizeof(sha_text); |
| 268 | |
| 269 | /* Write 24 bits of M0 */ |
| 270 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); |
| 271 | ret = intel_write_sha_text(dev_priv, 0); |
| 272 | if (ret < 0) |
| 273 | return ret; |
| 274 | sha_idx += sizeof(sha_text); |
| 275 | |
| 276 | } else if (sha_leftovers == 2) { |
| 277 | /* Write 32 bits of text */ |
| 278 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| 279 | sha_text |= bstatus[0] << 24 | bstatus[1] << 16; |
| 280 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 281 | if (ret < 0) |
| 282 | return ret; |
| 283 | sha_idx += sizeof(sha_text); |
| 284 | |
| 285 | /* Write 64 bits of M0 */ |
| 286 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| 287 | for (i = 0; i < 2; i++) { |
| 288 | ret = intel_write_sha_text(dev_priv, 0); |
| 289 | if (ret < 0) |
| 290 | return ret; |
| 291 | sha_idx += sizeof(sha_text); |
| 292 | } |
| 293 | } else if (sha_leftovers == 3) { |
| 294 | /* Write 32 bits of text */ |
| 295 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| 296 | sha_text |= bstatus[0] << 24; |
| 297 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 298 | if (ret < 0) |
| 299 | return ret; |
| 300 | sha_idx += sizeof(sha_text); |
| 301 | |
| 302 | /* Write 8 bits of text, 24 bits of M0 */ |
| 303 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); |
| 304 | ret = intel_write_sha_text(dev_priv, bstatus[1]); |
| 305 | if (ret < 0) |
| 306 | return ret; |
| 307 | sha_idx += sizeof(sha_text); |
| 308 | |
| 309 | /* Write 32 bits of M0 */ |
| 310 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); |
| 311 | ret = intel_write_sha_text(dev_priv, 0); |
| 312 | if (ret < 0) |
| 313 | return ret; |
| 314 | sha_idx += sizeof(sha_text); |
| 315 | |
| 316 | /* Write 8 bits of M0 */ |
| 317 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); |
| 318 | ret = intel_write_sha_text(dev_priv, 0); |
| 319 | if (ret < 0) |
| 320 | return ret; |
| 321 | sha_idx += sizeof(sha_text); |
| 322 | } else { |
| 323 | DRM_ERROR("Invalid number of leftovers %d\n", sha_leftovers); |
| 324 | return -EINVAL; |
| 325 | } |
| 326 | |
| 327 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); |
| 328 | /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ |
| 329 | while ((sha_idx % 64) < (64 - sizeof(sha_text))) { |
| 330 | ret = intel_write_sha_text(dev_priv, 0); |
| 331 | if (ret < 0) |
| 332 | return ret; |
| 333 | sha_idx += sizeof(sha_text); |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Last write gets the length of the concatenation in bits. That is: |
| 338 | * - 5 bytes per device |
| 339 | * - 10 bytes for BINFO/BSTATUS(2), M0(8) |
| 340 | */ |
| 341 | sha_text = (num_downstream * 5 + 10) * 8; |
| 342 | ret = intel_write_sha_text(dev_priv, sha_text); |
| 343 | if (ret < 0) |
| 344 | return ret; |
| 345 | |
| 346 | /* Tell the HW we're done with the hash and wait for it to ACK */ |
| 347 | I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH); |
| 348 | if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, |
| 349 | HDCP_SHA1_COMPLETE, |
| 350 | HDCP_SHA1_COMPLETE, 1)) { |
| 351 | DRM_ERROR("Timed out waiting for SHA1 complete\n"); |
| 352 | return -ETIMEDOUT; |
| 353 | } |
| 354 | if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { |
| 355 | DRM_ERROR("SHA-1 mismatch, HDCP failed\n"); |
| 356 | return -ENXIO; |
| 357 | } |
| 358 | |
| 359 | DRM_INFO("HDCP is enabled (%d downstream devices)\n", num_downstream); |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | /* Implements Part 1 of the HDCP authorization procedure */ |
| 364 | static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port, |
| 365 | const struct intel_hdcp_shim *shim) |
| 366 | { |
| 367 | struct drm_i915_private *dev_priv; |
| 368 | enum port port; |
| 369 | unsigned long r0_prime_gen_start; |
| 370 | int ret, i; |
| 371 | union { |
| 372 | u32 reg[2]; |
| 373 | u8 shim[DRM_HDCP_AN_LEN]; |
| 374 | } an; |
| 375 | union { |
| 376 | u32 reg[2]; |
| 377 | u8 shim[DRM_HDCP_KSV_LEN]; |
| 378 | } bksv; |
| 379 | union { |
| 380 | u32 reg; |
| 381 | u8 shim[DRM_HDCP_RI_LEN]; |
| 382 | } ri; |
| 383 | bool repeater_present; |
| 384 | |
| 385 | dev_priv = intel_dig_port->base.base.dev->dev_private; |
| 386 | |
| 387 | port = intel_dig_port->base.port; |
| 388 | |
| 389 | /* Initialize An with 2 random values and acquire it */ |
| 390 | for (i = 0; i < 2; i++) |
| 391 | I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32()); |
| 392 | I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN); |
| 393 | |
| 394 | /* Wait for An to be acquired */ |
| 395 | if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), |
| 396 | HDCP_STATUS_AN_READY, |
| 397 | HDCP_STATUS_AN_READY, 1)) { |
| 398 | DRM_ERROR("Timed out waiting for An\n"); |
| 399 | return -ETIMEDOUT; |
| 400 | } |
| 401 | |
| 402 | an.reg[0] = I915_READ(PORT_HDCP_ANLO(port)); |
| 403 | an.reg[1] = I915_READ(PORT_HDCP_ANHI(port)); |
| 404 | ret = shim->write_an_aksv(intel_dig_port, an.shim); |
| 405 | if (ret) |
| 406 | return ret; |
| 407 | |
| 408 | r0_prime_gen_start = jiffies; |
| 409 | |
| 410 | memset(&bksv, 0, sizeof(bksv)); |
| 411 | ret = shim->read_bksv(intel_dig_port, bksv.shim); |
| 412 | if (ret) |
| 413 | return ret; |
| 414 | else if (!intel_hdcp_is_ksv_valid(bksv.shim)) |
| 415 | return -ENODEV; |
| 416 | |
| 417 | I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]); |
| 418 | I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]); |
| 419 | |
| 420 | ret = shim->repeater_present(intel_dig_port, &repeater_present); |
| 421 | if (ret) |
| 422 | return ret; |
| 423 | if (repeater_present) |
| 424 | I915_WRITE(HDCP_REP_CTL, |
| 425 | intel_hdcp_get_repeater_ctl(intel_dig_port)); |
| 426 | |
| 427 | ret = shim->toggle_signalling(intel_dig_port, true); |
| 428 | if (ret) |
| 429 | return ret; |
| 430 | |
| 431 | I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC); |
| 432 | |
| 433 | /* Wait for R0 ready */ |
| 434 | if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) & |
| 435 | (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { |
| 436 | DRM_ERROR("Timed out waiting for R0 ready\n"); |
| 437 | return -ETIMEDOUT; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * Wait for R0' to become available. The spec says 100ms from Aksv, but |
| 442 | * some monitors can take longer than this. We'll set the timeout at |
| 443 | * 300ms just to be sure. |
| 444 | * |
| 445 | * On DP, there's an R0_READY bit available but no such bit |
| 446 | * exists on HDMI. Since the upper-bound is the same, we'll just do |
| 447 | * the stupid thing instead of polling on one and not the other. |
| 448 | */ |
| 449 | wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); |
| 450 | |
| 451 | ri.reg = 0; |
| 452 | ret = shim->read_ri_prime(intel_dig_port, ri.shim); |
| 453 | if (ret) |
| 454 | return ret; |
| 455 | I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg); |
| 456 | |
| 457 | /* Wait for Ri prime match */ |
| 458 | if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) & |
| 459 | (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { |
| 460 | DRM_ERROR("Timed out waiting for Ri prime match (%x)\n", |
| 461 | I915_READ(PORT_HDCP_STATUS(port))); |
| 462 | return -ETIMEDOUT; |
| 463 | } |
| 464 | |
| 465 | /* Wait for encryption confirmation */ |
| 466 | if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), |
| 467 | HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) { |
| 468 | DRM_ERROR("Timed out waiting for encryption\n"); |
| 469 | return -ETIMEDOUT; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * XXX: If we have MST-connected devices, we need to enable encryption |
| 474 | * on those as well. |
| 475 | */ |
| 476 | |
| 477 | return intel_hdcp_auth_downstream(intel_dig_port, shim); |
| 478 | } |
| 479 | |
| 480 | static |
| 481 | struct intel_digital_port *conn_to_dig_port(struct intel_connector *connector) |
| 482 | { |
| 483 | return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base); |
| 484 | } |
| 485 | |
| 486 | static int _intel_hdcp_disable(struct intel_connector *connector) |
| 487 | { |
| 488 | struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| 489 | struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); |
| 490 | enum port port = intel_dig_port->base.port; |
| 491 | int ret; |
| 492 | |
| 493 | I915_WRITE(PORT_HDCP_CONF(port), 0); |
| 494 | if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0, |
| 495 | 20)) { |
| 496 | DRM_ERROR("Failed to disable HDCP, timeout clearing status\n"); |
| 497 | return -ETIMEDOUT; |
| 498 | } |
| 499 | |
| 500 | intel_hdcp_clear_keys(dev_priv); |
| 501 | |
| 502 | ret = connector->hdcp_shim->toggle_signalling(intel_dig_port, false); |
| 503 | if (ret) { |
| 504 | DRM_ERROR("Failed to disable HDCP signalling\n"); |
| 505 | return ret; |
| 506 | } |
| 507 | |
| 508 | DRM_INFO("HDCP is disabled\n"); |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | static int _intel_hdcp_enable(struct intel_connector *connector) |
| 513 | { |
| 514 | struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| 515 | int i, ret; |
| 516 | |
| 517 | if (!(I915_READ(SKL_FUSE_STATUS) & SKL_FUSE_PG_DIST_STATUS(1))) { |
| 518 | DRM_ERROR("PG1 is disabled, cannot load keys\n"); |
| 519 | return -ENXIO; |
| 520 | } |
| 521 | |
| 522 | for (i = 0; i < KEY_LOAD_TRIES; i++) { |
| 523 | ret = intel_hdcp_load_keys(dev_priv); |
| 524 | if (!ret) |
| 525 | break; |
| 526 | intel_hdcp_clear_keys(dev_priv); |
| 527 | } |
| 528 | if (ret) { |
| 529 | DRM_ERROR("Could not load HDCP keys, (%d)\n", ret); |
| 530 | return ret; |
| 531 | } |
| 532 | |
| 533 | ret = intel_hdcp_auth(conn_to_dig_port(connector), |
| 534 | connector->hdcp_shim); |
| 535 | if (ret) { |
| 536 | DRM_ERROR("Failed to authenticate HDCP (%d)\n", ret); |
| 537 | return ret; |
| 538 | } |
| 539 | |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | static void intel_hdcp_check_work(struct work_struct *work) |
| 544 | { |
| 545 | struct intel_connector *connector = container_of(to_delayed_work(work), |
| 546 | struct intel_connector, |
| 547 | hdcp_check_work); |
| 548 | if (!intel_hdcp_check_link(connector)) |
| 549 | schedule_delayed_work(&connector->hdcp_check_work, |
| 550 | DRM_HDCP_CHECK_PERIOD_MS); |
| 551 | } |
| 552 | |
| 553 | static void intel_hdcp_prop_work(struct work_struct *work) |
| 554 | { |
| 555 | struct intel_connector *connector = container_of(work, |
| 556 | struct intel_connector, |
| 557 | hdcp_prop_work); |
| 558 | struct drm_device *dev = connector->base.dev; |
| 559 | struct drm_connector_state *state; |
| 560 | |
| 561 | drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| 562 | mutex_lock(&connector->hdcp_mutex); |
| 563 | |
| 564 | /* |
| 565 | * This worker is only used to flip between ENABLED/DESIRED. Either of |
| 566 | * those to UNDESIRED is handled by core. If hdcp_value == UNDESIRED, |
| 567 | * we're running just after hdcp has been disabled, so just exit |
| 568 | */ |
| 569 | if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { |
| 570 | state = connector->base.state; |
| 571 | state->content_protection = connector->hdcp_value; |
| 572 | } |
| 573 | |
| 574 | mutex_unlock(&connector->hdcp_mutex); |
| 575 | drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| 576 | } |
| 577 | |
| 578 | int intel_hdcp_init(struct intel_connector *connector, |
| 579 | const struct intel_hdcp_shim *hdcp_shim) |
| 580 | { |
| 581 | int ret; |
| 582 | |
| 583 | ret = drm_connector_attach_content_protection_property( |
| 584 | &connector->base); |
| 585 | if (ret) |
| 586 | return ret; |
| 587 | |
| 588 | connector->hdcp_shim = hdcp_shim; |
| 589 | mutex_init(&connector->hdcp_mutex); |
| 590 | INIT_DELAYED_WORK(&connector->hdcp_check_work, intel_hdcp_check_work); |
| 591 | INIT_WORK(&connector->hdcp_prop_work, intel_hdcp_prop_work); |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | int intel_hdcp_enable(struct intel_connector *connector) |
| 596 | { |
| 597 | int ret; |
| 598 | |
| 599 | if (!connector->hdcp_shim) |
| 600 | return -ENOENT; |
| 601 | |
| 602 | mutex_lock(&connector->hdcp_mutex); |
| 603 | |
| 604 | ret = _intel_hdcp_enable(connector); |
| 605 | if (ret) |
| 606 | goto out; |
| 607 | |
| 608 | connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_ENABLED; |
| 609 | schedule_work(&connector->hdcp_prop_work); |
| 610 | schedule_delayed_work(&connector->hdcp_check_work, |
| 611 | DRM_HDCP_CHECK_PERIOD_MS); |
| 612 | out: |
| 613 | mutex_unlock(&connector->hdcp_mutex); |
| 614 | return ret; |
| 615 | } |
| 616 | |
| 617 | int intel_hdcp_disable(struct intel_connector *connector) |
| 618 | { |
| 619 | int ret; |
| 620 | |
| 621 | if (!connector->hdcp_shim) |
| 622 | return -ENOENT; |
| 623 | |
| 624 | mutex_lock(&connector->hdcp_mutex); |
| 625 | |
| 626 | connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED; |
| 627 | ret = _intel_hdcp_disable(connector); |
| 628 | |
| 629 | mutex_unlock(&connector->hdcp_mutex); |
| 630 | cancel_delayed_work_sync(&connector->hdcp_check_work); |
| 631 | return ret; |
| 632 | } |
| 633 | |
| 634 | void intel_hdcp_atomic_check(struct drm_connector *connector, |
| 635 | struct drm_connector_state *old_state, |
| 636 | struct drm_connector_state *new_state) |
| 637 | { |
| 638 | uint64_t old_cp = old_state->content_protection; |
| 639 | uint64_t new_cp = new_state->content_protection; |
| 640 | struct drm_crtc_state *crtc_state; |
| 641 | |
| 642 | if (!new_state->crtc) { |
| 643 | /* |
| 644 | * If the connector is being disabled with CP enabled, mark it |
| 645 | * desired so it's re-enabled when the connector is brought back |
| 646 | */ |
| 647 | if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) |
| 648 | new_state->content_protection = |
| 649 | DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| 650 | return; |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | * Nothing to do if the state didn't change, or HDCP was activated since |
| 655 | * the last commit |
| 656 | */ |
| 657 | if (old_cp == new_cp || |
| 658 | (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && |
| 659 | new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) |
| 660 | return; |
| 661 | |
| 662 | crtc_state = drm_atomic_get_new_crtc_state(new_state->state, |
| 663 | new_state->crtc); |
| 664 | crtc_state->mode_changed = true; |
| 665 | } |
| 666 | |
| 667 | /* Implements Part 3 of the HDCP authorization procedure */ |
| 668 | int intel_hdcp_check_link(struct intel_connector *connector) |
| 669 | { |
| 670 | struct drm_i915_private *dev_priv = connector->base.dev->dev_private; |
| 671 | struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); |
| 672 | enum port port = intel_dig_port->base.port; |
| 673 | int ret = 0; |
| 674 | |
| 675 | if (!connector->hdcp_shim) |
| 676 | return -ENOENT; |
| 677 | |
| 678 | mutex_lock(&connector->hdcp_mutex); |
| 679 | |
| 680 | if (connector->hdcp_value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) |
| 681 | goto out; |
| 682 | |
| 683 | if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) { |
| 684 | DRM_ERROR("HDCP check failed: link is not encrypted, %x\n", |
| 685 | I915_READ(PORT_HDCP_STATUS(port))); |
| 686 | ret = -ENXIO; |
| 687 | connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| 688 | schedule_work(&connector->hdcp_prop_work); |
| 689 | goto out; |
| 690 | } |
| 691 | |
| 692 | if (connector->hdcp_shim->check_link(intel_dig_port)) { |
| 693 | if (connector->hdcp_value != |
| 694 | DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { |
| 695 | connector->hdcp_value = |
| 696 | DRM_MODE_CONTENT_PROTECTION_ENABLED; |
| 697 | schedule_work(&connector->hdcp_prop_work); |
| 698 | } |
| 699 | goto out; |
| 700 | } |
| 701 | |
| 702 | DRM_INFO("HDCP link failed, retrying authentication\n"); |
| 703 | |
| 704 | ret = _intel_hdcp_disable(connector); |
| 705 | if (ret) { |
| 706 | DRM_ERROR("Failed to disable hdcp (%d)\n", ret); |
| 707 | connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| 708 | schedule_work(&connector->hdcp_prop_work); |
| 709 | goto out; |
| 710 | } |
| 711 | |
| 712 | ret = _intel_hdcp_enable(connector); |
| 713 | if (ret) { |
| 714 | DRM_ERROR("Failed to enable hdcp (%d)\n", ret); |
| 715 | connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED; |
| 716 | schedule_work(&connector->hdcp_prop_work); |
| 717 | goto out; |
| 718 | } |
| 719 | |
| 720 | out: |
| 721 | mutex_unlock(&connector->hdcp_mutex); |
| 722 | return ret; |
| 723 | } |