Saurabh Tangri | eeb9db0 | 2014-06-02 05:18:35 -0700 | [diff] [blame^] | 1 | #include <linux/init.h> |
| 2 | #include <linux/kernel.h> |
| 3 | #include <linux/string.h> |
| 4 | #include <linux/time.h> |
| 5 | #include <linux/types.h> |
| 6 | #include <linux/efi.h> |
| 7 | #include <linux/slab.h> |
| 8 | #include <linux/memblock.h> |
| 9 | #include <linux/bootmem.h> |
| 10 | #include <asm/efi.h> |
| 11 | #include <asm/uv/uv.h> |
| 12 | |
| 13 | #define EFI_MIN_RESERVE 5120 |
| 14 | |
| 15 | #define EFI_DUMMY_GUID \ |
| 16 | EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) |
| 17 | |
| 18 | static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; |
| 19 | |
| 20 | static bool efi_no_storage_paranoia; |
| 21 | |
| 22 | /* |
| 23 | * Some firmware implementations refuse to boot if there's insufficient |
| 24 | * space in the variable store. The implementation of garbage collection |
| 25 | * in some FW versions causes stale (deleted) variables to take up space |
| 26 | * longer than intended and space is only freed once the store becomes |
| 27 | * almost completely full. |
| 28 | * |
| 29 | * Enabling this option disables the space checks in |
| 30 | * efi_query_variable_store() and forces garbage collection. |
| 31 | * |
| 32 | * Only enable this option if deleting EFI variables does not free up |
| 33 | * space in your variable store, e.g. if despite deleting variables |
| 34 | * you're unable to create new ones. |
| 35 | */ |
| 36 | static int __init setup_storage_paranoia(char *arg) |
| 37 | { |
| 38 | efi_no_storage_paranoia = true; |
| 39 | return 0; |
| 40 | } |
| 41 | early_param("efi_no_storage_paranoia", setup_storage_paranoia); |
| 42 | |
| 43 | /* |
| 44 | * Deleting the dummy variable which kicks off garbage collection |
| 45 | */ |
| 46 | void efi_delete_dummy_variable(void) |
| 47 | { |
| 48 | efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, |
| 49 | EFI_VARIABLE_NON_VOLATILE | |
| 50 | EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| 51 | EFI_VARIABLE_RUNTIME_ACCESS, |
| 52 | 0, NULL); |
| 53 | } |
| 54 | |
| 55 | /* |
| 56 | * Some firmware implementations refuse to boot if there's insufficient space |
| 57 | * in the variable store. Ensure that we never use more than a safe limit. |
| 58 | * |
| 59 | * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable |
| 60 | * store. |
| 61 | */ |
| 62 | efi_status_t efi_query_variable_store(u32 attributes, unsigned long size) |
| 63 | { |
| 64 | efi_status_t status; |
| 65 | u64 storage_size, remaining_size, max_size; |
| 66 | |
| 67 | if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) |
| 68 | return 0; |
| 69 | |
| 70 | status = efi.query_variable_info(attributes, &storage_size, |
| 71 | &remaining_size, &max_size); |
| 72 | if (status != EFI_SUCCESS) |
| 73 | return status; |
| 74 | |
| 75 | /* |
| 76 | * We account for that by refusing the write if permitting it would |
| 77 | * reduce the available space to under 5KB. This figure was provided by |
| 78 | * Samsung, so should be safe. |
| 79 | */ |
| 80 | if ((remaining_size - size < EFI_MIN_RESERVE) && |
| 81 | !efi_no_storage_paranoia) { |
| 82 | |
| 83 | /* |
| 84 | * Triggering garbage collection may require that the firmware |
| 85 | * generate a real EFI_OUT_OF_RESOURCES error. We can force |
| 86 | * that by attempting to use more space than is available. |
| 87 | */ |
| 88 | unsigned long dummy_size = remaining_size + 1024; |
| 89 | void *dummy = kzalloc(dummy_size, GFP_ATOMIC); |
| 90 | |
| 91 | if (!dummy) |
| 92 | return EFI_OUT_OF_RESOURCES; |
| 93 | |
| 94 | status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, |
| 95 | EFI_VARIABLE_NON_VOLATILE | |
| 96 | EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| 97 | EFI_VARIABLE_RUNTIME_ACCESS, |
| 98 | dummy_size, dummy); |
| 99 | |
| 100 | if (status == EFI_SUCCESS) { |
| 101 | /* |
| 102 | * This should have failed, so if it didn't make sure |
| 103 | * that we delete it... |
| 104 | */ |
| 105 | efi_delete_dummy_variable(); |
| 106 | } |
| 107 | |
| 108 | kfree(dummy); |
| 109 | |
| 110 | /* |
| 111 | * The runtime code may now have triggered a garbage collection |
| 112 | * run, so check the variable info again |
| 113 | */ |
| 114 | status = efi.query_variable_info(attributes, &storage_size, |
| 115 | &remaining_size, &max_size); |
| 116 | |
| 117 | if (status != EFI_SUCCESS) |
| 118 | return status; |
| 119 | |
| 120 | /* |
| 121 | * There still isn't enough room, so return an error |
| 122 | */ |
| 123 | if (remaining_size - size < EFI_MIN_RESERVE) |
| 124 | return EFI_OUT_OF_RESOURCES; |
| 125 | } |
| 126 | |
| 127 | return EFI_SUCCESS; |
| 128 | } |
| 129 | EXPORT_SYMBOL_GPL(efi_query_variable_store); |
| 130 | |
| 131 | /* |
| 132 | * The UEFI specification makes it clear that the operating system is free to do |
| 133 | * whatever it wants with boot services code after ExitBootServices() has been |
| 134 | * called. Ignoring this recommendation a significant bunch of EFI implementations |
| 135 | * continue calling into boot services code (SetVirtualAddressMap). In order to |
| 136 | * work around such buggy implementations we reserve boot services region during |
| 137 | * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it |
| 138 | * is discarded. |
| 139 | */ |
| 140 | void __init efi_reserve_boot_services(void) |
| 141 | { |
| 142 | void *p; |
| 143 | |
| 144 | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| 145 | efi_memory_desc_t *md = p; |
| 146 | u64 start = md->phys_addr; |
| 147 | u64 size = md->num_pages << EFI_PAGE_SHIFT; |
| 148 | |
| 149 | if (md->type != EFI_BOOT_SERVICES_CODE && |
| 150 | md->type != EFI_BOOT_SERVICES_DATA) |
| 151 | continue; |
| 152 | /* Only reserve where possible: |
| 153 | * - Not within any already allocated areas |
| 154 | * - Not over any memory area (really needed, if above?) |
| 155 | * - Not within any part of the kernel |
| 156 | * - Not the bios reserved area |
| 157 | */ |
| 158 | if ((start + size > __pa_symbol(_text) |
| 159 | && start <= __pa_symbol(_end)) || |
| 160 | !e820_all_mapped(start, start+size, E820_RAM) || |
| 161 | memblock_is_region_reserved(start, size)) { |
| 162 | /* Could not reserve, skip it */ |
| 163 | md->num_pages = 0; |
| 164 | memblock_dbg("Could not reserve boot range [0x%010llx-0x%010llx]\n", |
| 165 | start, start+size-1); |
| 166 | } else |
| 167 | memblock_reserve(start, size); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | void __init efi_free_boot_services(void) |
| 172 | { |
| 173 | void *p; |
| 174 | |
| 175 | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| 176 | efi_memory_desc_t *md = p; |
| 177 | unsigned long long start = md->phys_addr; |
| 178 | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; |
| 179 | |
| 180 | if (md->type != EFI_BOOT_SERVICES_CODE && |
| 181 | md->type != EFI_BOOT_SERVICES_DATA) |
| 182 | continue; |
| 183 | |
| 184 | /* Could not reserve boot area */ |
| 185 | if (!size) |
| 186 | continue; |
| 187 | |
| 188 | free_bootmem_late(start, size); |
| 189 | } |
| 190 | |
| 191 | efi_unmap_memmap(); |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * A number of config table entries get remapped to virtual addresses |
| 196 | * after entering EFI virtual mode. However, the kexec kernel requires |
| 197 | * their physical addresses therefore we pass them via setup_data and |
| 198 | * correct those entries to their respective physical addresses here. |
| 199 | * |
| 200 | * Currently only handles smbios which is necessary for some firmware |
| 201 | * implementation. |
| 202 | */ |
| 203 | int __init efi_reuse_config(u64 tables, int nr_tables) |
| 204 | { |
| 205 | int i, sz, ret = 0; |
| 206 | void *p, *tablep; |
| 207 | struct efi_setup_data *data; |
| 208 | |
| 209 | if (!efi_setup) |
| 210 | return 0; |
| 211 | |
| 212 | if (!efi_enabled(EFI_64BIT)) |
| 213 | return 0; |
| 214 | |
| 215 | data = early_memremap(efi_setup, sizeof(*data)); |
| 216 | if (!data) { |
| 217 | ret = -ENOMEM; |
| 218 | goto out; |
| 219 | } |
| 220 | |
| 221 | if (!data->smbios) |
| 222 | goto out_memremap; |
| 223 | |
| 224 | sz = sizeof(efi_config_table_64_t); |
| 225 | |
| 226 | p = tablep = early_memremap(tables, nr_tables * sz); |
| 227 | if (!p) { |
| 228 | pr_err("Could not map Configuration table!\n"); |
| 229 | ret = -ENOMEM; |
| 230 | goto out_memremap; |
| 231 | } |
| 232 | |
| 233 | for (i = 0; i < efi.systab->nr_tables; i++) { |
| 234 | efi_guid_t guid; |
| 235 | |
| 236 | guid = ((efi_config_table_64_t *)p)->guid; |
| 237 | |
| 238 | if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) |
| 239 | ((efi_config_table_64_t *)p)->table = data->smbios; |
| 240 | p += sz; |
| 241 | } |
| 242 | early_iounmap(tablep, nr_tables * sz); |
| 243 | |
| 244 | out_memremap: |
| 245 | early_iounmap(data, sizeof(*data)); |
| 246 | out: |
| 247 | return ret; |
| 248 | } |
| 249 | |
| 250 | void __init efi_apply_memmap_quirks(void) |
| 251 | { |
| 252 | /* |
| 253 | * Once setup is done earlier, unmap the EFI memory map on mismatched |
| 254 | * firmware/kernel architectures since there is no support for runtime |
| 255 | * services. |
| 256 | */ |
| 257 | if (!efi_runtime_supported()) { |
| 258 | pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n"); |
| 259 | efi_unmap_memmap(); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * UV doesn't support the new EFI pagetable mapping yet. |
| 264 | */ |
| 265 | if (is_uv_system()) |
| 266 | set_bit(EFI_OLD_MEMMAP, &efi.flags); |
| 267 | } |