blob: dbae55e926e7f3ca94f40c5e576c68f790d156f9 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070027 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
Emil Tantilov675ad472010-04-27 14:02:58 +000033#include "e1000.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034
Joe Perches406874a2008-04-03 10:06:32 -070035static s32 e1000_check_downshift(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070036static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
Nicholas Nunley35574762006-09-27 12:53:34 -070038static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39static void e1000_clear_vfta(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070040static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
Joe Perches64798842008-07-11 15:17:02 -070041 bool link_up);
Joe Perches406874a2008-04-03 10:06:32 -070042static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070044static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070045static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
Joe Perches406874a2008-04-03 10:06:32 -070047static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070048static s32 e1000_id_led_init(struct e1000_hw *hw);
Nicholas Nunley35574762006-09-27 12:53:34 -070049static void e1000_init_rx_addrs(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070050static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
Joe Perches64798842008-07-11 15:17:02 -070052static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
Joe Perches406874a2008-04-03 10:06:32 -070054static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
Joe Perches406874a2008-04-03 10:06:32 -070055static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57static s32 e1000_set_phy_type(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070058static void e1000_phy_init_script(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070059static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070066static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070067static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070070 u16 words, u16 *data);
Joe Perches64798842008-07-11 15:17:02 -070071static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
Joe Perches406874a2008-04-03 10:06:32 -070073static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
Joe Perches64798842008-07-11 15:17:02 -070076static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070077static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070078 u16 phy_data);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070079static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070080 u16 *phy_data);
Joe Perches406874a2008-04-03 10:06:32 -070081static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070083static void e1000_release_eeprom(struct e1000_hw *hw);
84static void e1000_standby_eeprom(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070085static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070088static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
Linus Torvalds1da177e2005-04-16 15:20:36 -070092
93/* IGP cable length table */
94static const
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070095u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
Joern Engele09b8902015-07-23 14:54:34 -0700109static DEFINE_MUTEX(e1000_eeprom_lock);
Maxime Bizonac565582012-10-20 14:53:40 +0000110static DEFINE_SPINLOCK(e1000_phy_lock);
Christopher Li78566fe2008-09-05 14:04:05 -0700111
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700112/**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
Joe Perches64798842008-07-11 15:17:02 -0700116static s32 e1000_set_phy_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700118 if (hw->mac_type == e1000_undefined)
119 return -E1000_ERR_PHY_TYPE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700121 switch (hw->phy_id) {
122 case M88E1000_E_PHY_ID:
123 case M88E1000_I_PHY_ID:
124 case M88E1011_I_PHY_ID:
125 case M88E1111_I_PHY_ID:
Florian Fainellicf8e09b2011-01-24 14:48:03 +0000126 case M88E1118_E_PHY_ID:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700127 hw->phy_type = e1000_phy_m88;
128 break;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
Dirk Brandewie5377a412011-01-06 14:29:54 +0000133 hw->mac_type == e1000_82547_rev_2)
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700134 hw->phy_type = e1000_phy_igp;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000135 break;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
138 break;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
141 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700142 default:
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
146 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700148 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149}
150
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700151/**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
Joe Perches64798842008-07-11 15:17:02 -0700155static void e1000_phy_init_script(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700157 u32 ret_val;
158 u16 phy_saved_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700160 if (hw->phy_init_script) {
161 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000163 /* Save off the current value of register 0x2F5B to be restored
164 * at the end of this routine.
165 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700168 /* Disabled the PHY transmitter */
169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700172 e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700175 switch (hw->mac_type) {
176 case e1000_82541:
177 case e1000_82547:
178 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700188
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700189 case e1000_82541_rev_2:
190 case e1000_82547_rev_2:
191 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 break;
193 default:
194 break;
195 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700197 e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700200 /* Now enable the transmitter */
201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700203 if (hw->mac_type == e1000_82547) {
204 u16 fused, fine, coarse;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700206 /* Move to analog registers page */
207 e1000_read_phy_reg(hw,
208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 e1000_read_phy_reg(hw,
213 IGP01E1000_ANALOG_FUSE_STATUS,
214 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 coarse =
218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700220 if (coarse >
221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 coarse -=
223 IGP01E1000_ANALOG_FUSE_COARSE_10;
224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 } else if (coarse ==
226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700228
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700229 fused =
230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 (coarse &
233 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700235 e1000_write_phy_reg(hw,
236 IGP01E1000_ANALOG_FUSE_CONTROL,
237 fused);
238 e1000_write_phy_reg(hw,
239 IGP01E1000_ANALOG_FUSE_BYPASS,
240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 }
242 }
243 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244}
245
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700246/**
247 * e1000_set_mac_type - Set the mac type member in the hw struct.
248 * @hw: Struct containing variables accessed by shared code
249 */
Joe Perches64798842008-07-11 15:17:02 -0700250s32 e1000_set_mac_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251{
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500252 switch (hw->device_id) {
253 case E1000_DEV_ID_82542:
254 switch (hw->revision_id) {
255 case E1000_82542_2_0_REV_ID:
256 hw->mac_type = e1000_82542_rev2_0;
257 break;
258 case E1000_82542_2_1_REV_ID:
259 hw->mac_type = e1000_82542_rev2_1;
260 break;
261 default:
262 /* Invalid 82542 revision ID */
263 return -E1000_ERR_MAC_TYPE;
264 }
265 break;
266 case E1000_DEV_ID_82543GC_FIBER:
267 case E1000_DEV_ID_82543GC_COPPER:
268 hw->mac_type = e1000_82543;
269 break;
270 case E1000_DEV_ID_82544EI_COPPER:
271 case E1000_DEV_ID_82544EI_FIBER:
272 case E1000_DEV_ID_82544GC_COPPER:
273 case E1000_DEV_ID_82544GC_LOM:
274 hw->mac_type = e1000_82544;
275 break;
276 case E1000_DEV_ID_82540EM:
277 case E1000_DEV_ID_82540EM_LOM:
278 case E1000_DEV_ID_82540EP:
279 case E1000_DEV_ID_82540EP_LOM:
280 case E1000_DEV_ID_82540EP_LP:
281 hw->mac_type = e1000_82540;
282 break;
283 case E1000_DEV_ID_82545EM_COPPER:
284 case E1000_DEV_ID_82545EM_FIBER:
285 hw->mac_type = e1000_82545;
286 break;
287 case E1000_DEV_ID_82545GM_COPPER:
288 case E1000_DEV_ID_82545GM_FIBER:
289 case E1000_DEV_ID_82545GM_SERDES:
290 hw->mac_type = e1000_82545_rev_3;
291 break;
292 case E1000_DEV_ID_82546EB_COPPER:
293 case E1000_DEV_ID_82546EB_FIBER:
294 case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 hw->mac_type = e1000_82546;
296 break;
297 case E1000_DEV_ID_82546GB_COPPER:
298 case E1000_DEV_ID_82546GB_FIBER:
299 case E1000_DEV_ID_82546GB_SERDES:
300 case E1000_DEV_ID_82546GB_PCIE:
301 case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 hw->mac_type = e1000_82546_rev_3;
304 break;
305 case E1000_DEV_ID_82541EI:
306 case E1000_DEV_ID_82541EI_MOBILE:
307 case E1000_DEV_ID_82541ER_LOM:
308 hw->mac_type = e1000_82541;
309 break;
310 case E1000_DEV_ID_82541ER:
311 case E1000_DEV_ID_82541GI:
312 case E1000_DEV_ID_82541GI_LF:
313 case E1000_DEV_ID_82541GI_MOBILE:
314 hw->mac_type = e1000_82541_rev_2;
315 break;
316 case E1000_DEV_ID_82547EI:
317 case E1000_DEV_ID_82547EI_MOBILE:
318 hw->mac_type = e1000_82547;
319 break;
320 case E1000_DEV_ID_82547GI:
321 hw->mac_type = e1000_82547_rev_2;
322 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000323 case E1000_DEV_ID_INTEL_CE4100_GBE:
324 hw->mac_type = e1000_ce4100;
325 break;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500326 default:
327 /* Should never have loaded on this device */
328 return -E1000_ERR_MAC_TYPE;
329 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500331 switch (hw->mac_type) {
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500332 case e1000_82541:
333 case e1000_82547:
334 case e1000_82541_rev_2:
335 case e1000_82547_rev_2:
Joe Perchesc3033b02008-03-21 11:06:25 -0700336 hw->asf_firmware_present = true;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500337 break;
338 default:
339 break;
340 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341
Jeff Garzik167fb282006-12-15 10:41:15 -0500342 /* The 82543 chip does not count tx_carrier_errors properly in
343 * FD mode
344 */
345 if (hw->mac_type == e1000_82543)
Joe Perchesc3033b02008-03-21 11:06:25 -0700346 hw->bad_tx_carr_stats_fd = true;
Jeff Garzik167fb282006-12-15 10:41:15 -0500347
Jeff Garzik15e376b2006-12-15 11:16:33 -0500348 if (hw->mac_type > e1000_82544)
Joe Perchesc3033b02008-03-21 11:06:25 -0700349 hw->has_smbus = true;
Jeff Garzik15e376b2006-12-15 11:16:33 -0500350
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500351 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352}
353
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700354/**
355 * e1000_set_media_type - Set media type and TBI compatibility.
356 * @hw: Struct containing variables accessed by shared code
357 */
Joe Perches64798842008-07-11 15:17:02 -0700358void e1000_set_media_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700360 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700362 if (hw->mac_type != e1000_82543) {
363 /* tbi_compatibility is only valid on 82543 */
364 hw->tbi_compatibility_en = false;
365 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700367 switch (hw->device_id) {
368 case E1000_DEV_ID_82545GM_SERDES:
369 case E1000_DEV_ID_82546GB_SERDES:
370 hw->media_type = e1000_media_type_internal_serdes;
371 break;
372 default:
373 switch (hw->mac_type) {
374 case e1000_82542_rev2_0:
375 case e1000_82542_rev2_1:
376 hw->media_type = e1000_media_type_fiber;
377 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000378 case e1000_ce4100:
379 hw->media_type = e1000_media_type_copper;
380 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700381 default:
382 status = er32(STATUS);
383 if (status & E1000_STATUS_TBIMODE) {
384 hw->media_type = e1000_media_type_fiber;
385 /* tbi_compatibility not valid on fiber */
386 hw->tbi_compatibility_en = false;
387 } else {
388 hw->media_type = e1000_media_type_copper;
389 }
390 break;
391 }
392 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393}
394
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700395/**
Ben Hutchings49ce9c22012-07-10 10:56:00 +0000396 * e1000_reset_hw - reset the hardware completely
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700397 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700399 * Reset the transmit and receive units; mask and clear all interrupts.
400 */
Joe Perches64798842008-07-11 15:17:02 -0700401s32 e1000_reset_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700403 u32 ctrl;
404 u32 ctrl_ext;
405 u32 icr;
406 u32 manc;
407 u32 led_ctrl;
408 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000412 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700413 e1000_pci_clear_mwi(hw);
414 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700416 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000417 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700418 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700420 /* Disable the Transmit and Receive units. Then delay to allow
421 * any pending transactions to complete before we hit the MAC with
422 * the global reset.
423 */
424 ew32(RCTL, 0);
425 ew32(TCTL, E1000_TCTL_PSP);
426 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 hw->tbi_compatibility_on = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700431 /* Delay to allow any outstanding PCI transactions to complete before
432 * resetting the device
433 */
434 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700436 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700438 /* Must reset the PHY before resetting the MAC */
439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
Jesse Brandeburg945a5152011-07-20 00:56:21 +0000441 E1000_WRITE_FLUSH();
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700442 msleep(5);
443 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700445 /* Issue a global reset to the MAC. This will reset the chip's
446 * transmit, receive, DMA, and link units. It will not effect
447 * the current PCI configuration. The global reset bit is self-
448 * clearing, and should clear within a microsecond.
449 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000450 e_dbg("Issuing a global reset to MAC\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700452 switch (hw->mac_type) {
453 case e1000_82544:
454 case e1000_82540:
455 case e1000_82545:
456 case e1000_82546:
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 /* These controllers can't ack the 64-bit write when issuing the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000460 * reset, so use IO-mapping as a workaround to issue the reset
461 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 break;
464 case e1000_82545_rev_3:
465 case e1000_82546_rev_3:
466 /* Reset is performed on a shadow of the control register */
467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000469 case e1000_ce4100:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700470 default:
471 ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 break;
473 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000475 /* After MAC reset, force reload of EEPROM to restore power-on settings
476 * to device. Later controllers reload the EEPROM automatically, so
477 * just wait for reload to complete.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700478 */
479 switch (hw->mac_type) {
480 case e1000_82542_rev2_0:
481 case e1000_82542_rev2_1:
482 case e1000_82543:
483 case e1000_82544:
484 /* Wait for reset to complete */
485 udelay(10);
486 ctrl_ext = er32(CTRL_EXT);
487 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 ew32(CTRL_EXT, ctrl_ext);
489 E1000_WRITE_FLUSH();
490 /* Wait for EEPROM reload */
491 msleep(2);
492 break;
493 case e1000_82541:
494 case e1000_82541_rev_2:
495 case e1000_82547:
496 case e1000_82547_rev_2:
497 /* Wait for EEPROM reload */
498 msleep(20);
499 break;
500 default:
501 /* Auto read done will delay 5ms or poll based on mac type */
502 ret_val = e1000_get_auto_rd_done(hw);
503 if (ret_val)
504 return ret_val;
505 break;
506 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700508 /* Disable HW ARPs on ASF enabled adapters */
509 if (hw->mac_type >= e1000_82540) {
510 manc = er32(MANC);
511 manc &= ~(E1000_MANC_ARP_EN);
512 ew32(MANC, manc);
513 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700518 /* Configure activity LED after PHY reset */
519 led_ctrl = er32(LEDCTL);
520 led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 ew32(LEDCTL, led_ctrl);
523 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700525 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000526 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700527 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700529 /* Clear any pending interrupt events. */
530 icr = er32(ICR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700532 /* If MWI was previously enabled, reenable it. */
533 if (hw->mac_type == e1000_82542_rev2_0) {
534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 e1000_pci_set_mwi(hw);
536 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700538 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539}
540
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700541/**
Ben Hutchings49ce9c22012-07-10 10:56:00 +0000542 * e1000_init_hw - Performs basic configuration of the adapter.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700543 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544 *
545 * Assumes that the controller has previously been reset and is in a
546 * post-reset uninitialized state. Initializes the receive address registers,
547 * multicast table, and VLAN filter table. Calls routines to setup link
548 * configuration and flow control settings. Clears all on-chip counters. Leaves
549 * the transmit and receive units disabled and uninitialized.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700550 */
Joe Perches64798842008-07-11 15:17:02 -0700551s32 e1000_init_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700553 u32 ctrl;
554 u32 i;
555 s32 ret_val;
556 u32 mta_size;
557 u32 ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700558
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700559 /* Initialize Identification LED */
560 ret_val = e1000_id_led_init(hw);
561 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000562 e_dbg("Error Initializing Identification LED\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700563 return ret_val;
564 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700566 /* Set the media type and TBI compatibility */
567 e1000_set_media_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700568
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700569 /* Disabling VLAN filtering. */
Emil Tantilov675ad472010-04-27 14:02:58 +0000570 e_dbg("Initializing the IEEE VLAN\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700571 if (hw->mac_type < e1000_82545_rev_3)
572 ew32(VET, 0);
573 e1000_clear_vfta(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000577 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700578 e1000_pci_clear_mwi(hw);
579 ew32(RCTL, E1000_RCTL_RST);
580 E1000_WRITE_FLUSH();
581 msleep(5);
582 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000584 /* Setup the receive address. This involves initializing all of the
585 * Receive Address Registers (RARs 0 - 15).
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700586 */
587 e1000_init_rx_addrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700588
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 if (hw->mac_type == e1000_82542_rev2_0) {
591 ew32(RCTL, 0);
592 E1000_WRITE_FLUSH();
593 msleep(1);
594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 e1000_pci_set_mwi(hw);
596 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700598 /* Zero out the Multicast HASH table */
Emil Tantilov675ad472010-04-27 14:02:58 +0000599 e_dbg("Zeroing the MTA\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700600 mta_size = E1000_MC_TBL_SIZE;
601 for (i = 0; i < mta_size; i++) {
602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 /* use write flush to prevent Memory Write Block (MWB) from
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000604 * occurring when accessing our register space
605 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700606 E1000_WRITE_FLUSH();
607 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700609 /* Set the PCI priority bit correctly in the CTRL register. This
610 * determines if the adapter gives priority to receives, or if it
611 * gives equal priority to transmits and receives. Valid only on
612 * 82542 and 82543 silicon.
613 */
614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 ctrl = er32(CTRL);
616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700619 switch (hw->mac_type) {
620 case e1000_82545_rev_3:
621 case e1000_82546_rev_3:
622 break;
623 default:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000624 /* Workaround for PCI-X problem when BIOS sets MMRBC
625 * incorrectly.
626 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700627 if (hw->bus_type == e1000_bus_type_pcix
628 && e1000_pcix_get_mmrbc(hw) > 2048)
629 e1000_pcix_set_mmrbc(hw, 2048);
630 break;
631 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700633 /* Call a subroutine to configure the link and setup flow control. */
634 ret_val = e1000_setup_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700636 /* Set the transmit descriptor write-back policy */
637 if (hw->mac_type > e1000_82544) {
638 ctrl = er32(TXDCTL);
639 ctrl =
640 (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 E1000_TXDCTL_FULL_TX_DESC_WB;
642 ew32(TXDCTL, ctrl);
643 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700645 /* Clear all of the statistics registers (clear on read). It is
646 * important that we do this after we have tried to establish link
647 * because the symbol error count will increment wildly if there
648 * is no link.
649 */
650 e1000_clear_hw_cntrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 ctrl_ext = er32(CTRL_EXT);
655 /* Relaxed ordering must be disabled to avoid a parity
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000656 * error crash in a PCI slot.
657 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 ew32(CTRL_EXT, ctrl_ext);
660 }
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800661
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700662 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663}
664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700665/**
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667 * @hw: Struct containing variables accessed by shared code.
668 */
Joe Perches64798842008-07-11 15:17:02 -0700669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700670{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700671 u16 eeprom_data;
672 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700674 if (hw->media_type != e1000_media_type_internal_serdes)
675 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700677 switch (hw->mac_type) {
678 case e1000_82545_rev_3:
679 case e1000_82546_rev_3:
680 break;
681 default:
682 return E1000_SUCCESS;
683 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
Janusz Wolaka48954c2015-09-17 23:34:29 +0200686 &eeprom_data);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700687 if (ret_val) {
688 return ret_val;
689 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700690
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700691 if (eeprom_data != EEPROM_RESERVED_WORD) {
692 /* Adjust SERDES output amplitude only. */
693 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694 ret_val =
695 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696 if (ret_val)
697 return ret_val;
698 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700699
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700700 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701}
702
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700703/**
704 * e1000_setup_link - Configures flow control and link settings.
705 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700707 * Determines which flow control settings to use. Calls the appropriate media-
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 * specific link configuration function. Configures the flow control settings.
709 * Assuming the adapter has a valid link partner, a valid link should be
710 * established. Assumes the hardware has previously been reset and the
711 * transmitter and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700712 */
Joe Perches64798842008-07-11 15:17:02 -0700713s32 e1000_setup_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700715 u32 ctrl_ext;
716 s32 ret_val;
717 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700719 /* Read and store word 0x0F of the EEPROM. This word contains bits
720 * that determine the hardware's default PAUSE (flow control) mode,
721 * a bit that determines whether the HW defaults to enabling or
722 * disabling auto-negotiation, and the direction of the
723 * SW defined pins. If there is no SW over-ride of the flow
724 * control setting, then the variable hw->fc will
725 * be initialized based on a value in the EEPROM.
726 */
727 if (hw->fc == E1000_FC_DEFAULT) {
728 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729 1, &eeprom_data);
730 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000731 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700732 return -E1000_ERR_EEPROM;
733 }
734 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735 hw->fc = E1000_FC_NONE;
736 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737 EEPROM_WORD0F_ASM_DIR)
738 hw->fc = E1000_FC_TX_PAUSE;
739 else
740 hw->fc = E1000_FC_FULL;
741 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700743 /* We want to save off the original Flow Control configuration just
744 * in case we get disconnected and then reconnected into a different
745 * hub or switch with different Flow Control capabilities.
746 */
747 if (hw->mac_type == e1000_82542_rev2_0)
748 hw->fc &= (~E1000_FC_TX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700750 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751 hw->fc &= (~E1000_FC_RX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700753 hw->original_fc = hw->fc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754
Emil Tantilov675ad472010-04-27 14:02:58 +0000755 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700757 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
758 * polarity value for the SW controlled pins, and setup the
759 * Extended Device Control reg with that info.
760 * This is needed because one of the SW controlled pins is used for
761 * signal detection. So this should be done before e1000_setup_pcs_link()
762 * or e1000_phy_setup() is called.
763 */
764 if (hw->mac_type == e1000_82543) {
765 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766 1, &eeprom_data);
767 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000768 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700769 return -E1000_ERR_EEPROM;
770 }
771 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772 SWDPIO__EXT_SHIFT);
773 ew32(CTRL_EXT, ctrl_ext);
774 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700776 /* Call the necessary subroutine to configure the link. */
777 ret_val = (hw->media_type == e1000_media_type_copper) ?
778 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700780 /* Initialize the flow control address, type, and PAUSE timer
781 * registers to their default values. This is done even if flow
782 * control is disabled, because it does not hurt anything to
783 * initialize these registers.
784 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000785 e_dbg("Initializing the Flow Control address, type and timer regs\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700787 ew32(FCT, FLOW_CONTROL_TYPE);
788 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700790
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700791 ew32(FCTTV, hw->fc_pause_time);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700793 /* Set the flow control receive threshold registers. Normally,
794 * these registers will be set to a default threshold that may be
795 * adjusted later by the driver's runtime code. However, if the
796 * ability to transmit pause frames in not enabled, then these
797 * registers will be set to 0.
798 */
799 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800 ew32(FCRTL, 0);
801 ew32(FCRTH, 0);
802 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000803 /* We need to set up the Receive Threshold high and low water
804 * marks as well as (optionally) enabling the transmission of
805 * XON frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700806 */
807 if (hw->fc_send_xon) {
808 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809 ew32(FCRTH, hw->fc_high_water);
810 } else {
811 ew32(FCRTL, hw->fc_low_water);
812 ew32(FCRTH, hw->fc_high_water);
813 }
814 }
815 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816}
817
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700818/**
819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821 *
822 * Manipulates Physical Coding Sublayer functions in order to configure
823 * link. Assumes the hardware has been previously reset and the transmitter
824 * and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700825 */
Joe Perches64798842008-07-11 15:17:02 -0700826static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700828 u32 ctrl;
829 u32 status;
830 u32 txcw = 0;
831 u32 i;
832 u32 signal = 0;
833 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700835 /* On adapters with a MAC newer than 82544, SWDP 1 will be
836 * set when the optics detect a signal. On older adapters, it will be
837 * cleared when there is a signal. This applies to fiber media only.
838 * If we're on serdes media, adjust the output amplitude to value
839 * set in the EEPROM.
840 */
841 ctrl = er32(CTRL);
842 if (hw->media_type == e1000_media_type_fiber)
843 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700845 ret_val = e1000_adjust_serdes_amplitude(hw);
846 if (ret_val)
847 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700849 /* Take the link out of reset */
850 ctrl &= ~(E1000_CTRL_LRST);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700852 /* Adjust VCO speed to improve BER performance */
853 ret_val = e1000_set_vco_speed(hw);
854 if (ret_val)
855 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700857 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700859 /* Check for a software override of the flow control settings, and setup
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000860 * the device accordingly. If auto-negotiation is enabled, then
861 * software will have to set the "PAUSE" bits to the correct value in
862 * the Tranmsit Config Word Register (TXCW) and re-start
863 * auto-negotiation. However, if auto-negotiation is disabled, then
864 * software will have to manually configure the two flow control enable
865 * bits in the CTRL register.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700866 *
867 * The possible values of the "fc" parameter are:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000868 * 0: Flow control is completely disabled
869 * 1: Rx flow control is enabled (we can receive pause frames, but
870 * not send pause frames).
871 * 2: Tx flow control is enabled (we can send pause frames but we do
872 * not support receiving pause frames).
873 * 3: Both Rx and TX flow control (symmetric) are enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700874 */
875 switch (hw->fc) {
876 case E1000_FC_NONE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000877 /* Flow ctrl is completely disabled by a software over-ride */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700878 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879 break;
880 case E1000_FC_RX_PAUSE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000881 /* Rx Flow control is enabled and Tx Flow control is disabled by
882 * a software over-ride. Since there really isn't a way to
883 * advertise that we are capable of Rx Pause ONLY, we will
884 * advertise that we support both symmetric and asymmetric Rx
885 * PAUSE. Later, we will disable the adapter's ability to send
886 * PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700887 */
888 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889 break;
890 case E1000_FC_TX_PAUSE:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000891 /* Tx Flow control is enabled, and Rx Flow control is disabled,
892 * by a software over-ride.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700893 */
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895 break;
896 case E1000_FC_FULL:
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000897 /* Flow control (both Rx and Tx) is enabled by a software
898 * over-ride.
899 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901 break;
902 default:
Emil Tantilov675ad472010-04-27 14:02:58 +0000903 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700904 return -E1000_ERR_CONFIG;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700905 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000907 /* Since auto-negotiation is enabled, take the link out of reset (the
908 * link will be in reset, because we previously reset the chip). This
909 * will restart auto-negotiation. If auto-negotiation is successful
910 * then the link-up status bit will be set and the flow control enable
911 * bits (RFCE and TFCE) will be set according to their negotiated value.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700912 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000913 e_dbg("Auto-negotiation enabled\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700915 ew32(TXCW, txcw);
916 ew32(CTRL, ctrl);
917 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700919 hw->txcw = txcw;
920 msleep(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000922 /* If we have a signal (the cable is plugged in) then poll for a
923 * "Link-Up" indication in the Device Status Register. Time-out if a
924 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925 * complete in less than 500 milliseconds even if the other end is doing
926 * it in SW). For internal serdes, we just assume a signal is present,
927 * then poll.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700928 */
929 if (hw->media_type == e1000_media_type_internal_serdes ||
930 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000931 e_dbg("Looking for Link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700932 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933 msleep(10);
934 status = er32(STATUS);
935 if (status & E1000_STATUS_LU)
936 break;
937 }
938 if (i == (LINK_UP_TIMEOUT / 10)) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000939 e_dbg("Never got a valid link from auto-neg!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700940 hw->autoneg_failed = 1;
941 /* AutoNeg failed to achieve a link, so we'll call
Jeff Kirsher6cfbd972013-02-09 12:49:21 +0000942 * e1000_check_for_link. This routine will force the
943 * link up if we detect a signal. This will allow us to
944 * communicate with non-autonegotiating link partners.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700945 */
946 ret_val = e1000_check_for_link(hw);
947 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000948 e_dbg("Error while checking for link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700949 return ret_val;
950 }
951 hw->autoneg_failed = 0;
952 } else {
953 hw->autoneg_failed = 0;
Emil Tantilov675ad472010-04-27 14:02:58 +0000954 e_dbg("Valid Link Found\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700955 }
956 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +0000957 e_dbg("No Signal Detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700958 }
959 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960}
961
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700962/**
Dirk Brandewie5377a412011-01-06 14:29:54 +0000963 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964 * @hw: Struct containing variables accessed by shared code
965 *
966 * Commits changes to PHY configuration by calling e1000_phy_reset().
967 */
968static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969{
970 s32 ret_val;
971
972 /* SW reset the PHY so all changes take effect */
973 ret_val = e1000_phy_reset(hw);
974 if (ret_val) {
975 e_dbg("Error Resetting the PHY\n");
976 return ret_val;
977 }
978
979 return E1000_SUCCESS;
980}
981
982static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983{
984 s32 ret_val;
985 u32 ctrl_aux;
986
987 switch (hw->phy_type) {
988 case e1000_phy_8211:
989 ret_val = e1000_copper_link_rtl_setup(hw);
990 if (ret_val) {
991 e_dbg("e1000_copper_link_rtl_setup failed!\n");
992 return ret_val;
993 }
994 break;
995 case e1000_phy_8201:
996 /* Set RMII mode */
997 ctrl_aux = er32(CTL_AUX);
998 ctrl_aux |= E1000_CTL_AUX_RMII;
999 ew32(CTL_AUX, ctrl_aux);
1000 E1000_WRITE_FLUSH();
1001
1002 /* Disable the J/K bits required for receive */
1003 ctrl_aux = er32(CTL_AUX);
1004 ctrl_aux |= 0x4;
1005 ctrl_aux &= ~0x2;
1006 ew32(CTL_AUX, ctrl_aux);
1007 E1000_WRITE_FLUSH();
1008 ret_val = e1000_copper_link_rtl_setup(hw);
1009
1010 if (ret_val) {
1011 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012 return ret_val;
1013 }
1014 break;
1015 default:
1016 e_dbg("Error Resetting the PHY\n");
1017 return E1000_ERR_PHY_TYPE;
1018 }
1019
1020 return E1000_SUCCESS;
1021}
1022
1023/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001024 * e1000_copper_link_preconfig - early configuration for copper
1025 * @hw: Struct containing variables accessed by shared code
1026 *
1027 * Make sure we have a valid PHY and change PHY mode before link setup.
1028 */
Joe Perches64798842008-07-11 15:17:02 -07001029static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001031 u32 ctrl;
1032 s32 ret_val;
1033 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001035 ctrl = er32(CTRL);
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001036 /* With 82543, we need to force speed and duplex on the MAC equal to
1037 * what the PHY speed and duplex configuration is. In addition, we need
1038 * to perform a hardware reset on the PHY to take it out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001039 */
1040 if (hw->mac_type > e1000_82543) {
1041 ctrl |= E1000_CTRL_SLU;
1042 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043 ew32(CTRL, ctrl);
1044 } else {
1045 ctrl |=
1046 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047 ew32(CTRL, ctrl);
1048 ret_val = e1000_phy_hw_reset(hw);
1049 if (ret_val)
1050 return ret_val;
1051 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001053 /* Make sure we have a valid PHY */
1054 ret_val = e1000_detect_gig_phy(hw);
1055 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001056 e_dbg("Error, did not detect valid phy.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001057 return ret_val;
1058 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001059 e_dbg("Phy ID = %x\n", hw->phy_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001061 /* Set PHY to class A mode (if necessary) */
1062 ret_val = e1000_set_phy_mode(hw);
1063 if (ret_val)
1064 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001066 if ((hw->mac_type == e1000_82545_rev_3) ||
1067 (hw->mac_type == e1000_82546_rev_3)) {
1068 ret_val =
1069 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070 phy_data |= 0x00000008;
1071 ret_val =
1072 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001075 if (hw->mac_type <= e1000_82543 ||
1076 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077 hw->mac_type == e1000_82541_rev_2
1078 || hw->mac_type == e1000_82547_rev_2)
1079 hw->phy_reset_disable = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001081 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001082}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001084/**
1085 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086 * @hw: Struct containing variables accessed by shared code
1087 */
Joe Perches64798842008-07-11 15:17:02 -07001088static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001089{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001090 u32 led_ctrl;
1091 s32 ret_val;
1092 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001094 if (hw->phy_reset_disable)
1095 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001096
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001097 ret_val = e1000_phy_reset(hw);
1098 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001099 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001100 return ret_val;
1101 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001103 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1104 msleep(15);
1105 /* Configure activity LED after PHY reset */
1106 led_ctrl = er32(LEDCTL);
1107 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109 ew32(LEDCTL, led_ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001110
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001111 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112 if (hw->phy_type == e1000_phy_igp) {
1113 /* disable lplu d3 during driver init */
1114 ret_val = e1000_set_d3_lplu_state(hw, false);
1115 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001116 e_dbg("Error Disabling LPLU D3\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001117 return ret_val;
1118 }
1119 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001121 /* Configure mdi-mdix settings */
1122 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123 if (ret_val)
1124 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001125
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001126 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127 hw->dsp_config_state = e1000_dsp_config_disabled;
1128 /* Force MDI for earlier revs of the IGP PHY */
1129 phy_data &=
1130 ~(IGP01E1000_PSCR_AUTO_MDIX |
1131 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132 hw->mdix = 1;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001133
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001134 } else {
1135 hw->dsp_config_state = e1000_dsp_config_enabled;
1136 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001137
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001138 switch (hw->mdix) {
1139 case 1:
1140 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141 break;
1142 case 2:
1143 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144 break;
1145 case 0:
1146 default:
1147 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148 break;
1149 }
1150 }
1151 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152 if (ret_val)
1153 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001154
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001155 /* set auto-master slave resolution settings */
1156 if (hw->autoneg) {
1157 e1000_ms_type phy_ms_setting = hw->master_slave;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001158
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001159 if (hw->ffe_config_state == e1000_ffe_config_active)
1160 hw->ffe_config_state = e1000_ffe_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001161
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001162 if (hw->dsp_config_state == e1000_dsp_config_activated)
1163 hw->dsp_config_state = e1000_dsp_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001165 /* when autonegotiation advertisement is only 1000Mbps then we
1166 * should disable SmartSpeed and enable Auto MasterSlave
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001167 * resolution as hardware default.
1168 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001169 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170 /* Disable SmartSpeed */
1171 ret_val =
1172 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173 &phy_data);
1174 if (ret_val)
1175 return ret_val;
1176 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177 ret_val =
1178 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179 phy_data);
1180 if (ret_val)
1181 return ret_val;
1182 /* Set auto Master/Slave resolution process */
1183 ret_val =
1184 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185 if (ret_val)
1186 return ret_val;
1187 phy_data &= ~CR_1000T_MS_ENABLE;
1188 ret_val =
1189 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190 if (ret_val)
1191 return ret_val;
1192 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001194 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195 if (ret_val)
1196 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001198 /* load defaults for future use */
1199 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200 ((phy_data & CR_1000T_MS_VALUE) ?
1201 e1000_ms_force_master :
1202 e1000_ms_force_slave) : e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001204 switch (phy_ms_setting) {
1205 case e1000_ms_force_master:
1206 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207 break;
1208 case e1000_ms_force_slave:
1209 phy_data |= CR_1000T_MS_ENABLE;
1210 phy_data &= ~(CR_1000T_MS_VALUE);
1211 break;
1212 case e1000_ms_auto:
1213 phy_data &= ~CR_1000T_MS_ENABLE;
1214 default:
1215 break;
1216 }
1217 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218 if (ret_val)
1219 return ret_val;
1220 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001221
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001222 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001223}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001225/**
1226 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227 * @hw: Struct containing variables accessed by shared code
1228 */
Joe Perches64798842008-07-11 15:17:02 -07001229static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001230{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001231 s32 ret_val;
1232 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001234 if (hw->phy_reset_disable)
1235 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001236
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001237 /* Enable CRS on TX. This must be set for half-duplex operation. */
1238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239 if (ret_val)
1240 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001242 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001243
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001244 /* Options:
1245 * MDI/MDI-X = 0 (default)
1246 * 0 - Auto for all speeds
1247 * 1 - MDI mode
1248 * 2 - MDI-X mode
1249 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250 */
1251 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001253 switch (hw->mdix) {
1254 case 1:
1255 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256 break;
1257 case 2:
1258 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259 break;
1260 case 3:
1261 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262 break;
1263 case 0:
1264 default:
1265 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266 break;
1267 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001268
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001269 /* Options:
1270 * disable_polarity_correction = 0 (default)
1271 * Automatic Correction for Reversed Cable Polarity
1272 * 0 - Disabled
1273 * 1 - Enabled
1274 */
1275 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276 if (hw->disable_polarity_correction == 1)
1277 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 if (ret_val)
1280 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001281
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001282 if (hw->phy_revision < M88E1011_I_REV_4) {
1283 /* Force TX_CLK in the Extended PHY Specific Control Register
1284 * to 25MHz clock.
1285 */
1286 ret_val =
1287 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288 &phy_data);
1289 if (ret_val)
1290 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001291
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001292 phy_data |= M88E1000_EPSCR_TX_CLK_25;
Auke Kokee040222006-06-27 09:08:03 -07001293
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001294 if ((hw->phy_revision == E1000_REVISION_2) &&
1295 (hw->phy_id == M88E1111_I_PHY_ID)) {
1296 /* Vidalia Phy, set the downshift counter to 5x */
1297 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299 ret_val = e1000_write_phy_reg(hw,
1300 M88E1000_EXT_PHY_SPEC_CTRL,
1301 phy_data);
1302 if (ret_val)
1303 return ret_val;
1304 } else {
1305 /* Configure Master and Slave downshift values */
1306 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310 ret_val = e1000_write_phy_reg(hw,
1311 M88E1000_EXT_PHY_SPEC_CTRL,
1312 phy_data);
1313 if (ret_val)
1314 return ret_val;
1315 }
1316 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001318 /* SW Reset the PHY so all changes take effect */
1319 ret_val = e1000_phy_reset(hw);
1320 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001321 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001322 return ret_val;
1323 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001324
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001325 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001326}
1327
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001328/**
1329 * e1000_copper_link_autoneg - setup auto-neg
1330 * @hw: Struct containing variables accessed by shared code
1331 *
1332 * Setup auto-negotiation and flow control advertisements,
1333 * and then perform auto-negotiation.
1334 */
Joe Perches64798842008-07-11 15:17:02 -07001335static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001336{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001337 s32 ret_val;
1338 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001339
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001340 /* Perform some bounds checking on the hw->autoneg_advertised
1341 * parameter. If this variable is zero, then set it to the default.
1342 */
1343 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001344
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001345 /* If autoneg_advertised is zero, we assume it was not defaulted
1346 * by the calling code so we set to advertise full capability.
1347 */
1348 if (hw->autoneg_advertised == 0)
1349 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001350
Dirk Brandewie5377a412011-01-06 14:29:54 +00001351 /* IFE/RTL8201N PHY only supports 10/100 */
1352 if (hw->phy_type == e1000_phy_8201)
1353 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354
Emil Tantilov675ad472010-04-27 14:02:58 +00001355 e_dbg("Reconfiguring auto-neg advertisement params\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001356 ret_val = e1000_phy_setup_autoneg(hw);
1357 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001358 e_dbg("Error Setting up Auto-Negotiation\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001359 return ret_val;
1360 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001361 e_dbg("Restarting Auto-Neg\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001362
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001363 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364 * the Auto Neg Restart bit in the PHY control register.
1365 */
1366 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367 if (ret_val)
1368 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001369
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001370 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372 if (ret_val)
1373 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001374
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001375 /* Does the user want to wait for Auto-Neg to complete here, or
1376 * check at a later time (for example, callback routine).
1377 */
1378 if (hw->wait_autoneg_complete) {
1379 ret_val = e1000_wait_autoneg(hw);
1380 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001381 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001382 ("Error while waiting for autoneg to complete\n");
1383 return ret_val;
1384 }
1385 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001387 hw->get_link_status = true;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001389 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001390}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001392/**
1393 * e1000_copper_link_postconfig - post link setup
1394 * @hw: Struct containing variables accessed by shared code
1395 *
1396 * Config the MAC and the PHY after link is up.
1397 * 1) Set up the MAC to the current PHY speed/duplex
1398 * if we are on 82543. If we
1399 * are on newer silicon, we only need to configure
1400 * collision distance in the Transmit Control Register.
1401 * 2) Set up flow control on the MAC to that established with
1402 * the link partner.
1403 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404 */
Joe Perches64798842008-07-11 15:17:02 -07001405static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001406{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001407 s32 ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001408
Dirk Brandewie5377a412011-01-06 14:29:54 +00001409 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001410 e1000_config_collision_dist(hw);
1411 } else {
1412 ret_val = e1000_config_mac_to_phy(hw);
1413 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001414 e_dbg("Error configuring MAC to PHY settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001415 return ret_val;
1416 }
1417 }
1418 ret_val = e1000_config_fc_after_link_up(hw);
1419 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001420 e_dbg("Error Configuring Flow Control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001421 return ret_val;
1422 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001423
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001424 /* Config DSP to improve Giga link quality */
1425 if (hw->phy_type == e1000_phy_igp) {
1426 ret_val = e1000_config_dsp_after_link_change(hw, true);
1427 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001428 e_dbg("Error Configuring DSP after link up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001429 return ret_val;
1430 }
1431 }
Auke Kok76c224b2006-05-23 13:36:06 -07001432
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001433 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001434}
1435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001436/**
1437 * e1000_setup_copper_link - phy/speed/duplex setting
1438 * @hw: Struct containing variables accessed by shared code
1439 *
1440 * Detects which PHY is present and sets up the speed and duplex
1441 */
Joe Perches64798842008-07-11 15:17:02 -07001442static s32 e1000_setup_copper_link(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001443{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001444 s32 ret_val;
1445 u16 i;
1446 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001447
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001448 /* Check if it is a valid PHY and set PHY mode if necessary. */
1449 ret_val = e1000_copper_link_preconfig(hw);
1450 if (ret_val)
1451 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001452
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001453 if (hw->phy_type == e1000_phy_igp) {
1454 ret_val = e1000_copper_link_igp_setup(hw);
1455 if (ret_val)
1456 return ret_val;
1457 } else if (hw->phy_type == e1000_phy_m88) {
1458 ret_val = e1000_copper_link_mgp_setup(hw);
1459 if (ret_val)
1460 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001461 } else {
1462 ret_val = gbe_dhg_phy_setup(hw);
1463 if (ret_val) {
1464 e_dbg("gbe_dhg_phy_setup failed!\n");
1465 return ret_val;
1466 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001467 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001468
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001469 if (hw->autoneg) {
1470 /* Setup autoneg and flow control advertisement
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001471 * and perform autonegotiation
1472 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001473 ret_val = e1000_copper_link_autoneg(hw);
1474 if (ret_val)
1475 return ret_val;
1476 } else {
1477 /* PHY will be set to 10H, 10F, 100H,or 100F
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001478 * depending on value from forced_speed_duplex.
1479 */
Emil Tantilov675ad472010-04-27 14:02:58 +00001480 e_dbg("Forcing speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001481 ret_val = e1000_phy_force_speed_duplex(hw);
1482 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001483 e_dbg("Error Forcing Speed and Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001484 return ret_val;
1485 }
1486 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001487
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001488 /* Check link status. Wait up to 100 microseconds for link to become
1489 * valid.
1490 */
1491 for (i = 0; i < 10; i++) {
1492 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493 if (ret_val)
1494 return ret_val;
1495 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496 if (ret_val)
1497 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001499 if (phy_data & MII_SR_LINK_STATUS) {
1500 /* Config the MAC and PHY after link is up */
1501 ret_val = e1000_copper_link_postconfig(hw);
1502 if (ret_val)
1503 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001504
Emil Tantilov675ad472010-04-27 14:02:58 +00001505 e_dbg("Valid link established!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001506 return E1000_SUCCESS;
1507 }
1508 udelay(10);
1509 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510
Emil Tantilov675ad472010-04-27 14:02:58 +00001511 e_dbg("Unable to establish link!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001512 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001513}
1514
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001515/**
1516 * e1000_phy_setup_autoneg - phy settings
1517 * @hw: Struct containing variables accessed by shared code
1518 *
1519 * Configures PHY autoneg and flow control advertisement settings
1520 */
Joe Perches64798842008-07-11 15:17:02 -07001521s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001523 s32 ret_val;
1524 u16 mii_autoneg_adv_reg;
1525 u16 mii_1000t_ctrl_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001527 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529 if (ret_val)
1530 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001532 /* Read the MII 1000Base-T Control Register (Address 9). */
Dirk Brandewie5377a412011-01-06 14:29:54 +00001533 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001534 if (ret_val)
1535 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001536 else if (hw->phy_type == e1000_phy_8201)
1537 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001539 /* Need to parse both autoneg_advertised and fc and set up
1540 * the appropriate PHY registers. First we will parse for
1541 * autoneg_advertised software override. Since we can advertise
1542 * a plethora of combinations, we need to check each bit
1543 * individually.
1544 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001546 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548 * the 1000Base-T Control Register (Address 9).
1549 */
1550 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552
Emil Tantilov675ad472010-04-27 14:02:58 +00001553 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001555 /* Do we want to advertise 10 Mb Half Duplex? */
1556 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001557 e_dbg("Advertise 10mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001558 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001561 /* Do we want to advertise 10 Mb Full Duplex? */
1562 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001563 e_dbg("Advertise 10mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001564 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001567 /* Do we want to advertise 100 Mb Half Duplex? */
1568 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001569 e_dbg("Advertise 100mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001570 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001573 /* Do we want to advertise 100 Mb Full Duplex? */
1574 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001575 e_dbg("Advertise 100mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001576 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001579 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001581 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001582 ("Advertise 1000mb Half duplex requested, request denied!\n");
1583 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001585 /* Do we want to advertise 1000 Mb Full Duplex? */
1586 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001587 e_dbg("Advertise 1000mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001588 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001591 /* Check for a software override of the flow control settings, and
1592 * setup the PHY advertisement registers accordingly. If
1593 * auto-negotiation is enabled, then software will have to set the
1594 * "PAUSE" bits to the correct value in the Auto-Negotiation
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001595 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596 * auto-negotiation.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001597 *
1598 * The possible values of the "fc" parameter are:
1599 * 0: Flow control is completely disabled
1600 * 1: Rx flow control is enabled (we can receive pause frames
1601 * but not send pause frames).
1602 * 2: Tx flow control is enabled (we can send pause frames
1603 * but we do not support receiving pause frames).
1604 * 3: Both Rx and TX flow control (symmetric) are enabled.
1605 * other: No software override. The flow control configuration
1606 * in the EEPROM is used.
1607 */
1608 switch (hw->fc) {
1609 case E1000_FC_NONE: /* 0 */
1610 /* Flow control (RX & TX) is completely disabled by a
1611 * software over-ride.
1612 */
1613 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614 break;
1615 case E1000_FC_RX_PAUSE: /* 1 */
1616 /* RX Flow control is enabled, and TX Flow control is
1617 * disabled, by a software over-ride.
1618 */
1619 /* Since there really isn't a way to advertise that we are
1620 * capable of RX Pause ONLY, we will advertise that we
1621 * support both symmetric and asymmetric RX PAUSE. Later
1622 * (in e1000_config_fc_after_link_up) we will disable the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001623 * hw's ability to send PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001624 */
1625 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626 break;
1627 case E1000_FC_TX_PAUSE: /* 2 */
1628 /* TX Flow control is enabled, and RX Flow control is
1629 * disabled, by a software over-ride.
1630 */
1631 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633 break;
1634 case E1000_FC_FULL: /* 3 */
1635 /* Flow control (both RX and TX) is enabled by a software
1636 * over-ride.
1637 */
1638 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 break;
1640 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00001641 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001642 return -E1000_ERR_CONFIG;
1643 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001645 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646 if (ret_val)
1647 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648
Emil Tantilov675ad472010-04-27 14:02:58 +00001649 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650
Dirk Brandewie5377a412011-01-06 14:29:54 +00001651 if (hw->phy_type == e1000_phy_8201) {
1652 mii_1000t_ctrl_reg = 0;
1653 } else {
1654 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
Janusz Wolaka48954c2015-09-17 23:34:29 +02001655 mii_1000t_ctrl_reg);
Dirk Brandewie5377a412011-01-06 14:29:54 +00001656 if (ret_val)
1657 return ret_val;
1658 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001660 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661}
1662
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001663/**
1664 * e1000_phy_force_speed_duplex - force link settings
1665 * @hw: Struct containing variables accessed by shared code
1666 *
1667 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668 */
Joe Perches64798842008-07-11 15:17:02 -07001669static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001671 u32 ctrl;
1672 s32 ret_val;
1673 u16 mii_ctrl_reg;
1674 u16 mii_status_reg;
1675 u16 phy_data;
1676 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001678 /* Turn off Flow control if we are forcing speed and duplex. */
1679 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680
Emil Tantilov675ad472010-04-27 14:02:58 +00001681 e_dbg("hw->fc = %d\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001683 /* Read the Device Control Register. */
1684 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001686 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688 ctrl &= ~(DEVICE_SPEED_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001690 /* Clear the Auto Speed Detect Enable bit. */
1691 ctrl &= ~E1000_CTRL_ASDE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001693 /* Read the MII Control Register. */
1694 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695 if (ret_val)
1696 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001698 /* We need to disable autoneg in order to force link and duplex. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001700 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001702 /* Are we forcing Full or Half Duplex? */
1703 if (hw->forced_speed_duplex == e1000_100_full ||
1704 hw->forced_speed_duplex == e1000_10_full) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001705 /* We want to force full duplex so we SET the full duplex bits
1706 * in the Device and MII Control Registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001707 */
1708 ctrl |= E1000_CTRL_FD;
1709 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001710 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001711 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001712 /* We want to force half duplex so we CLEAR the full duplex bits
1713 * in the Device and MII Control Registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001714 */
1715 ctrl &= ~E1000_CTRL_FD;
1716 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001717 e_dbg("Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001718 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001720 /* Are we forcing 100Mbps??? */
1721 if (hw->forced_speed_duplex == e1000_100_full ||
1722 hw->forced_speed_duplex == e1000_100_half) {
1723 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724 ctrl |= E1000_CTRL_SPD_100;
1725 mii_ctrl_reg |= MII_CR_SPEED_100;
1726 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
Emil Tantilov675ad472010-04-27 14:02:58 +00001727 e_dbg("Forcing 100mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001728 } else {
1729 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731 mii_ctrl_reg |= MII_CR_SPEED_10;
1732 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
Emil Tantilov675ad472010-04-27 14:02:58 +00001733 e_dbg("Forcing 10mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001734 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001736 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001737
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001738 /* Write the configured values back to the Device Control Reg. */
1739 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001741 if (hw->phy_type == e1000_phy_m88) {
1742 ret_val =
1743 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744 if (ret_val)
1745 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001746
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001747 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748 * MDI forced whenever speed are duplex are forced.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001749 */
1750 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751 ret_val =
1752 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753 if (ret_val)
1754 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
Emil Tantilov675ad472010-04-27 14:02:58 +00001756 e_dbg("M88E1000 PSCR: %x\n", phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001758 /* Need to reset the PHY or these changes will be ignored */
1759 mii_ctrl_reg |= MII_CR_RESET;
Auke Kok90fb5132006-11-01 08:47:30 -08001760
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001761 /* Disable MDI-X support for 10/100 */
1762 } else {
1763 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1764 * forced whenever speed or duplex are forced.
1765 */
1766 ret_val =
1767 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768 if (ret_val)
1769 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001771 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001774 ret_val =
1775 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776 if (ret_val)
1777 return ret_val;
1778 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001780 /* Write back the modified PHY MII control register. */
1781 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782 if (ret_val)
1783 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001785 udelay(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001787 /* The wait_autoneg_complete flag may be a little misleading here.
1788 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789 * But we do want to delay for a period while forcing only so we
1790 * don't generate false No Link messages. So we will wait here
1791 * only if the user has set wait_autoneg_complete to 1, which is
1792 * the default.
1793 */
1794 if (hw->wait_autoneg_complete) {
1795 /* We will wait for autoneg to complete. */
Emil Tantilov675ad472010-04-27 14:02:58 +00001796 e_dbg("Waiting for forced speed/duplex link.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001797 mii_status_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001799 /* Wait for autoneg to complete or 4.5 seconds to expire */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001800 for (i = PHY_FORCE_TIME; i > 0; i--) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001801 /* Read the MII Status Register and wait for Auto-Neg
1802 * Complete bit to be set.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001803 */
1804 ret_val =
1805 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806 if (ret_val)
1807 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001808
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001809 ret_val =
1810 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811 if (ret_val)
1812 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001814 if (mii_status_reg & MII_SR_LINK_STATUS)
1815 break;
1816 msleep(100);
1817 }
1818 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001819 /* We didn't get link. Reset the DSP and wait again
1820 * for link.
1821 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001822 ret_val = e1000_phy_reset_dsp(hw);
1823 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001824 e_dbg("Error Resetting PHY DSP\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001825 return ret_val;
1826 }
1827 }
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001828 /* This loop will early-out if the link condition has been
1829 * met
1830 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001831 for (i = PHY_FORCE_TIME; i > 0; i--) {
1832 if (mii_status_reg & MII_SR_LINK_STATUS)
1833 break;
1834 msleep(100);
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001835 /* Read the MII Status Register and wait for Auto-Neg
1836 * Complete bit to be set.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001837 */
1838 ret_val =
1839 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 if (ret_val)
1841 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001843 ret_val =
1844 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 if (ret_val)
1846 return ret_val;
1847 }
1848 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001849
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001850 if (hw->phy_type == e1000_phy_m88) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001851 /* Because we reset the PHY above, we need to re-force TX_CLK in
1852 * the Extended PHY Specific Control Register to 25MHz clock.
1853 * This value defaults back to a 2.5MHz clock when the PHY is
1854 * reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001855 */
1856 ret_val =
1857 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858 &phy_data);
1859 if (ret_val)
1860 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001861
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001862 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863 ret_val =
1864 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865 phy_data);
1866 if (ret_val)
1867 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001869 /* In addition, because of the s/w reset above, we need to
1870 * enable CRS on Tx. This must be set for both full and half
1871 * duplex operation.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001872 */
1873 ret_val =
1874 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875 if (ret_val)
1876 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001878 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879 ret_val =
1880 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881 if (ret_val)
1882 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001884 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1885 && (!hw->autoneg)
1886 && (hw->forced_speed_duplex == e1000_10_full
1887 || hw->forced_speed_duplex == e1000_10_half)) {
1888 ret_val = e1000_polarity_reversal_workaround(hw);
1889 if (ret_val)
1890 return ret_val;
1891 }
1892 }
1893 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894}
1895
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
Joe Perches64798842008-07-11 15:17:02 -07001904void e1000_config_collision_dist(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001906 u32 tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001908 if (hw->mac_type < e1000_82543)
1909 coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 else
1911 coll_dist = E1000_COLLISION_DISTANCE;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08001912
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001913 tctl = er32(TCTL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001915 tctl &= ~E1000_TCTL_COLD;
1916 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001918 ew32(TCTL, tctl);
1919 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920}
1921
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
Joe Perches64798842008-07-11 15:17:02 -07001931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001933 u32 ctrl;
1934 s32 ret_val;
1935 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001937 /* 82544 or newer MAC, Auto Speed Detection takes care of
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001938 * MAC speed/duplex configuration.
1939 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00001940 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001941 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001942
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001943 /* Read the Device Control Register and set the bits to Force Speed
1944 * and Duplex.
1945 */
1946 ctrl = er32(CTRL);
1947 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949
Dirk Brandewie5377a412011-01-06 14:29:54 +00001950 switch (hw->phy_type) {
1951 case e1000_phy_8201:
1952 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 if (ret_val)
1954 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955
Dirk Brandewie5377a412011-01-06 14:29:54 +00001956 if (phy_data & RTL_PHY_CTRL_FD)
1957 ctrl |= E1000_CTRL_FD;
1958 else
1959 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960
Dirk Brandewie5377a412011-01-06 14:29:54 +00001961 if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 ctrl |= E1000_CTRL_SPD_100;
1963 else
1964 ctrl |= E1000_CTRL_SPD_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965
Dirk Brandewie5377a412011-01-06 14:29:54 +00001966 e1000_config_collision_dist(hw);
1967 break;
1968 default:
1969 /* Set up duplex in the Device Control and Transmit Control
1970 * registers depending on negotiated values.
1971 */
1972 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001973 &phy_data);
Dirk Brandewie5377a412011-01-06 14:29:54 +00001974 if (ret_val)
1975 return ret_val;
1976
1977 if (phy_data & M88E1000_PSSR_DPLX)
1978 ctrl |= E1000_CTRL_FD;
1979 else
1980 ctrl &= ~E1000_CTRL_FD;
1981
1982 e1000_config_collision_dist(hw);
1983
1984 /* Set up speed in the Device Control register depending on
1985 * negotiated values.
1986 */
1987 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 ctrl |= E1000_CTRL_SPD_1000;
1989 else if ((phy_data & M88E1000_PSSR_SPEED) ==
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00001990 M88E1000_PSSR_100MBS)
Dirk Brandewie5377a412011-01-06 14:29:54 +00001991 ctrl |= E1000_CTRL_SPD_100;
1992 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001993
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001994 /* Write the configured values back to the Device Control Reg. */
1995 ew32(CTRL, ctrl);
1996 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997}
1998
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 * Forces the MAC's flow control settings.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002009 */
Joe Perches64798842008-07-11 15:17:02 -07002010s32 e1000_force_mac_fc(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002012 u32 ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002014 /* Get the current configuration of the Device Control Register */
2015 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002017 /* Because we didn't get link via the internal auto-negotiation
2018 * mechanism (we either forced link or we got link via PHY
2019 * auto-neg), we have to manually enable/disable transmit an
2020 * receive flow control.
2021 *
2022 * The "Case" statement below enables/disable flow control
2023 * according to the "hw->fc" parameter.
2024 *
2025 * The possible values of the "fc" parameter are:
2026 * 0: Flow control is completely disabled
2027 * 1: Rx flow control is enabled (we can receive pause
2028 * frames but not send pause frames).
2029 * 2: Tx flow control is enabled (we can send pause frames
2030 * frames but we do not receive pause frames).
2031 * 3: Both Rx and TX flow control (symmetric) is enabled.
2032 * other: No other values should be possible at this point.
2033 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002035 switch (hw->fc) {
2036 case E1000_FC_NONE:
2037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 break;
2039 case E1000_FC_RX_PAUSE:
2040 ctrl &= (~E1000_CTRL_TFCE);
2041 ctrl |= E1000_CTRL_RFCE;
2042 break;
2043 case E1000_FC_TX_PAUSE:
2044 ctrl &= (~E1000_CTRL_RFCE);
2045 ctrl |= E1000_CTRL_TFCE;
2046 break;
2047 case E1000_FC_FULL:
2048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 break;
2050 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00002051 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002052 return -E1000_ERR_CONFIG;
2053 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002055 /* Disable TX Flow Control for 82542 (rev 2.0) */
2056 if (hw->mac_type == e1000_82542_rev2_0)
2057 ctrl &= (~E1000_CTRL_TFCE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002058
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002059 ew32(CTRL, ctrl);
2060 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061}
2062
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 * Configures flow control settings after link is established
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
Joe Perches64798842008-07-11 15:17:02 -07002074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002076 s32 ret_val;
2077 u16 mii_status_reg;
2078 u16 mii_nway_adv_reg;
2079 u16 mii_nway_lp_ability_reg;
2080 u16 speed;
2081 u16 duplex;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002083 /* Check for the case where we have fiber media and auto-neg failed
2084 * so we had to force link. In this case, we need to force the
2085 * configuration of the MAC to match the "fc" parameter.
2086 */
2087 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2088 || ((hw->media_type == e1000_media_type_internal_serdes)
2089 && (hw->autoneg_failed))
2090 || ((hw->media_type == e1000_media_type_copper)
2091 && (!hw->autoneg))) {
2092 ret_val = e1000_force_mac_fc(hw);
2093 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002094 e_dbg("Error forcing flow control settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002095 return ret_val;
2096 }
2097 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002099 /* Check for the case where we have copper media and auto-neg is
2100 * enabled. In this case, we need to check and see if Auto-Neg
2101 * has completed, and if so, how the PHY and link partner has
2102 * flow control configured.
2103 */
2104 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2105 /* Read the MII Status Register and check to see if AutoNeg
2106 * has completed. We read this twice because this reg has
2107 * some "sticky" (latched) bits.
2108 */
2109 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2110 if (ret_val)
2111 return ret_val;
2112 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2113 if (ret_val)
2114 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002116 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2117 /* The AutoNeg process has completed, so we now need to
2118 * read both the Auto Negotiation Advertisement Register
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002119 * (Address 4) and the Auto_Negotiation Base Page
2120 * Ability Register (Address 5) to determine how flow
2121 * control was negotiated.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002122 */
2123 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2124 &mii_nway_adv_reg);
2125 if (ret_val)
2126 return ret_val;
2127 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2128 &mii_nway_lp_ability_reg);
2129 if (ret_val)
2130 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002132 /* Two bits in the Auto Negotiation Advertisement
2133 * Register (Address 4) and two bits in the Auto
2134 * Negotiation Base Page Ability Register (Address 5)
2135 * determine flow control for both the PHY and the link
2136 * partner. The following table, taken out of the IEEE
2137 * 802.3ab/D6.0 dated March 25, 1999, describes these
2138 * PAUSE resolution bits and how flow control is
2139 * determined based upon these settings.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002140 * NOTE: DC = Don't Care
2141 *
2142 * LOCAL DEVICE | LINK PARTNER
2143 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002144 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002145 * 0 | 0 | DC | DC | E1000_FC_NONE
2146 * 0 | 1 | 0 | DC | E1000_FC_NONE
2147 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2148 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2149 * 1 | 0 | 0 | DC | E1000_FC_NONE
2150 * 1 | DC | 1 | DC | E1000_FC_FULL
2151 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2152 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2153 *
2154 */
2155 /* Are both PAUSE bits set to 1? If so, this implies
2156 * Symmetric Flow Control is enabled at both ends. The
2157 * ASM_DIR bits are irrelevant per the spec.
2158 *
2159 * For Symmetric Flow Control:
2160 *
2161 * LOCAL DEVICE | LINK PARTNER
2162 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002163 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002164 * 1 | DC | 1 | DC | E1000_FC_FULL
2165 *
2166 */
2167 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002169 /* Now we need to check if the user selected Rx
2170 * ONLY of pause frames. In this case, we had
2171 * to advertise FULL flow control because we
2172 * could not advertise Rx ONLY. Hence, we must
2173 * now check to see if we need to turn OFF the
2174 * TRANSMISSION of PAUSE frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002175 */
2176 if (hw->original_fc == E1000_FC_FULL) {
2177 hw->fc = E1000_FC_FULL;
Emil Tantilov675ad472010-04-27 14:02:58 +00002178 e_dbg("Flow Control = FULL.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002179 } else {
2180 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002181 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002182 ("Flow Control = RX PAUSE frames only.\n");
2183 }
2184 }
2185 /* For receiving PAUSE frames ONLY.
2186 *
2187 * LOCAL DEVICE | LINK PARTNER
2188 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002189 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002190 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2191 *
2192 */
2193 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2194 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2195 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
Janusz Wolaka48954c2015-09-17 23:34:29 +02002196 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002197 hw->fc = E1000_FC_TX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002198 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002199 ("Flow Control = TX PAUSE frames only.\n");
2200 }
2201 /* For transmitting PAUSE frames ONLY.
2202 *
2203 * LOCAL DEVICE | LINK PARTNER
2204 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002205 *-------|---------|-------|---------|------------------
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002206 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2207 *
2208 */
2209 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2211 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
Janusz Wolaka48954c2015-09-17 23:34:29 +02002212 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002213 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002214 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002215 ("Flow Control = RX PAUSE frames only.\n");
2216 }
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002217 /* Per the IEEE spec, at this point flow control should
2218 * be disabled. However, we want to consider that we
2219 * could be connected to a legacy switch that doesn't
2220 * advertise desired flow control, but can be forced on
2221 * the link partner. So if we advertised no flow
2222 * control, that is what we will resolve to. If we
2223 * advertised some kind of receive capability (Rx Pause
2224 * Only or Full Flow Control) and the link partner
2225 * advertised none, we will configure ourselves to
2226 * enable Rx Flow Control only. We can do this safely
2227 * for two reasons: If the link partner really
2228 * didn't want flow control enabled, and we enable Rx,
2229 * no harm done since we won't be receiving any PAUSE
2230 * frames anyway. If the intent on the link partner was
2231 * to have flow control enabled, then by us enabling Rx
2232 * only, we can at least receive pause frames and
2233 * process them. This is a good idea because in most
2234 * cases, since we are predominantly a server NIC, more
2235 * times than not we will be asked to delay transmission
2236 * of packets than asking our link partner to pause
2237 * transmission of frames.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002238 */
2239 else if ((hw->original_fc == E1000_FC_NONE ||
2240 hw->original_fc == E1000_FC_TX_PAUSE) ||
2241 hw->fc_strict_ieee) {
2242 hw->fc = E1000_FC_NONE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002243 e_dbg("Flow Control = NONE.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002244 } else {
2245 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002246 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002247 ("Flow Control = RX PAUSE frames only.\n");
2248 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002250 /* Now we need to do one last check... If we auto-
2251 * negotiated to HALF DUPLEX, flow control should not be
2252 * enabled per IEEE 802.3 spec.
2253 */
2254 ret_val =
2255 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2256 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002257 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002258 ("Error getting link speed and duplex\n");
2259 return ret_val;
2260 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002262 if (duplex == HALF_DUPLEX)
2263 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002265 /* Now we call a subroutine to actually force the MAC
2266 * controller to use the correct flow control settings.
2267 */
2268 ret_val = e1000_force_mac_fc(hw);
2269 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002270 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002271 ("Error forcing flow control settings\n");
2272 return ret_val;
2273 }
2274 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002275 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002276 ("Copper PHY and Auto Neg has not completed.\n");
2277 }
2278 }
2279 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280}
2281
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002282/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002283 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2284 * @hw: pointer to the HW structure
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002285 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002286 * Checks for link up on the hardware. If link is not up and we have
2287 * a signal, then we need to force link up.
2288 */
Jesse Brandeburg11b7f7b2009-09-25 12:20:33 +00002289static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002290{
2291 u32 rxcw;
2292 u32 ctrl;
2293 u32 status;
2294 s32 ret_val = E1000_SUCCESS;
2295
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002296 ctrl = er32(CTRL);
2297 status = er32(STATUS);
2298 rxcw = er32(RXCW);
2299
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002300 /* If we don't have link (auto-negotiation failed or link partner
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002301 * cannot auto-negotiate), and our link partner is not trying to
2302 * auto-negotiate with us (we are receiving idles or data),
2303 * we need to force link up. We also need to give auto-negotiation
2304 * time to complete.
2305 */
2306 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2307 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2308 if (hw->autoneg_failed == 0) {
2309 hw->autoneg_failed = 1;
2310 goto out;
2311 }
Emil Tantilov675ad472010-04-27 14:02:58 +00002312 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002313
2314 /* Disable auto-negotiation in the TXCW register */
2315 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2316
2317 /* Force link-up and also force full-duplex. */
2318 ctrl = er32(CTRL);
2319 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2320 ew32(CTRL, ctrl);
2321
2322 /* Configure Flow Control after forcing link up. */
2323 ret_val = e1000_config_fc_after_link_up(hw);
2324 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002325 e_dbg("Error configuring flow control\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002326 goto out;
2327 }
2328 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002329 /* If we are forcing link and we are receiving /C/ ordered
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002330 * sets, re-enable auto-negotiation in the TXCW register
2331 * and disable forced link in the Device Control register
2332 * in an attempt to auto-negotiate with our link partner.
2333 */
Emil Tantilov675ad472010-04-27 14:02:58 +00002334 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002335 ew32(TXCW, hw->txcw);
2336 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2337
2338 hw->serdes_has_link = true;
2339 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002340 /* If we force link for non-auto-negotiation switch, check
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002341 * link status based on MAC synchronization for internal
2342 * serdes media type.
2343 */
2344 /* SYNCH bit and IV bit are sticky. */
2345 udelay(10);
2346 rxcw = er32(RXCW);
2347 if (rxcw & E1000_RXCW_SYNCH) {
2348 if (!(rxcw & E1000_RXCW_IV)) {
2349 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002350 e_dbg("SERDES: Link up - forced.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002351 }
2352 } else {
2353 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002354 e_dbg("SERDES: Link down - force failed.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002355 }
2356 }
2357
2358 if (E1000_TXCW_ANE & er32(TXCW)) {
2359 status = er32(STATUS);
2360 if (status & E1000_STATUS_LU) {
2361 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2362 udelay(10);
2363 rxcw = er32(RXCW);
2364 if (rxcw & E1000_RXCW_SYNCH) {
2365 if (!(rxcw & E1000_RXCW_IV)) {
2366 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002367 e_dbg("SERDES: Link up - autoneg "
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002368 "completed successfully.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002369 } else {
2370 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002371 e_dbg("SERDES: Link down - invalid"
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002372 "codewords detected in autoneg.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002373 }
2374 } else {
2375 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002376 e_dbg("SERDES: Link down - no sync.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002377 }
2378 } else {
2379 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002380 e_dbg("SERDES: Link down - autoneg failed\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002381 }
2382 }
2383
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002384 out:
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002385 return ret_val;
2386}
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002387
2388/**
2389 * e1000_check_for_link
2390 * @hw: Struct containing variables accessed by shared code
2391 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002392 * Checks to see if the link status of the hardware has changed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393 * Called by any function that needs to check the link status of the adapter.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002394 */
Joe Perches64798842008-07-11 15:17:02 -07002395s32 e1000_check_for_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002397 u32 rxcw = 0;
2398 u32 ctrl;
2399 u32 status;
2400 u32 rctl;
2401 u32 icr;
2402 u32 signal = 0;
2403 s32 ret_val;
2404 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002406 ctrl = er32(CTRL);
2407 status = er32(STATUS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002409 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2410 * set when the optics detect a signal. On older adapters, it will be
2411 * cleared when there is a signal. This applies to fiber media only.
2412 */
2413 if ((hw->media_type == e1000_media_type_fiber) ||
2414 (hw->media_type == e1000_media_type_internal_serdes)) {
2415 rxcw = er32(RXCW);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002416
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002417 if (hw->media_type == e1000_media_type_fiber) {
2418 signal =
2419 (hw->mac_type >
2420 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2421 if (status & E1000_STATUS_LU)
2422 hw->get_link_status = false;
2423 }
2424 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002426 /* If we have a copper PHY then we only want to go out to the PHY
2427 * registers to see if Auto-Neg has completed and/or if our link
2428 * status has changed. The get_link_status flag will be set if we
2429 * receive a Link Status Change interrupt or we have Rx Sequence
2430 * Errors.
2431 */
2432 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2433 /* First we want to see if the MII Status Register reports
2434 * link. If so, then we want to get the current speed/duplex
2435 * of the PHY.
2436 * Read the register twice since the link bit is sticky.
2437 */
2438 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2439 if (ret_val)
2440 return ret_val;
2441 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2442 if (ret_val)
2443 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002445 if (phy_data & MII_SR_LINK_STATUS) {
2446 hw->get_link_status = false;
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002447 /* Check if there was DownShift, must be checked
2448 * immediately after link-up
2449 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002450 e1000_check_downshift(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002451
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002452 /* If we are on 82544 or 82543 silicon and speed/duplex
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002453 * are forced to 10H or 10F, then we will implement the
2454 * polarity reversal workaround. We disable interrupts
2455 * first, and upon returning, place the devices
2456 * interrupt state to its previous value except for the
2457 * link status change interrupt which will
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002458 * happen due to the execution of this workaround.
2459 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002461 if ((hw->mac_type == e1000_82544
2462 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2463 && (hw->forced_speed_duplex == e1000_10_full
2464 || hw->forced_speed_duplex == e1000_10_half)) {
2465 ew32(IMC, 0xffffffff);
2466 ret_val =
2467 e1000_polarity_reversal_workaround(hw);
2468 icr = er32(ICR);
2469 ew32(ICS, (icr & ~E1000_ICS_LSC));
2470 ew32(IMS, IMS_ENABLE_MASK);
2471 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002473 } else {
2474 /* No link detected */
2475 e1000_config_dsp_after_link_change(hw, false);
2476 return 0;
2477 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002479 /* If we are forcing speed/duplex, then we simply return since
2480 * we have already determined whether we have link or not.
2481 */
2482 if (!hw->autoneg)
2483 return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002484
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002485 /* optimize the dsp settings for the igp phy */
2486 e1000_config_dsp_after_link_change(hw, true);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002487
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002488 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2489 * have Si on board that is 82544 or newer, Auto
2490 * Speed Detection takes care of MAC speed/duplex
2491 * configuration. So we only need to configure Collision
2492 * Distance in the MAC. Otherwise, we need to force
2493 * speed/duplex on the MAC to the current PHY speed/duplex
2494 * settings.
2495 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002496 if ((hw->mac_type >= e1000_82544) &&
2497 (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002498 e1000_config_collision_dist(hw);
2499 else {
2500 ret_val = e1000_config_mac_to_phy(hw);
2501 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002502 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002503 ("Error configuring MAC to PHY settings\n");
2504 return ret_val;
2505 }
2506 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002508 /* Configure Flow Control now that Auto-Neg has completed.
2509 * First, we need to restore the desired flow control settings
2510 * because we may have had to re-autoneg with a different link
2511 * partner.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002512 */
2513 ret_val = e1000_config_fc_after_link_up(hw);
2514 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002515 e_dbg("Error configuring flow control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002516 return ret_val;
2517 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002519 /* At this point we know that we are on copper and we have
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002520 * auto-negotiated link. These are conditions for checking the
2521 * link partner capability register. We use the link speed to
2522 * determine if TBI compatibility needs to be turned on or off.
2523 * If the link is not at gigabit speed, then TBI compatibility
2524 * is not needed. If we are at gigabit speed, we turn on TBI
2525 * compatibility.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002526 */
2527 if (hw->tbi_compatibility_en) {
2528 u16 speed, duplex;
2529 ret_val =
2530 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2531 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002532 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002533 ("Error getting link speed and duplex\n");
2534 return ret_val;
2535 }
2536 if (speed != SPEED_1000) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002537 /* If link speed is not set to gigabit speed, we
2538 * do not need to enable TBI compatibility.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002539 */
2540 if (hw->tbi_compatibility_on) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002541 /* If we previously were in the mode,
2542 * turn it off.
2543 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002544 rctl = er32(RCTL);
2545 rctl &= ~E1000_RCTL_SBP;
2546 ew32(RCTL, rctl);
2547 hw->tbi_compatibility_on = false;
2548 }
2549 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002550 /* If TBI compatibility is was previously off,
2551 * turn it on. For compatibility with a TBI link
2552 * partner, we will store bad packets. Some
2553 * frames have an additional byte on the end and
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002554 * will look like CRC errors to to the hardware.
2555 */
2556 if (!hw->tbi_compatibility_on) {
2557 hw->tbi_compatibility_on = true;
2558 rctl = er32(RCTL);
2559 rctl |= E1000_RCTL_SBP;
2560 ew32(RCTL, rctl);
2561 }
2562 }
2563 }
2564 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002566 if ((hw->media_type == e1000_media_type_fiber) ||
2567 (hw->media_type == e1000_media_type_internal_serdes))
2568 e1000_check_for_serdes_link_generic(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002569
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002570 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571}
2572
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002573/**
2574 * e1000_get_speed_and_duplex
2575 * @hw: Struct containing variables accessed by shared code
2576 * @speed: Speed of the connection
2577 * @duplex: Duplex setting of the connection
Ben Hutchings49ce9c22012-07-10 10:56:00 +00002578 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 * Detects the current speed and duplex settings of the hardware.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002580 */
Joe Perches64798842008-07-11 15:17:02 -07002581s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002582{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002583 u32 status;
2584 s32 ret_val;
2585 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002586
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002587 if (hw->mac_type >= e1000_82543) {
2588 status = er32(STATUS);
2589 if (status & E1000_STATUS_SPEED_1000) {
2590 *speed = SPEED_1000;
Emil Tantilov675ad472010-04-27 14:02:58 +00002591 e_dbg("1000 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002592 } else if (status & E1000_STATUS_SPEED_100) {
2593 *speed = SPEED_100;
Emil Tantilov675ad472010-04-27 14:02:58 +00002594 e_dbg("100 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002595 } else {
2596 *speed = SPEED_10;
Emil Tantilov675ad472010-04-27 14:02:58 +00002597 e_dbg("10 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002598 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002600 if (status & E1000_STATUS_FD) {
2601 *duplex = FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002602 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002603 } else {
2604 *duplex = HALF_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002605 e_dbg(" Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002606 }
2607 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002608 e_dbg("1000 Mbs, Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002609 *speed = SPEED_1000;
2610 *duplex = FULL_DUPLEX;
2611 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002612
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002613 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2614 * even if it is operating at half duplex. Here we set the duplex
2615 * settings to match the duplex in the link partner's capabilities.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002616 */
2617 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2618 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2619 if (ret_val)
2620 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002622 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2623 *duplex = HALF_DUPLEX;
2624 else {
2625 ret_val =
2626 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2627 if (ret_val)
2628 return ret_val;
2629 if ((*speed == SPEED_100
2630 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2631 || (*speed == SPEED_10
2632 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2633 *duplex = HALF_DUPLEX;
2634 }
2635 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002637 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638}
2639
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002640/**
2641 * e1000_wait_autoneg
2642 * @hw: Struct containing variables accessed by shared code
2643 *
2644 * Blocks until autoneg completes or times out (~4.5 seconds)
2645 */
Joe Perches64798842008-07-11 15:17:02 -07002646static s32 e1000_wait_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002648 s32 ret_val;
2649 u16 i;
2650 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651
Emil Tantilov675ad472010-04-27 14:02:58 +00002652 e_dbg("Waiting for Auto-Neg to complete.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002654 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2655 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2656 /* Read the MII Status Register and wait for Auto-Neg
2657 * Complete bit to be set.
2658 */
2659 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2660 if (ret_val)
2661 return ret_val;
2662 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2663 if (ret_val)
2664 return ret_val;
2665 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2666 return E1000_SUCCESS;
2667 }
2668 msleep(100);
2669 }
2670 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671}
2672
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002673/**
2674 * e1000_raise_mdi_clk - Raises the Management Data Clock
2675 * @hw: Struct containing variables accessed by shared code
2676 * @ctrl: Device control register's current value
2677 */
Joe Perches64798842008-07-11 15:17:02 -07002678static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002680 /* Raise the clock input to the Management Data Clock (by setting the
2681 * MDC bit), and then delay 10 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002682 */
2683 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2684 E1000_WRITE_FLUSH();
2685 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002686}
2687
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002688/**
2689 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2690 * @hw: Struct containing variables accessed by shared code
2691 * @ctrl: Device control register's current value
2692 */
Joe Perches64798842008-07-11 15:17:02 -07002693static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002694{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002695 /* Lower the clock input to the Management Data Clock (by clearing the
2696 * MDC bit), and then delay 10 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002697 */
2698 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2699 E1000_WRITE_FLUSH();
2700 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701}
2702
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002703/**
2704 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2705 * @hw: Struct containing variables accessed by shared code
2706 * @data: Data to send out to the PHY
2707 * @count: Number of bits to shift out
2708 *
2709 * Bits are shifted out in MSB to LSB order.
2710 */
Joe Perches64798842008-07-11 15:17:02 -07002711static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002713 u32 ctrl;
2714 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002716 /* We need to shift "count" number of bits out to the PHY. So, the value
2717 * in the "data" parameter will be shifted out to the PHY one bit at a
2718 * time. In order to do this, "data" must be broken down into bits.
2719 */
2720 mask = 0x01;
2721 mask <<= (count - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002722
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002723 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002725 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2726 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002728 while (mask) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002729 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2730 * "1" and then raising and lowering the Management Data Clock.
2731 * A "0" is shifted out to the PHY by setting the MDIO bit to
2732 * "0" and then raising and lowering the clock.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002733 */
2734 if (data & mask)
2735 ctrl |= E1000_CTRL_MDIO;
2736 else
2737 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002739 ew32(CTRL, ctrl);
2740 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002742 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002744 e1000_raise_mdi_clk(hw, &ctrl);
2745 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002747 mask = mask >> 1;
2748 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749}
2750
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002751/**
2752 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2753 * @hw: Struct containing variables accessed by shared code
2754 *
2755 * Bits are shifted in in MSB to LSB order.
2756 */
Joe Perches64798842008-07-11 15:17:02 -07002757static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002759 u32 ctrl;
2760 u16 data = 0;
2761 u8 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002763 /* In order to read a register from the PHY, we need to shift in a total
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002764 * of 18 bits from the PHY. The first two bit (turnaround) times are
2765 * used to avoid contention on the MDIO pin when a read operation is
2766 * performed. These two bits are ignored by us and thrown away. Bits are
2767 * "shifted in" by raising the input to the Management Data Clock
2768 * (setting the MDC bit), and then reading the value of the MDIO bit.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002769 */
2770 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002771
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002772 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2773 * input.
2774 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002775 ctrl &= ~E1000_CTRL_MDIO_DIR;
2776 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002778 ew32(CTRL, ctrl);
2779 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002781 /* Raise and Lower the clock before reading in the data. This accounts
2782 * for the turnaround bits. The first clock occurred when we clocked out
2783 * the last bit of the Register Address.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002784 */
2785 e1000_raise_mdi_clk(hw, &ctrl);
2786 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002788 for (data = 0, i = 0; i < 16; i++) {
2789 data = data << 1;
2790 e1000_raise_mdi_clk(hw, &ctrl);
2791 ctrl = er32(CTRL);
2792 /* Check to see if we shifted in a "1". */
2793 if (ctrl & E1000_CTRL_MDIO)
2794 data |= 1;
2795 e1000_lower_mdi_clk(hw, &ctrl);
2796 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002797
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002798 e1000_raise_mdi_clk(hw, &ctrl);
2799 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002801 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802}
2803
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002804
2805/**
2806 * e1000_read_phy_reg - read a phy register
2807 * @hw: Struct containing variables accessed by shared code
2808 * @reg_addr: address of the PHY register to read
Jean Sacrenf03fed62015-09-19 05:08:46 -06002809 * @phy_data: pointer to the value on the PHY register
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002810 *
2811 * Reads the value from a PHY register, if the value is on a specific non zero
2812 * page, sets the page first.
2813 */
Joe Perches64798842008-07-11 15:17:02 -07002814s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002816 u32 ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002817 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818
Maxime Bizonac565582012-10-20 14:53:40 +00002819 spin_lock_irqsave(&e1000_phy_lock, flags);
2820
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002821 if ((hw->phy_type == e1000_phy_igp) &&
2822 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2823 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2824 (u16) reg_addr);
Maxime Bizonac565582012-10-20 14:53:40 +00002825 if (ret_val) {
2826 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002827 return ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002828 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002829 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002831 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2832 phy_data);
Maxime Bizonac565582012-10-20 14:53:40 +00002833 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002834
2835 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836}
2837
Joe Perches64798842008-07-11 15:17:02 -07002838static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2839 u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002840{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002841 u32 i;
2842 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002843 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002845 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002846 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002847 return -E1000_ERR_PARAM;
2848 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002850 if (hw->mac_type > e1000_82543) {
2851 /* Set up Op-code, Phy Address, and register address in the MDI
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002852 * Control register. The MAC will take care of interfacing with
2853 * the PHY to retrieve the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002854 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002855 if (hw->mac_type == e1000_ce4100) {
2856 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2857 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2858 (INTEL_CE_GBE_MDIC_OP_READ) |
2859 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860
Dirk Brandewie5377a412011-01-06 14:29:54 +00002861 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862
Dirk Brandewie5377a412011-01-06 14:29:54 +00002863 /* Poll the ready bit to see if the MDI read
2864 * completed
2865 */
2866 for (i = 0; i < 64; i++) {
2867 udelay(50);
2868 mdic = readl(E1000_MDIO_CMD);
2869 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2870 break;
2871 }
2872
2873 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2874 e_dbg("MDI Read did not complete\n");
2875 return -E1000_ERR_PHY;
2876 }
2877
2878 mdic = readl(E1000_MDIO_STS);
2879 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2880 e_dbg("MDI Read Error\n");
2881 return -E1000_ERR_PHY;
2882 }
2883 *phy_data = (u16) mdic;
2884 } else {
2885 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2886 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2887 (E1000_MDIC_OP_READ));
2888
2889 ew32(MDIC, mdic);
2890
2891 /* Poll the ready bit to see if the MDI read
2892 * completed
2893 */
2894 for (i = 0; i < 64; i++) {
2895 udelay(50);
2896 mdic = er32(MDIC);
2897 if (mdic & E1000_MDIC_READY)
2898 break;
2899 }
2900 if (!(mdic & E1000_MDIC_READY)) {
2901 e_dbg("MDI Read did not complete\n");
2902 return -E1000_ERR_PHY;
2903 }
2904 if (mdic & E1000_MDIC_ERROR) {
2905 e_dbg("MDI Error\n");
2906 return -E1000_ERR_PHY;
2907 }
2908 *phy_data = (u16) mdic;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002909 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002910 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002911 /* We must first send a preamble through the MDIO pin to signal
2912 * the beginning of an MII instruction. This is done by sending
2913 * 32 consecutive "1" bits.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002914 */
2915 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002917 /* Now combine the next few fields that are required for a read
2918 * operation. We use this method instead of calling the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002919 * e1000_shift_out_mdi_bits routine five different times. The
2920 * format of a MII read instruction consists of a shift out of
2921 * 14 bits and is defined as follows:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002922 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002923 * followed by a shift in of 18 bits. This first two bits
2924 * shifted in are TurnAround bits used to avoid contention on
2925 * the MDIO pin when a READ operation is performed. These two
2926 * bits are thrown away followed by a shift in of 16 bits which
2927 * contains the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002928 */
2929 mdic = ((reg_addr) | (phy_addr << 5) |
2930 (PHY_OP_READ << 10) | (PHY_SOF << 12));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002932 e1000_shift_out_mdi_bits(hw, mdic, 14);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002933
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00002934 /* Now that we've shifted out the read command to the MII, we
2935 * need to "shift in" the 16-bit value (18 total bits) of the
2936 * requested PHY register address.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002937 */
2938 *phy_data = e1000_shift_in_mdi_bits(hw);
2939 }
2940 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941}
2942
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002943/**
2944 * e1000_write_phy_reg - write a phy register
2945 *
2946 * @hw: Struct containing variables accessed by shared code
2947 * @reg_addr: address of the PHY register to write
2948 * @data: data to write to the PHY
Ben Hutchings49ce9c22012-07-10 10:56:00 +00002949 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002950 * Writes a value to a PHY register
2951 */
Joe Perches64798842008-07-11 15:17:02 -07002952s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002954 u32 ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002955 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956
Maxime Bizonac565582012-10-20 14:53:40 +00002957 spin_lock_irqsave(&e1000_phy_lock, flags);
2958
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002959 if ((hw->phy_type == e1000_phy_igp) &&
2960 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2961 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2962 (u16) reg_addr);
Maxime Bizonac565582012-10-20 14:53:40 +00002963 if (ret_val) {
2964 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002965 return ret_val;
Maxime Bizonac565582012-10-20 14:53:40 +00002966 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002967 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002968
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002969 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2970 phy_data);
Maxime Bizonac565582012-10-20 14:53:40 +00002971 spin_unlock_irqrestore(&e1000_phy_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002972
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002973 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974}
2975
Joe Perches64798842008-07-11 15:17:02 -07002976static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2977 u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002979 u32 i;
2980 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002981 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002982
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002983 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002984 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002985 return -E1000_ERR_PARAM;
2986 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002987
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002988 if (hw->mac_type > e1000_82543) {
Dirk Brandewie5377a412011-01-06 14:29:54 +00002989 /* Set up Op-code, Phy Address, register address, and data
2990 * intended for the PHY register in the MDI Control register.
2991 * The MAC will take care of interfacing with the PHY to send
2992 * the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002993 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002994 if (hw->mac_type == e1000_ce4100) {
2995 mdic = (((u32) phy_data) |
2996 (reg_addr << E1000_MDIC_REG_SHIFT) |
2997 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2998 (INTEL_CE_GBE_MDIC_OP_WRITE) |
2999 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003000
Dirk Brandewie5377a412011-01-06 14:29:54 +00003001 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002
Dirk Brandewie5377a412011-01-06 14:29:54 +00003003 /* Poll the ready bit to see if the MDI read
3004 * completed
3005 */
3006 for (i = 0; i < 640; i++) {
3007 udelay(5);
3008 mdic = readl(E1000_MDIO_CMD);
3009 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3010 break;
3011 }
3012 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3013 e_dbg("MDI Write did not complete\n");
3014 return -E1000_ERR_PHY;
3015 }
3016 } else {
3017 mdic = (((u32) phy_data) |
3018 (reg_addr << E1000_MDIC_REG_SHIFT) |
3019 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3020 (E1000_MDIC_OP_WRITE));
3021
3022 ew32(MDIC, mdic);
3023
3024 /* Poll the ready bit to see if the MDI read
3025 * completed
3026 */
3027 for (i = 0; i < 641; i++) {
3028 udelay(5);
3029 mdic = er32(MDIC);
3030 if (mdic & E1000_MDIC_READY)
3031 break;
3032 }
3033 if (!(mdic & E1000_MDIC_READY)) {
3034 e_dbg("MDI Write did not complete\n");
3035 return -E1000_ERR_PHY;
3036 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003037 }
3038 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003039 /* We'll need to use the SW defined pins to shift the write
3040 * command out to the PHY. We first send a preamble to the PHY
3041 * to signal the beginning of the MII instruction. This is done
3042 * by sending 32 consecutive "1" bits.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003043 */
3044 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003046 /* Now combine the remaining required fields that will indicate
3047 * a write operation. We use this method instead of calling the
3048 * e1000_shift_out_mdi_bits routine for each field in the
3049 * command. The format of a MII write instruction is as follows:
3050 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003051 */
3052 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3053 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3054 mdic <<= 16;
3055 mdic |= (u32) phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003057 e1000_shift_out_mdi_bits(hw, mdic, 32);
3058 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003059
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003060 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003061}
3062
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003063/**
3064 * e1000_phy_hw_reset - reset the phy, hardware style
3065 * @hw: Struct containing variables accessed by shared code
3066 *
3067 * Returns the PHY to the power-on reset state
3068 */
Joe Perches64798842008-07-11 15:17:02 -07003069s32 e1000_phy_hw_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003071 u32 ctrl, ctrl_ext;
3072 u32 led_ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073
Emil Tantilov675ad472010-04-27 14:02:58 +00003074 e_dbg("Resetting Phy...\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003075
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003076 if (hw->mac_type > e1000_82543) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003077 /* Read the device control register and assert the
3078 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003079 * For e1000 hardware, we delay for 10ms between the assert
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003080 * and de-assert.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003081 */
3082 ctrl = er32(CTRL);
3083 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3084 E1000_WRITE_FLUSH();
Auke Kok76c224b2006-05-23 13:36:06 -07003085
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003086 msleep(10);
Auke Kok76c224b2006-05-23 13:36:06 -07003087
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003088 ew32(CTRL, ctrl);
3089 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003090
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003091 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003092 /* Read the Extended Device Control Register, assert the
3093 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3094 * out of reset.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003095 */
3096 ctrl_ext = er32(CTRL_EXT);
3097 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3098 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3099 ew32(CTRL_EXT, ctrl_ext);
3100 E1000_WRITE_FLUSH();
3101 msleep(10);
3102 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3103 ew32(CTRL_EXT, ctrl_ext);
3104 E1000_WRITE_FLUSH();
3105 }
3106 udelay(150);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003107
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003108 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3109 /* Configure activity LED after PHY reset */
3110 led_ctrl = er32(LEDCTL);
3111 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3112 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3113 ew32(LEDCTL, led_ctrl);
3114 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003115
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003116 /* Wait for FW to finish PHY configuration. */
Greg Dietschec4dc4d12011-06-16 07:09:30 +00003117 return e1000_get_phy_cfg_done(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003118}
3119
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003120/**
3121 * e1000_phy_reset - reset the phy to commit settings
3122 * @hw: Struct containing variables accessed by shared code
3123 *
3124 * Resets the PHY
3125 * Sets bit 15 of the MII Control register
3126 */
Joe Perches64798842008-07-11 15:17:02 -07003127s32 e1000_phy_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003128{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003129 s32 ret_val;
3130 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003131
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003132 switch (hw->phy_type) {
3133 case e1000_phy_igp:
3134 ret_val = e1000_phy_hw_reset(hw);
3135 if (ret_val)
3136 return ret_val;
3137 break;
3138 default:
3139 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3140 if (ret_val)
3141 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003142
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003143 phy_data |= MII_CR_RESET;
3144 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3145 if (ret_val)
3146 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003148 udelay(1);
3149 break;
3150 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003151
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003152 if (hw->phy_type == e1000_phy_igp)
3153 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003154
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003155 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003156}
3157
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003158/**
3159 * e1000_detect_gig_phy - check the phy type
3160 * @hw: Struct containing variables accessed by shared code
3161 *
3162 * Probes the expected PHY address for known PHY IDs
3163 */
Joe Perches64798842008-07-11 15:17:02 -07003164static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003166 s32 phy_init_status, ret_val;
3167 u16 phy_id_high, phy_id_low;
3168 bool match = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003170 if (hw->phy_id != 0)
3171 return E1000_SUCCESS;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003172
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003173 /* Read the PHY ID Registers to identify which PHY is onboard. */
3174 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3175 if (ret_val)
3176 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003177
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003178 hw->phy_id = (u32) (phy_id_high << 16);
3179 udelay(20);
3180 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3181 if (ret_val)
3182 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003183
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003184 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3185 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003186
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003187 switch (hw->mac_type) {
3188 case e1000_82543:
3189 if (hw->phy_id == M88E1000_E_PHY_ID)
3190 match = true;
3191 break;
3192 case e1000_82544:
3193 if (hw->phy_id == M88E1000_I_PHY_ID)
3194 match = true;
3195 break;
3196 case e1000_82540:
3197 case e1000_82545:
3198 case e1000_82545_rev_3:
3199 case e1000_82546:
3200 case e1000_82546_rev_3:
3201 if (hw->phy_id == M88E1011_I_PHY_ID)
3202 match = true;
3203 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +00003204 case e1000_ce4100:
3205 if ((hw->phy_id == RTL8211B_PHY_ID) ||
Florian Fainellicf8e09b2011-01-24 14:48:03 +00003206 (hw->phy_id == RTL8201N_PHY_ID) ||
3207 (hw->phy_id == M88E1118_E_PHY_ID))
Dirk Brandewie5377a412011-01-06 14:29:54 +00003208 match = true;
3209 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003210 case e1000_82541:
3211 case e1000_82541_rev_2:
3212 case e1000_82547:
3213 case e1000_82547_rev_2:
3214 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3215 match = true;
3216 break;
3217 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00003218 e_dbg("Invalid MAC type %d\n", hw->mac_type);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003219 return -E1000_ERR_CONFIG;
3220 }
3221 phy_init_status = e1000_set_phy_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003222
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003223 if ((match) && (phy_init_status == E1000_SUCCESS)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003224 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003225 return E1000_SUCCESS;
3226 }
Emil Tantilov675ad472010-04-27 14:02:58 +00003227 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003228 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229}
3230
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003231/**
3232 * e1000_phy_reset_dsp - reset DSP
3233 * @hw: Struct containing variables accessed by shared code
3234 *
3235 * Resets the PHY's DSP
3236 */
Joe Perches64798842008-07-11 15:17:02 -07003237static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003238{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003239 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003241 do {
3242 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3243 if (ret_val)
3244 break;
3245 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3246 if (ret_val)
3247 break;
3248 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3249 if (ret_val)
3250 break;
3251 ret_val = E1000_SUCCESS;
3252 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003253
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003254 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003255}
3256
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003257/**
3258 * e1000_phy_igp_get_info - get igp specific registers
3259 * @hw: Struct containing variables accessed by shared code
3260 * @phy_info: PHY information structure
3261 *
3262 * Get PHY information from various PHY registers for igp PHY only.
3263 */
Joe Perches64798842008-07-11 15:17:02 -07003264static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3265 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003266{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003267 s32 ret_val;
3268 u16 phy_data, min_length, max_length, average;
3269 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003271 /* The downshift status is checked only once, after link is established,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003272 * and it stored in the hw->speed_downgraded parameter.
3273 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003274 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003275
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003276 /* IGP01E1000 does not need to support it. */
3277 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003278
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003279 /* IGP01E1000 always correct polarity reversal */
3280 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003281
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003282 /* Check polarity status */
3283 ret_val = e1000_check_polarity(hw, &polarity);
3284 if (ret_val)
3285 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003286
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003287 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003288
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003289 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3290 if (ret_val)
3291 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003293 phy_info->mdix_mode =
3294 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3295 IGP01E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003296
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003297 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3298 IGP01E1000_PSSR_SPEED_1000MBPS) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003299 /* Local/Remote Receiver Information are only valid @ 1000
3300 * Mbps
3301 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003302 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3303 if (ret_val)
3304 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003305
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003306 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3307 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3308 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3309 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3310 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3311 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003313 /* Get cable length */
3314 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3315 if (ret_val)
3316 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003317
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003318 /* Translate to old method */
3319 average = (max_length + min_length) / 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003321 if (average <= e1000_igp_cable_length_50)
3322 phy_info->cable_length = e1000_cable_length_50;
3323 else if (average <= e1000_igp_cable_length_80)
3324 phy_info->cable_length = e1000_cable_length_50_80;
3325 else if (average <= e1000_igp_cable_length_110)
3326 phy_info->cable_length = e1000_cable_length_80_110;
3327 else if (average <= e1000_igp_cable_length_140)
3328 phy_info->cable_length = e1000_cable_length_110_140;
3329 else
3330 phy_info->cable_length = e1000_cable_length_140;
3331 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003332
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003333 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334}
3335
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003336/**
3337 * e1000_phy_m88_get_info - get m88 specific registers
3338 * @hw: Struct containing variables accessed by shared code
3339 * @phy_info: PHY information structure
3340 *
3341 * Get PHY information from various PHY registers for m88 PHY only.
3342 */
Joe Perches64798842008-07-11 15:17:02 -07003343static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3344 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003345{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003346 s32 ret_val;
3347 u16 phy_data;
3348 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003350 /* The downshift status is checked only once, after link is established,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003351 * and it stored in the hw->speed_downgraded parameter.
3352 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003353 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003354
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003355 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3356 if (ret_val)
3357 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003358
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003359 phy_info->extended_10bt_distance =
3360 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3361 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3362 e1000_10bt_ext_dist_enable_lower :
3363 e1000_10bt_ext_dist_enable_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07003364
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003365 phy_info->polarity_correction =
3366 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3367 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3368 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003369
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003370 /* Check polarity status */
3371 ret_val = e1000_check_polarity(hw, &polarity);
3372 if (ret_val)
3373 return ret_val;
3374 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003376 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3377 if (ret_val)
3378 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003380 phy_info->mdix_mode =
3381 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3382 M88E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003384 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3385 /* Cable Length Estimation and Local/Remote Receiver Information
3386 * are only valid at 1000 Mbps.
3387 */
3388 phy_info->cable_length =
3389 (e1000_cable_length) ((phy_data &
3390 M88E1000_PSSR_CABLE_LENGTH) >>
3391 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003392
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003393 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3394 if (ret_val)
3395 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003397 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3398 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3399 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3400 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3401 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3402 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003404 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003406 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003407}
3408
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003409/**
3410 * e1000_phy_get_info - request phy info
3411 * @hw: Struct containing variables accessed by shared code
3412 * @phy_info: PHY information structure
3413 *
3414 * Get PHY information from various PHY registers
3415 */
Joe Perches64798842008-07-11 15:17:02 -07003416s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003417{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003418 s32 ret_val;
3419 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003420
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003421 phy_info->cable_length = e1000_cable_length_undefined;
3422 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3423 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3424 phy_info->downshift = e1000_downshift_undefined;
3425 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3426 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3427 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3428 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003430 if (hw->media_type != e1000_media_type_copper) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003431 e_dbg("PHY info is only valid for copper media\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003432 return -E1000_ERR_CONFIG;
3433 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003434
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003435 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3436 if (ret_val)
3437 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003438
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003439 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3440 if (ret_val)
3441 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003442
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003443 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003444 e_dbg("PHY info is only valid if link is up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003445 return -E1000_ERR_CONFIG;
3446 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003447
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003448 if (hw->phy_type == e1000_phy_igp)
3449 return e1000_phy_igp_get_info(hw, phy_info);
Dirk Brandewie5377a412011-01-06 14:29:54 +00003450 else if ((hw->phy_type == e1000_phy_8211) ||
Janusz Wolaka48954c2015-09-17 23:34:29 +02003451 (hw->phy_type == e1000_phy_8201))
Dirk Brandewie5377a412011-01-06 14:29:54 +00003452 return E1000_SUCCESS;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003453 else
3454 return e1000_phy_m88_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003455}
3456
Joe Perches64798842008-07-11 15:17:02 -07003457s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003458{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003459 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003460 e_dbg("Invalid MDI setting detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003461 hw->mdix = 1;
3462 return -E1000_ERR_CONFIG;
3463 }
3464 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465}
3466
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003467/**
3468 * e1000_init_eeprom_params - initialize sw eeprom vars
3469 * @hw: Struct containing variables accessed by shared code
3470 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003471 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jesse Brandeburg1532ece2009-09-25 12:16:14 +00003472 * is configured.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003473 */
Joe Perches64798842008-07-11 15:17:02 -07003474s32 e1000_init_eeprom_params(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003475{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003476 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3477 u32 eecd = er32(EECD);
3478 s32 ret_val = E1000_SUCCESS;
3479 u16 eeprom_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003481 switch (hw->mac_type) {
3482 case e1000_82542_rev2_0:
3483 case e1000_82542_rev2_1:
3484 case e1000_82543:
3485 case e1000_82544:
3486 eeprom->type = e1000_eeprom_microwire;
3487 eeprom->word_size = 64;
3488 eeprom->opcode_bits = 3;
3489 eeprom->address_bits = 6;
3490 eeprom->delay_usec = 50;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003491 break;
3492 case e1000_82540:
3493 case e1000_82545:
3494 case e1000_82545_rev_3:
3495 case e1000_82546:
3496 case e1000_82546_rev_3:
3497 eeprom->type = e1000_eeprom_microwire;
3498 eeprom->opcode_bits = 3;
3499 eeprom->delay_usec = 50;
3500 if (eecd & E1000_EECD_SIZE) {
3501 eeprom->word_size = 256;
3502 eeprom->address_bits = 8;
3503 } else {
3504 eeprom->word_size = 64;
3505 eeprom->address_bits = 6;
3506 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003507 break;
3508 case e1000_82541:
3509 case e1000_82541_rev_2:
3510 case e1000_82547:
3511 case e1000_82547_rev_2:
3512 if (eecd & E1000_EECD_TYPE) {
3513 eeprom->type = e1000_eeprom_spi;
3514 eeprom->opcode_bits = 8;
3515 eeprom->delay_usec = 1;
3516 if (eecd & E1000_EECD_ADDR_BITS) {
3517 eeprom->page_size = 32;
3518 eeprom->address_bits = 16;
3519 } else {
3520 eeprom->page_size = 8;
3521 eeprom->address_bits = 8;
3522 }
3523 } else {
3524 eeprom->type = e1000_eeprom_microwire;
3525 eeprom->opcode_bits = 3;
3526 eeprom->delay_usec = 50;
3527 if (eecd & E1000_EECD_ADDR_BITS) {
3528 eeprom->word_size = 256;
3529 eeprom->address_bits = 8;
3530 } else {
3531 eeprom->word_size = 64;
3532 eeprom->address_bits = 6;
3533 }
3534 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003535 break;
3536 default:
3537 break;
3538 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003539
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003540 if (eeprom->type == e1000_eeprom_spi) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003541 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3542 * 128B to 32KB (incremented by powers of 2).
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003543 */
3544 /* Set to default value for initial eeprom read. */
3545 eeprom->word_size = 64;
3546 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3547 if (ret_val)
3548 return ret_val;
3549 eeprom_size =
3550 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3551 /* 256B eeprom size was not supported in earlier hardware, so we
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003552 * bump eeprom_size up one to ensure that "1" (which maps to
3553 * 256B) is never the result used in the shifting logic below.
3554 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003555 if (eeprom_size)
3556 eeprom_size++;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003557
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003558 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3559 }
3560 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003561}
3562
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003563/**
3564 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3565 * @hw: Struct containing variables accessed by shared code
3566 * @eecd: EECD's current value
3567 */
Joe Perches64798842008-07-11 15:17:02 -07003568static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003570 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3571 * wait <delay> microseconds.
3572 */
3573 *eecd = *eecd | E1000_EECD_SK;
3574 ew32(EECD, *eecd);
3575 E1000_WRITE_FLUSH();
3576 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003577}
3578
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003579/**
3580 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3581 * @hw: Struct containing variables accessed by shared code
3582 * @eecd: EECD's current value
3583 */
Joe Perches64798842008-07-11 15:17:02 -07003584static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003585{
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003586 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3587 * then wait 50 microseconds.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003588 */
3589 *eecd = *eecd & ~E1000_EECD_SK;
3590 ew32(EECD, *eecd);
3591 E1000_WRITE_FLUSH();
3592 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593}
3594
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003595/**
3596 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3597 * @hw: Struct containing variables accessed by shared code
3598 * @data: data to send to the EEPROM
3599 * @count: number of bits to shift out
3600 */
Joe Perches64798842008-07-11 15:17:02 -07003601static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003603 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3604 u32 eecd;
3605 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003606
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003607 /* We need to shift "count" bits out to the EEPROM. So, value in the
3608 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3609 * In order to do this, "data" must be broken down into bits.
3610 */
3611 mask = 0x01 << (count - 1);
3612 eecd = er32(EECD);
3613 if (eeprom->type == e1000_eeprom_microwire) {
3614 eecd &= ~E1000_EECD_DO;
3615 } else if (eeprom->type == e1000_eeprom_spi) {
3616 eecd |= E1000_EECD_DO;
3617 }
3618 do {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003619 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3620 * "1", and then raising and then lowering the clock (the SK bit
3621 * controls the clock input to the EEPROM). A "0" is shifted
3622 * out to the EEPROM by setting "DI" to "0" and then raising and
3623 * then lowering the clock.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003624 */
3625 eecd &= ~E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003626
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003627 if (data & mask)
3628 eecd |= E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003630 ew32(EECD, eecd);
3631 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003632
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003633 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003635 e1000_raise_ee_clk(hw, &eecd);
3636 e1000_lower_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003637
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003638 mask = mask >> 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003639
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003640 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003642 /* We leave the "DI" bit set to "0" when we leave this routine. */
3643 eecd &= ~E1000_EECD_DI;
3644 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003645}
3646
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003647/**
3648 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3649 * @hw: Struct containing variables accessed by shared code
3650 * @count: number of bits to shift in
3651 */
Joe Perches64798842008-07-11 15:17:02 -07003652static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003653{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003654 u32 eecd;
3655 u32 i;
3656 u16 data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003657
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003658 /* In order to read a register from the EEPROM, we need to shift 'count'
3659 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003660 * input to the EEPROM (setting the SK bit), and then reading the value
3661 * of the "DO" bit. During this "shifting in" process the "DI" bit
3662 * should always be clear.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003663 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003665 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003666
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003667 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3668 data = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003669
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003670 for (i = 0; i < count; i++) {
3671 data = data << 1;
3672 e1000_raise_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003674 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003676 eecd &= ~(E1000_EECD_DI);
3677 if (eecd & E1000_EECD_DO)
3678 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003680 e1000_lower_ee_clk(hw, &eecd);
3681 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003682
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003683 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003684}
3685
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003686/**
3687 * e1000_acquire_eeprom - Prepares EEPROM for access
3688 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003689 *
3690 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3691 * function should be called before issuing a command to the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003692 */
Joe Perches64798842008-07-11 15:17:02 -07003693static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003694{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003695 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3696 u32 eecd, i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003697
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003698 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003699
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003700 /* Request EEPROM Access */
3701 if (hw->mac_type > e1000_82544) {
3702 eecd |= E1000_EECD_REQ;
3703 ew32(EECD, eecd);
3704 eecd = er32(EECD);
3705 while ((!(eecd & E1000_EECD_GNT)) &&
3706 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3707 i++;
3708 udelay(5);
3709 eecd = er32(EECD);
3710 }
3711 if (!(eecd & E1000_EECD_GNT)) {
3712 eecd &= ~E1000_EECD_REQ;
3713 ew32(EECD, eecd);
Emil Tantilov675ad472010-04-27 14:02:58 +00003714 e_dbg("Could not acquire EEPROM grant\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003715 return -E1000_ERR_EEPROM;
3716 }
3717 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003718
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003719 /* Setup EEPROM for Read/Write */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003721 if (eeprom->type == e1000_eeprom_microwire) {
3722 /* Clear SK and DI */
3723 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3724 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003725
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003726 /* Set CS */
3727 eecd |= E1000_EECD_CS;
3728 ew32(EECD, eecd);
3729 } else if (eeprom->type == e1000_eeprom_spi) {
3730 /* Clear SK and CS */
3731 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3732 ew32(EECD, eecd);
Jesse Brandeburg945a5152011-07-20 00:56:21 +00003733 E1000_WRITE_FLUSH();
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003734 udelay(1);
3735 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003737 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003738}
3739
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003740/**
3741 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3742 * @hw: Struct containing variables accessed by shared code
3743 */
Joe Perches64798842008-07-11 15:17:02 -07003744static void e1000_standby_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003745{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003746 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3747 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003748
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003749 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003751 if (eeprom->type == e1000_eeprom_microwire) {
3752 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3753 ew32(EECD, eecd);
3754 E1000_WRITE_FLUSH();
3755 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003756
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003757 /* Clock high */
3758 eecd |= E1000_EECD_SK;
3759 ew32(EECD, eecd);
3760 E1000_WRITE_FLUSH();
3761 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003763 /* Select EEPROM */
3764 eecd |= E1000_EECD_CS;
3765 ew32(EECD, eecd);
3766 E1000_WRITE_FLUSH();
3767 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003768
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003769 /* Clock low */
3770 eecd &= ~E1000_EECD_SK;
3771 ew32(EECD, eecd);
3772 E1000_WRITE_FLUSH();
3773 udelay(eeprom->delay_usec);
3774 } else if (eeprom->type == e1000_eeprom_spi) {
3775 /* Toggle CS to flush commands */
3776 eecd |= E1000_EECD_CS;
3777 ew32(EECD, eecd);
3778 E1000_WRITE_FLUSH();
3779 udelay(eeprom->delay_usec);
3780 eecd &= ~E1000_EECD_CS;
3781 ew32(EECD, eecd);
3782 E1000_WRITE_FLUSH();
3783 udelay(eeprom->delay_usec);
3784 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003785}
3786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003787/**
3788 * e1000_release_eeprom - drop chip select
3789 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003790 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003791 * Terminates a command by inverting the EEPROM's chip select pin
3792 */
Joe Perches64798842008-07-11 15:17:02 -07003793static void e1000_release_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003794{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003795 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003796
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003797 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003798
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003799 if (hw->eeprom.type == e1000_eeprom_spi) {
3800 eecd |= E1000_EECD_CS; /* Pull CS high */
3801 eecd &= ~E1000_EECD_SK; /* Lower SCK */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003802
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003803 ew32(EECD, eecd);
Jesse Brandeburg945a5152011-07-20 00:56:21 +00003804 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003806 udelay(hw->eeprom.delay_usec);
3807 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3808 /* cleanup eeprom */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003809
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003810 /* CS on Microwire is active-high */
3811 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003813 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003814
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003815 /* Rising edge of clock */
3816 eecd |= E1000_EECD_SK;
3817 ew32(EECD, eecd);
3818 E1000_WRITE_FLUSH();
3819 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003821 /* Falling edge of clock */
3822 eecd &= ~E1000_EECD_SK;
3823 ew32(EECD, eecd);
3824 E1000_WRITE_FLUSH();
3825 udelay(hw->eeprom.delay_usec);
3826 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003827
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003828 /* Stop requesting EEPROM access */
3829 if (hw->mac_type > e1000_82544) {
3830 eecd &= ~E1000_EECD_REQ;
3831 ew32(EECD, eecd);
3832 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833}
3834
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003835/**
3836 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3837 * @hw: Struct containing variables accessed by shared code
3838 */
Joe Perches64798842008-07-11 15:17:02 -07003839static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003841 u16 retry_count = 0;
3842 u8 spi_stat_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003844 /* Read "Status Register" repeatedly until the LSB is cleared. The
3845 * EEPROM will signal that the command has been completed by clearing
3846 * bit 0 of the internal status register. If it's not cleared within
3847 * 5 milliseconds, then error out.
3848 */
3849 retry_count = 0;
3850 do {
3851 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3852 hw->eeprom.opcode_bits);
3853 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3854 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3855 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003856
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003857 udelay(5);
3858 retry_count += 5;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003859
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003860 e1000_standby_eeprom(hw);
3861 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003862
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003863 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3864 * only 0-5mSec on 5V devices)
3865 */
3866 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003867 e_dbg("SPI EEPROM Status error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003868 return -E1000_ERR_EEPROM;
3869 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003870
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003871 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003872}
3873
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003874/**
3875 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3876 * @hw: Struct containing variables accessed by shared code
3877 * @offset: offset of word in the EEPROM to read
3878 * @data: word read from the EEPROM
3879 * @words: number of words to read
3880 */
Joe Perches64798842008-07-11 15:17:02 -07003881s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003882{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003883 s32 ret;
Joern Engele09b8902015-07-23 14:54:34 -07003884 mutex_lock(&e1000_eeprom_lock);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003885 ret = e1000_do_read_eeprom(hw, offset, words, data);
Joern Engele09b8902015-07-23 14:54:34 -07003886 mutex_unlock(&e1000_eeprom_lock);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003887 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07003888}
3889
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003890static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3891 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07003892{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003893 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3894 u32 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003895
Dirk Brandewie5377a412011-01-06 14:29:54 +00003896 if (hw->mac_type == e1000_ce4100) {
3897 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
Janusz Wolaka48954c2015-09-17 23:34:29 +02003898 data);
Dirk Brandewie5377a412011-01-06 14:29:54 +00003899 return E1000_SUCCESS;
3900 }
3901
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003902 /* A check for invalid values: offset too large, too many words, and
3903 * not enough words.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003904 */
3905 if ((offset >= eeprom->word_size)
3906 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003907 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3908 "size = %d\n", offset, eeprom->word_size);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003909 return -E1000_ERR_EEPROM;
3910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003911
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003912 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3913 * directly. In this case, we need to acquire the EEPROM so that
3914 * FW or other port software does not interrupt.
3915 */
Jesse Brandeburg8f601b22009-09-25 12:20:11 +00003916 /* Prepare the EEPROM for bit-bang reading */
3917 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3918 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003919
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003920 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003921 * acquired the EEPROM at this point, so any returns should release it
3922 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003923 if (eeprom->type == e1000_eeprom_spi) {
3924 u16 word_in;
3925 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003926
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003927 if (e1000_spi_eeprom_ready(hw)) {
3928 e1000_release_eeprom(hw);
3929 return -E1000_ERR_EEPROM;
3930 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003932 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003933
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003934 /* Some SPI eeproms use the 8th address bit embedded in the
3935 * opcode
3936 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003937 if ((eeprom->address_bits == 8) && (offset >= 128))
3938 read_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003939
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003940 /* Send the READ command (opcode + addr) */
3941 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3942 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3943 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003945 /* Read the data. The address of the eeprom internally
3946 * increments with each byte (spi) being read, saving on the
3947 * overhead of eeprom setup and tear-down. The address counter
3948 * will roll over if reading beyond the size of the eeprom, thus
3949 * allowing the entire memory to be read starting from any
3950 * offset.
3951 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003952 for (i = 0; i < words; i++) {
3953 word_in = e1000_shift_in_ee_bits(hw, 16);
3954 data[i] = (word_in >> 8) | (word_in << 8);
3955 }
3956 } else if (eeprom->type == e1000_eeprom_microwire) {
3957 for (i = 0; i < words; i++) {
3958 /* Send the READ command (opcode + addr) */
3959 e1000_shift_out_ee_bits(hw,
3960 EEPROM_READ_OPCODE_MICROWIRE,
3961 eeprom->opcode_bits);
3962 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3963 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00003965 /* Read the data. For microwire, each word requires the
3966 * overhead of eeprom setup and tear-down.
3967 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003968 data[i] = e1000_shift_in_ee_bits(hw, 16);
3969 e1000_standby_eeprom(hw);
Joern Engele09b8902015-07-23 14:54:34 -07003970 cond_resched();
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003971 }
3972 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003973
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003974 /* End this read operation */
3975 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003977 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003978}
3979
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003980/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003981 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3982 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003983 *
3984 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3985 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3986 * valid.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003987 */
Joe Perches64798842008-07-11 15:17:02 -07003988s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003989{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003990 u16 checksum = 0;
3991 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003992
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003993 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3994 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003995 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003996 return -E1000_ERR_EEPROM;
3997 }
3998 checksum += eeprom_data;
3999 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004000
Jeff Kirshere2faeec2011-08-30 20:58:56 -04004001#ifdef CONFIG_PARISC
4002 /* This is a signature and not a checksum on HP c8000 */
4003 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4004 return E1000_SUCCESS;
4005
4006#endif
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004007 if (checksum == (u16) EEPROM_SUM)
4008 return E1000_SUCCESS;
4009 else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004010 e_dbg("EEPROM Checksum Invalid\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004011 return -E1000_ERR_EEPROM;
4012 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004013}
4014
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004015/**
4016 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4017 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004018 *
4019 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4020 * Writes the difference to word offset 63 of the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004021 */
Joe Perches64798842008-07-11 15:17:02 -07004022s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004024 u16 checksum = 0;
4025 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004027 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4028 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004029 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004030 return -E1000_ERR_EEPROM;
4031 }
4032 checksum += eeprom_data;
4033 }
4034 checksum = (u16) EEPROM_SUM - checksum;
4035 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004036 e_dbg("EEPROM Write Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004037 return -E1000_ERR_EEPROM;
4038 }
4039 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040}
4041
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004042/**
4043 * e1000_write_eeprom - write words to the different EEPROM types.
4044 * @hw: Struct containing variables accessed by shared code
4045 * @offset: offset within the EEPROM to be written to
4046 * @words: number of words to write
4047 * @data: 16 bit word to be written to the EEPROM
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048 *
4049 * If e1000_update_eeprom_checksum is not called after this function, the
4050 * EEPROM will most likely contain an invalid checksum.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004051 */
Joe Perches64798842008-07-11 15:17:02 -07004052s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004053{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004054 s32 ret;
Joern Engele09b8902015-07-23 14:54:34 -07004055 mutex_lock(&e1000_eeprom_lock);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004056 ret = e1000_do_write_eeprom(hw, offset, words, data);
Joern Engele09b8902015-07-23 14:54:34 -07004057 mutex_unlock(&e1000_eeprom_lock);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004058 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07004059}
4060
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004061static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4062 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07004063{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004064 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4065 s32 status = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066
Dirk Brandewie5377a412011-01-06 14:29:54 +00004067 if (hw->mac_type == e1000_ce4100) {
4068 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
Janusz Wolaka48954c2015-09-17 23:34:29 +02004069 data);
Dirk Brandewie5377a412011-01-06 14:29:54 +00004070 return E1000_SUCCESS;
4071 }
4072
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004073 /* A check for invalid values: offset too large, too many words, and
4074 * not enough words.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004075 */
4076 if ((offset >= eeprom->word_size)
4077 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004078 e_dbg("\"words\" parameter out of bounds\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004079 return -E1000_ERR_EEPROM;
4080 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004081
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004082 /* Prepare the EEPROM for writing */
4083 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4084 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004085
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004086 if (eeprom->type == e1000_eeprom_microwire) {
4087 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4088 } else {
4089 status = e1000_write_eeprom_spi(hw, offset, words, data);
4090 msleep(10);
4091 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004093 /* Done with writing */
4094 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004096 return status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004097}
4098
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004099/**
4100 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4101 * @hw: Struct containing variables accessed by shared code
4102 * @offset: offset within the EEPROM to be written to
4103 * @words: number of words to write
4104 * @data: pointer to array of 8 bit words to be written to the EEPROM
4105 */
Joe Perches64798842008-07-11 15:17:02 -07004106static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4107 u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004108{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004109 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4110 u16 widx = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004112 while (widx < words) {
4113 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004115 if (e1000_spi_eeprom_ready(hw))
4116 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004117
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004118 e1000_standby_eeprom(hw);
Joern Engele09b8902015-07-23 14:54:34 -07004119 cond_resched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004121 /* Send the WRITE ENABLE command (8 bit opcode ) */
4122 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4123 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004125 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004127 /* Some SPI eeproms use the 8th address bit embedded in the
4128 * opcode
4129 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004130 if ((eeprom->address_bits == 8) && (offset >= 128))
4131 write_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004132
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004133 /* Send the Write command (8-bit opcode + addr) */
4134 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004136 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4137 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004139 /* Send the data */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004141 /* Loop to allow for up to whole page write (32 bytes) of
4142 * eeprom
4143 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004144 while (widx < words) {
4145 u16 word_out = data[widx];
4146 word_out = (word_out >> 8) | (word_out << 8);
4147 e1000_shift_out_ee_bits(hw, word_out, 16);
4148 widx++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004149
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004150 /* Some larger eeprom sizes are capable of a 32-byte
4151 * PAGE WRITE operation, while the smaller eeproms are
4152 * capable of an 8-byte PAGE WRITE operation. Break the
4153 * inner loop to pass new address
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004154 */
4155 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4156 e1000_standby_eeprom(hw);
4157 break;
4158 }
4159 }
4160 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004161
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004162 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163}
4164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004165/**
4166 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4167 * @hw: Struct containing variables accessed by shared code
4168 * @offset: offset within the EEPROM to be written to
4169 * @words: number of words to write
4170 * @data: pointer to array of 8 bit words to be written to the EEPROM
4171 */
Joe Perches64798842008-07-11 15:17:02 -07004172static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4173 u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004174{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004175 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4176 u32 eecd;
4177 u16 words_written = 0;
4178 u16 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004179
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004180 /* Send the write enable command to the EEPROM (3-bit opcode plus
4181 * 6/8-bit dummy address beginning with 11). It's less work to include
4182 * the 11 of the dummy address as part of the opcode than it is to shift
4183 * it over the correct number of bits for the address. This puts the
4184 * EEPROM into write/erase mode.
4185 */
4186 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4187 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004188
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004189 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004191 /* Prepare the EEPROM */
4192 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004194 while (words_written < words) {
4195 /* Send the Write command (3-bit opcode + addr) */
4196 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4197 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004198
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004199 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4200 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004201
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004202 /* Send the data */
4203 e1000_shift_out_ee_bits(hw, data[words_written], 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004204
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004205 /* Toggle the CS line. This in effect tells the EEPROM to
4206 * execute the previous command.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004207 */
4208 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004209
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004210 /* Read DO repeatedly until it is high (equal to '1'). The
4211 * EEPROM will signal that the command has been completed by
4212 * raising the DO signal. If DO does not go high in 10
4213 * milliseconds, then error out.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004214 */
4215 for (i = 0; i < 200; i++) {
4216 eecd = er32(EECD);
4217 if (eecd & E1000_EECD_DO)
4218 break;
4219 udelay(50);
4220 }
4221 if (i == 200) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004222 e_dbg("EEPROM Write did not complete\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004223 return -E1000_ERR_EEPROM;
4224 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004226 /* Recover from write */
4227 e1000_standby_eeprom(hw);
Joern Engele09b8902015-07-23 14:54:34 -07004228 cond_resched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004229
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004230 words_written++;
4231 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004233 /* Send the write disable command to the EEPROM (3-bit opcode plus
4234 * 6/8-bit dummy address beginning with 10). It's less work to include
4235 * the 10 of the dummy address as part of the opcode than it is to shift
4236 * it over the correct number of bits for the address. This takes the
4237 * EEPROM out of write/erase mode.
4238 */
4239 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4240 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004242 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004243
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004244 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245}
4246
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004247/**
4248 * e1000_read_mac_addr - read the adapters MAC from eeprom
4249 * @hw: Struct containing variables accessed by shared code
4250 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004251 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4252 * second function of dual function devices
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004253 */
Joe Perches64798842008-07-11 15:17:02 -07004254s32 e1000_read_mac_addr(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004256 u16 offset;
4257 u16 eeprom_data, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004258
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004259 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4260 offset = i >> 1;
4261 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004262 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004263 return -E1000_ERR_EEPROM;
4264 }
4265 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4266 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4267 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004268
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004269 switch (hw->mac_type) {
4270 default:
4271 break;
4272 case e1000_82546:
4273 case e1000_82546_rev_3:
4274 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4275 hw->perm_mac_addr[5] ^= 0x01;
4276 break;
4277 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004279 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4280 hw->mac_addr[i] = hw->perm_mac_addr[i];
4281 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004282}
4283
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004284/**
4285 * e1000_init_rx_addrs - Initializes receive address filters.
4286 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004287 *
4288 * Places the MAC address in receive address register 0 and clears the rest
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004289 * of the receive address registers. Clears the multicast table. Assumes
Linus Torvalds1da177e2005-04-16 15:20:36 -07004290 * the receiver is in reset when the routine is called.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004291 */
Joe Perches64798842008-07-11 15:17:02 -07004292static void e1000_init_rx_addrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004294 u32 i;
4295 u32 rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004296
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004297 /* Setup the receive address. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004298 e_dbg("Programming MAC Address into RAR[0]\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004299
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004300 e1000_rar_set(hw, hw->mac_addr, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004302 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004303
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004304 /* Zero out the other 15 receive addresses. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004305 e_dbg("Clearing RAR[1-15]\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004306 for (i = 1; i < rar_num; i++) {
4307 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4308 E1000_WRITE_FLUSH();
4309 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4310 E1000_WRITE_FLUSH();
4311 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004312}
4313
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004314/**
4315 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4316 * @hw: Struct containing variables accessed by shared code
4317 * @mc_addr: the multicast address to hash
4318 */
Joe Perches64798842008-07-11 15:17:02 -07004319u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004320{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004321 u32 hash_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004322
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004323 /* The portion of the address that is used for the hash table is
4324 * determined by the mc_filter_type setting.
4325 */
4326 switch (hw->mc_filter_type) {
4327 /* [0] [1] [2] [3] [4] [5]
4328 * 01 AA 00 12 34 56
4329 * LSB MSB
4330 */
4331 case 0:
4332 /* [47:36] i.e. 0x563 for above example address */
4333 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4334 break;
4335 case 1:
4336 /* [46:35] i.e. 0xAC6 for above example address */
4337 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4338 break;
4339 case 2:
4340 /* [45:34] i.e. 0x5D8 for above example address */
4341 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4342 break;
4343 case 3:
4344 /* [43:32] i.e. 0x634 for above example address */
4345 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4346 break;
4347 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004348
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004349 hash_value &= 0xFFF;
4350 return hash_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004351}
4352
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004353/**
4354 * e1000_rar_set - Puts an ethernet address into a receive address register.
4355 * @hw: Struct containing variables accessed by shared code
4356 * @addr: Address to put into receive address register
4357 * @index: Receive address register to write
4358 */
Joe Perches64798842008-07-11 15:17:02 -07004359void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004360{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004361 u32 rar_low, rar_high;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004363 /* HW expects these in little endian so we reverse the byte order
4364 * from network order (big endian) to little endian
4365 */
4366 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4367 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4368 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004369
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004370 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4371 * unit hang.
4372 *
4373 * Description:
4374 * If there are any Rx frames queued up or otherwise present in the HW
4375 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4376 * hang. To work around this issue, we have to disable receives and
4377 * flush out all Rx frames before we enable RSS. To do so, we modify we
4378 * redirect all Rx traffic to manageability and then reset the HW.
4379 * This flushes away Rx frames, and (since the redirections to
4380 * manageability persists across resets) keeps new ones from coming in
4381 * while we work. Then, we clear the Address Valid AV bit for all MAC
4382 * addresses and undo the re-direction to manageability.
4383 * Now, frames are coming in again, but the MAC won't accept them, so
4384 * far so good. We now proceed to initialize RSS (if necessary) and
4385 * configure the Rx unit. Last, we re-enable the AV bits and continue
4386 * on our merry way.
4387 */
4388 switch (hw->mac_type) {
4389 default:
4390 /* Indicate to hardware the Address is Valid. */
4391 rar_high |= E1000_RAH_AV;
4392 break;
4393 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004394
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004395 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4396 E1000_WRITE_FLUSH();
4397 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4398 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004399}
4400
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004401/**
4402 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4403 * @hw: Struct containing variables accessed by shared code
4404 * @offset: Offset in VLAN filer table to write
4405 * @value: Value to write into VLAN filter table
4406 */
Joe Perches64798842008-07-11 15:17:02 -07004407void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004408{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004409 u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004410
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004411 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4412 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4413 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4414 E1000_WRITE_FLUSH();
4415 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4416 E1000_WRITE_FLUSH();
4417 } else {
4418 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4419 E1000_WRITE_FLUSH();
4420 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004421}
4422
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004423/**
4424 * e1000_clear_vfta - Clears the VLAN filer table
4425 * @hw: Struct containing variables accessed by shared code
4426 */
Joe Perches64798842008-07-11 15:17:02 -07004427static void e1000_clear_vfta(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004428{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004429 u32 offset;
4430 u32 vfta_value = 0;
4431 u32 vfta_offset = 0;
4432 u32 vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004433
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004434 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4435 /* If the offset we want to clear is the same offset of the
4436 * manageability VLAN ID, then clear all bits except that of the
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00004437 * manageability unit
4438 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004439 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4440 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4441 E1000_WRITE_FLUSH();
4442 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004443}
4444
Joe Perches64798842008-07-11 15:17:02 -07004445static s32 e1000_id_led_init(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004446{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004447 u32 ledctl;
4448 const u32 ledctl_mask = 0x000000FF;
4449 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4450 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4451 u16 eeprom_data, i, temp;
4452 const u16 led_mask = 0x0F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004453
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004454 if (hw->mac_type < e1000_82540) {
4455 /* Nothing to do */
4456 return E1000_SUCCESS;
4457 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004458
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004459 ledctl = er32(LEDCTL);
4460 hw->ledctl_default = ledctl;
4461 hw->ledctl_mode1 = hw->ledctl_default;
4462 hw->ledctl_mode2 = hw->ledctl_default;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004463
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004464 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004465 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004466 return -E1000_ERR_EEPROM;
4467 }
Auke Kokcd94dd02006-06-27 09:08:22 -07004468
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004469 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4470 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4471 eeprom_data = ID_LED_DEFAULT;
4472 }
Auke Kok90fb5132006-11-01 08:47:30 -08004473
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004474 for (i = 0; i < 4; i++) {
4475 temp = (eeprom_data >> (i << 2)) & led_mask;
4476 switch (temp) {
4477 case ID_LED_ON1_DEF2:
4478 case ID_LED_ON1_ON2:
4479 case ID_LED_ON1_OFF2:
4480 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4481 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4482 break;
4483 case ID_LED_OFF1_DEF2:
4484 case ID_LED_OFF1_ON2:
4485 case ID_LED_OFF1_OFF2:
4486 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4488 break;
4489 default:
4490 /* Do nothing */
4491 break;
4492 }
4493 switch (temp) {
4494 case ID_LED_DEF1_ON2:
4495 case ID_LED_ON1_ON2:
4496 case ID_LED_OFF1_ON2:
4497 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4498 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4499 break;
4500 case ID_LED_DEF1_OFF2:
4501 case ID_LED_ON1_OFF2:
4502 case ID_LED_OFF1_OFF2:
4503 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4505 break;
4506 default:
4507 /* Do nothing */
4508 break;
4509 }
4510 }
4511 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004512}
4513
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004514/**
4515 * e1000_setup_led
4516 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004517 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004518 * Prepares SW controlable LED for use and saves the current state of the LED.
4519 */
Joe Perches64798842008-07-11 15:17:02 -07004520s32 e1000_setup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004521{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004522 u32 ledctl;
4523 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004524
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004525 switch (hw->mac_type) {
4526 case e1000_82542_rev2_0:
4527 case e1000_82542_rev2_1:
4528 case e1000_82543:
4529 case e1000_82544:
4530 /* No setup necessary */
4531 break;
4532 case e1000_82541:
4533 case e1000_82547:
4534 case e1000_82541_rev_2:
4535 case e1000_82547_rev_2:
4536 /* Turn off PHY Smart Power Down (if enabled) */
4537 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4538 &hw->phy_spd_default);
4539 if (ret_val)
4540 return ret_val;
4541 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4542 (u16) (hw->phy_spd_default &
4543 ~IGP01E1000_GMII_SPD));
4544 if (ret_val)
4545 return ret_val;
4546 /* Fall Through */
4547 default:
4548 if (hw->media_type == e1000_media_type_fiber) {
4549 ledctl = er32(LEDCTL);
4550 /* Save current LEDCTL settings */
4551 hw->ledctl_default = ledctl;
4552 /* Turn off LED0 */
4553 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4554 E1000_LEDCTL_LED0_BLINK |
4555 E1000_LEDCTL_LED0_MODE_MASK);
4556 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4557 E1000_LEDCTL_LED0_MODE_SHIFT);
4558 ew32(LEDCTL, ledctl);
4559 } else if (hw->media_type == e1000_media_type_copper)
4560 ew32(LEDCTL, hw->ledctl_mode1);
4561 break;
4562 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004563
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004564 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004565}
4566
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004567/**
4568 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4569 * @hw: Struct containing variables accessed by shared code
4570 */
Joe Perches64798842008-07-11 15:17:02 -07004571s32 e1000_cleanup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004572{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004573 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004574
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004575 switch (hw->mac_type) {
4576 case e1000_82542_rev2_0:
4577 case e1000_82542_rev2_1:
4578 case e1000_82543:
4579 case e1000_82544:
4580 /* No cleanup necessary */
4581 break;
4582 case e1000_82541:
4583 case e1000_82547:
4584 case e1000_82541_rev_2:
4585 case e1000_82547_rev_2:
4586 /* Turn on PHY Smart Power Down (if previously enabled) */
4587 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4588 hw->phy_spd_default);
4589 if (ret_val)
4590 return ret_val;
4591 /* Fall Through */
4592 default:
4593 /* Restore LEDCTL settings */
4594 ew32(LEDCTL, hw->ledctl_default);
4595 break;
4596 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004597
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004598 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004599}
4600
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004601/**
4602 * e1000_led_on - Turns on the software controllable LED
4603 * @hw: Struct containing variables accessed by shared code
4604 */
Joe Perches64798842008-07-11 15:17:02 -07004605s32 e1000_led_on(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004606{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004607 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004608
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004609 switch (hw->mac_type) {
4610 case e1000_82542_rev2_0:
4611 case e1000_82542_rev2_1:
4612 case e1000_82543:
4613 /* Set SW Defineable Pin 0 to turn on the LED */
4614 ctrl |= E1000_CTRL_SWDPIN0;
4615 ctrl |= E1000_CTRL_SWDPIO0;
4616 break;
4617 case e1000_82544:
4618 if (hw->media_type == e1000_media_type_fiber) {
4619 /* Set SW Defineable Pin 0 to turn on the LED */
4620 ctrl |= E1000_CTRL_SWDPIN0;
4621 ctrl |= E1000_CTRL_SWDPIO0;
4622 } else {
4623 /* Clear SW Defineable Pin 0 to turn on the LED */
4624 ctrl &= ~E1000_CTRL_SWDPIN0;
4625 ctrl |= E1000_CTRL_SWDPIO0;
4626 }
4627 break;
4628 default:
4629 if (hw->media_type == e1000_media_type_fiber) {
4630 /* Clear SW Defineable Pin 0 to turn on the LED */
4631 ctrl &= ~E1000_CTRL_SWDPIN0;
4632 ctrl |= E1000_CTRL_SWDPIO0;
4633 } else if (hw->media_type == e1000_media_type_copper) {
4634 ew32(LEDCTL, hw->ledctl_mode2);
4635 return E1000_SUCCESS;
4636 }
4637 break;
4638 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004639
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004640 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004641
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004642 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643}
4644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004645/**
4646 * e1000_led_off - Turns off the software controllable LED
4647 * @hw: Struct containing variables accessed by shared code
4648 */
Joe Perches64798842008-07-11 15:17:02 -07004649s32 e1000_led_off(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004650{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004651 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004652
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004653 switch (hw->mac_type) {
4654 case e1000_82542_rev2_0:
4655 case e1000_82542_rev2_1:
4656 case e1000_82543:
4657 /* Clear SW Defineable Pin 0 to turn off the LED */
4658 ctrl &= ~E1000_CTRL_SWDPIN0;
4659 ctrl |= E1000_CTRL_SWDPIO0;
4660 break;
4661 case e1000_82544:
4662 if (hw->media_type == e1000_media_type_fiber) {
4663 /* Clear SW Defineable Pin 0 to turn off the LED */
4664 ctrl &= ~E1000_CTRL_SWDPIN0;
4665 ctrl |= E1000_CTRL_SWDPIO0;
4666 } else {
4667 /* Set SW Defineable Pin 0 to turn off the LED */
4668 ctrl |= E1000_CTRL_SWDPIN0;
4669 ctrl |= E1000_CTRL_SWDPIO0;
4670 }
4671 break;
4672 default:
4673 if (hw->media_type == e1000_media_type_fiber) {
4674 /* Set SW Defineable Pin 0 to turn off the LED */
4675 ctrl |= E1000_CTRL_SWDPIN0;
4676 ctrl |= E1000_CTRL_SWDPIO0;
4677 } else if (hw->media_type == e1000_media_type_copper) {
4678 ew32(LEDCTL, hw->ledctl_mode1);
4679 return E1000_SUCCESS;
4680 }
4681 break;
4682 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004683
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004684 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004685
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004686 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004687}
4688
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004689/**
4690 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4691 * @hw: Struct containing variables accessed by shared code
4692 */
Joe Perches64798842008-07-11 15:17:02 -07004693static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004694{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004695 volatile u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004696
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004697 temp = er32(CRCERRS);
4698 temp = er32(SYMERRS);
4699 temp = er32(MPC);
4700 temp = er32(SCC);
4701 temp = er32(ECOL);
4702 temp = er32(MCC);
4703 temp = er32(LATECOL);
4704 temp = er32(COLC);
4705 temp = er32(DC);
4706 temp = er32(SEC);
4707 temp = er32(RLEC);
4708 temp = er32(XONRXC);
4709 temp = er32(XONTXC);
4710 temp = er32(XOFFRXC);
4711 temp = er32(XOFFTXC);
4712 temp = er32(FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07004713
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004714 temp = er32(PRC64);
4715 temp = er32(PRC127);
4716 temp = er32(PRC255);
4717 temp = er32(PRC511);
4718 temp = er32(PRC1023);
4719 temp = er32(PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004720
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004721 temp = er32(GPRC);
4722 temp = er32(BPRC);
4723 temp = er32(MPRC);
4724 temp = er32(GPTC);
4725 temp = er32(GORCL);
4726 temp = er32(GORCH);
4727 temp = er32(GOTCL);
4728 temp = er32(GOTCH);
4729 temp = er32(RNBC);
4730 temp = er32(RUC);
4731 temp = er32(RFC);
4732 temp = er32(ROC);
4733 temp = er32(RJC);
4734 temp = er32(TORL);
4735 temp = er32(TORH);
4736 temp = er32(TOTL);
4737 temp = er32(TOTH);
4738 temp = er32(TPR);
4739 temp = er32(TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07004740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004741 temp = er32(PTC64);
4742 temp = er32(PTC127);
4743 temp = er32(PTC255);
4744 temp = er32(PTC511);
4745 temp = er32(PTC1023);
4746 temp = er32(PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004747
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004748 temp = er32(MPTC);
4749 temp = er32(BPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004750
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004751 if (hw->mac_type < e1000_82543)
4752 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004753
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004754 temp = er32(ALGNERRC);
4755 temp = er32(RXERRC);
4756 temp = er32(TNCRS);
4757 temp = er32(CEXTERR);
4758 temp = er32(TSCTC);
4759 temp = er32(TSCTFC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004760
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004761 if (hw->mac_type <= e1000_82544)
4762 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004763
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004764 temp = er32(MGTPRC);
4765 temp = er32(MGTPDC);
4766 temp = er32(MGTPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004767}
4768
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004769/**
4770 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4771 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004772 *
4773 * Call this after e1000_init_hw. You may override the IFS defaults by setting
Joe Perchesc3033b02008-03-21 11:06:25 -07004774 * hw->ifs_params_forced to true. However, you must initialize hw->
Linus Torvalds1da177e2005-04-16 15:20:36 -07004775 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4776 * before calling this function.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004777 */
Joe Perches64798842008-07-11 15:17:02 -07004778void e1000_reset_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004780 if (hw->adaptive_ifs) {
4781 if (!hw->ifs_params_forced) {
4782 hw->current_ifs_val = 0;
4783 hw->ifs_min_val = IFS_MIN;
4784 hw->ifs_max_val = IFS_MAX;
4785 hw->ifs_step_size = IFS_STEP;
4786 hw->ifs_ratio = IFS_RATIO;
4787 }
4788 hw->in_ifs_mode = false;
4789 ew32(AIT, 0);
4790 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004791 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004792 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004793}
4794
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004795/**
4796 * e1000_update_adaptive - update adaptive IFS
4797 * @hw: Struct containing variables accessed by shared code
4798 * @tx_packets: Number of transmits since last callback
4799 * @total_collisions: Number of collisions since last callback
4800 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004801 * Called during the callback/watchdog routine to update IFS value based on
4802 * the ratio of transmits to collisions.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004803 */
Joe Perches64798842008-07-11 15:17:02 -07004804void e1000_update_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004805{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004806 if (hw->adaptive_ifs) {
4807 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4808 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4809 hw->in_ifs_mode = true;
4810 if (hw->current_ifs_val < hw->ifs_max_val) {
4811 if (hw->current_ifs_val == 0)
4812 hw->current_ifs_val =
4813 hw->ifs_min_val;
4814 else
4815 hw->current_ifs_val +=
4816 hw->ifs_step_size;
4817 ew32(AIT, hw->current_ifs_val);
4818 }
4819 }
4820 } else {
4821 if (hw->in_ifs_mode
4822 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4823 hw->current_ifs_val = 0;
4824 hw->in_ifs_mode = false;
4825 ew32(AIT, 0);
4826 }
4827 }
4828 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004829 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004830 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004831}
4832
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004833/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004834 * e1000_get_bus_info
4835 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004836 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004837 * Gets the current PCI bus type, speed, and width of the hardware
4838 */
Joe Perches64798842008-07-11 15:17:02 -07004839void e1000_get_bus_info(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004841 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004843 switch (hw->mac_type) {
4844 case e1000_82542_rev2_0:
4845 case e1000_82542_rev2_1:
4846 hw->bus_type = e1000_bus_type_pci;
4847 hw->bus_speed = e1000_bus_speed_unknown;
4848 hw->bus_width = e1000_bus_width_unknown;
4849 break;
4850 default:
4851 status = er32(STATUS);
4852 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4853 e1000_bus_type_pcix : e1000_bus_type_pci;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004854
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004855 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4856 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4857 e1000_bus_speed_66 : e1000_bus_speed_120;
4858 } else if (hw->bus_type == e1000_bus_type_pci) {
4859 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4860 e1000_bus_speed_66 : e1000_bus_speed_33;
4861 } else {
4862 switch (status & E1000_STATUS_PCIX_SPEED) {
4863 case E1000_STATUS_PCIX_SPEED_66:
4864 hw->bus_speed = e1000_bus_speed_66;
4865 break;
4866 case E1000_STATUS_PCIX_SPEED_100:
4867 hw->bus_speed = e1000_bus_speed_100;
4868 break;
4869 case E1000_STATUS_PCIX_SPEED_133:
4870 hw->bus_speed = e1000_bus_speed_133;
4871 break;
4872 default:
4873 hw->bus_speed = e1000_bus_speed_reserved;
4874 break;
4875 }
4876 }
4877 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4878 e1000_bus_width_64 : e1000_bus_width_32;
4879 break;
4880 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004881}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004882
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004883/**
4884 * e1000_write_reg_io
4885 * @hw: Struct containing variables accessed by shared code
4886 * @offset: offset to write to
4887 * @value: value to write
4888 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004889 * Writes a value to one of the devices registers using port I/O (as opposed to
4890 * memory mapped I/O). Only 82544 and newer devices support port I/O.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004891 */
Joe Perches64798842008-07-11 15:17:02 -07004892static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004893{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004894 unsigned long io_addr = hw->io_base;
4895 unsigned long io_data = hw->io_base + 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004896
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004897 e1000_io_write(hw, io_addr, offset);
4898 e1000_io_write(hw, io_data, value);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899}
4900
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004901/**
4902 * e1000_get_cable_length - Estimates the cable length.
4903 * @hw: Struct containing variables accessed by shared code
4904 * @min_length: The estimated minimum length
4905 * @max_length: The estimated maximum length
Linus Torvalds1da177e2005-04-16 15:20:36 -07004906 *
4907 * returns: - E1000_ERR_XXX
4908 * E1000_SUCCESS
4909 *
4910 * This function always returns a ranged length (minimum & maximum).
4911 * So for M88 phy's, this function interprets the one value returned from the
4912 * register to the minimum and maximum range.
4913 * For IGP phy's, the function calculates the range by the AGC registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004914 */
Joe Perches64798842008-07-11 15:17:02 -07004915static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4916 u16 *max_length)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004917{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004918 s32 ret_val;
4919 u16 agc_value = 0;
4920 u16 i, phy_data;
4921 u16 cable_length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004922
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004923 *min_length = *max_length = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004924
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004925 /* Use old method for Phy older than IGP */
4926 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004927
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004928 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4929 &phy_data);
4930 if (ret_val)
4931 return ret_val;
4932 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4933 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004934
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004935 /* Convert the enum value to ranged values */
4936 switch (cable_length) {
4937 case e1000_cable_length_50:
4938 *min_length = 0;
4939 *max_length = e1000_igp_cable_length_50;
4940 break;
4941 case e1000_cable_length_50_80:
4942 *min_length = e1000_igp_cable_length_50;
4943 *max_length = e1000_igp_cable_length_80;
4944 break;
4945 case e1000_cable_length_80_110:
4946 *min_length = e1000_igp_cable_length_80;
4947 *max_length = e1000_igp_cable_length_110;
4948 break;
4949 case e1000_cable_length_110_140:
4950 *min_length = e1000_igp_cable_length_110;
4951 *max_length = e1000_igp_cable_length_140;
4952 break;
4953 case e1000_cable_length_140:
4954 *min_length = e1000_igp_cable_length_140;
4955 *max_length = e1000_igp_cable_length_170;
4956 break;
4957 default:
4958 return -E1000_ERR_PHY;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004959 }
4960 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4961 u16 cur_agc_value;
4962 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Jeff Kirsher66744502010-12-01 19:59:50 +00004963 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4964 IGP01E1000_PHY_AGC_A,
4965 IGP01E1000_PHY_AGC_B,
4966 IGP01E1000_PHY_AGC_C,
4967 IGP01E1000_PHY_AGC_D
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004968 };
4969 /* Read the AGC registers for all channels */
4970 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004971
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004972 ret_val =
4973 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4974 if (ret_val)
4975 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004977 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004979 /* Value bound check. */
4980 if ((cur_agc_value >=
4981 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
4982 || (cur_agc_value == 0))
4983 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004984
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004985 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004986
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004987 /* Update minimal AGC value. */
4988 if (min_agc_value > cur_agc_value)
4989 min_agc_value = cur_agc_value;
4990 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004992 /* Remove the minimal AGC result for length < 50m */
4993 if (agc_value <
4994 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4995 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004996
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004997 /* Get the average length of the remaining 3 channels */
4998 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4999 } else {
5000 /* Get the average length of all the 4 channels. */
5001 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5002 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005003
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005004 /* Set the range of the calculated length. */
5005 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5006 IGP01E1000_AGC_RANGE) > 0) ?
5007 (e1000_igp_cable_length_table[agc_value] -
5008 IGP01E1000_AGC_RANGE) : 0;
5009 *max_length = e1000_igp_cable_length_table[agc_value] +
5010 IGP01E1000_AGC_RANGE;
5011 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005012
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005013 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005014}
5015
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005016/**
5017 * e1000_check_polarity - Check the cable polarity
5018 * @hw: Struct containing variables accessed by shared code
5019 * @polarity: output parameter : 0 - Polarity is not reversed
Linus Torvalds1da177e2005-04-16 15:20:36 -07005020 * 1 - Polarity is reversed.
5021 *
5022 * returns: - E1000_ERR_XXX
5023 * E1000_SUCCESS
5024 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005025 * For phy's older than IGP, this function simply reads the polarity bit in the
Linus Torvalds1da177e2005-04-16 15:20:36 -07005026 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5027 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5028 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5029 * IGP01E1000_PHY_PCS_INIT_REG.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005030 */
Joe Perches64798842008-07-11 15:17:02 -07005031static s32 e1000_check_polarity(struct e1000_hw *hw,
5032 e1000_rev_polarity *polarity)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005033{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005034 s32 ret_val;
5035 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005036
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005037 if (hw->phy_type == e1000_phy_m88) {
5038 /* return the Polarity bit in the Status register. */
5039 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5040 &phy_data);
5041 if (ret_val)
5042 return ret_val;
5043 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5044 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5045 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07005046
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005047 } else if (hw->phy_type == e1000_phy_igp) {
5048 /* Read the Status register to check the speed */
5049 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5050 &phy_data);
5051 if (ret_val)
5052 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005053
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005054 /* If speed is 1000 Mbps, must read the
5055 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5056 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005057 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5058 IGP01E1000_PSSR_SPEED_1000MBPS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005059
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005060 /* Read the GIG initialization PCS register (0x00B4) */
5061 ret_val =
5062 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5063 &phy_data);
5064 if (ret_val)
5065 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005066
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005067 /* Check the polarity bits */
5068 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5069 e1000_rev_polarity_reversed :
5070 e1000_rev_polarity_normal;
5071 } else {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005072 /* For 10 Mbps, read the polarity bit in the status
5073 * register. (for 100 Mbps this bit is always 0)
5074 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005075 *polarity =
5076 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5077 e1000_rev_polarity_reversed :
5078 e1000_rev_polarity_normal;
5079 }
5080 }
5081 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005082}
5083
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005084/**
5085 * e1000_check_downshift - Check if Downshift occurred
5086 * @hw: Struct containing variables accessed by shared code
5087 * @downshift: output parameter : 0 - No Downshift occurred.
5088 * 1 - Downshift occurred.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005089 *
5090 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07005091 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07005092 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005093 * For phy's older than IGP, this function reads the Downshift bit in the Phy
Linus Torvalds1da177e2005-04-16 15:20:36 -07005094 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5095 * Link Health register. In IGP this bit is latched high, so the driver must
5096 * read it immediately after link is established.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005097 */
Joe Perches64798842008-07-11 15:17:02 -07005098static s32 e1000_check_downshift(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005099{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005100 s32 ret_val;
5101 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005103 if (hw->phy_type == e1000_phy_igp) {
5104 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5105 &phy_data);
5106 if (ret_val)
5107 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005109 hw->speed_downgraded =
5110 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5111 } else if (hw->phy_type == e1000_phy_m88) {
5112 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5113 &phy_data);
5114 if (ret_val)
5115 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005116
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005117 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5118 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5119 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005121 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005122}
5123
Joe Perches542c3f42012-02-10 12:07:36 +00005124static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5125 IGP01E1000_PHY_AGC_PARAM_A,
5126 IGP01E1000_PHY_AGC_PARAM_B,
5127 IGP01E1000_PHY_AGC_PARAM_C,
5128 IGP01E1000_PHY_AGC_PARAM_D
5129};
5130
5131static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5132{
5133 u16 min_length, max_length;
5134 u16 phy_data, i;
5135 s32 ret_val;
5136
5137 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5138 if (ret_val)
5139 return ret_val;
5140
5141 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5142 return 0;
5143
5144 if (min_length >= e1000_igp_cable_length_50) {
5145 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5146 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5147 &phy_data);
5148 if (ret_val)
5149 return ret_val;
5150
5151 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5152
5153 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5154 phy_data);
5155 if (ret_val)
5156 return ret_val;
5157 }
5158 hw->dsp_config_state = e1000_dsp_config_activated;
5159 } else {
5160 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5161 u32 idle_errs = 0;
5162
5163 /* clear previous idle error counts */
5164 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5165 if (ret_val)
5166 return ret_val;
5167
5168 for (i = 0; i < ffe_idle_err_timeout; i++) {
5169 udelay(1000);
5170 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5171 &phy_data);
5172 if (ret_val)
5173 return ret_val;
5174
5175 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5176 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5177 hw->ffe_config_state = e1000_ffe_config_active;
5178
5179 ret_val = e1000_write_phy_reg(hw,
5180 IGP01E1000_PHY_DSP_FFE,
5181 IGP01E1000_PHY_DSP_FFE_CM_CP);
5182 if (ret_val)
5183 return ret_val;
5184 break;
5185 }
5186
5187 if (idle_errs)
5188 ffe_idle_err_timeout =
5189 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5190 }
5191 }
5192
5193 return 0;
5194}
5195
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005196/**
5197 * e1000_config_dsp_after_link_change
5198 * @hw: Struct containing variables accessed by shared code
5199 * @link_up: was link up at the time this was called
5200 *
5201 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5202 * E1000_SUCCESS at any other case.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005203 *
5204 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5205 * gigabit link is achieved to improve link quality.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005206 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005207
Joe Perches64798842008-07-11 15:17:02 -07005208static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005210 s32 ret_val;
5211 u16 phy_data, phy_saved_data, speed, duplex, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005212
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005213 if (hw->phy_type != e1000_phy_igp)
5214 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005215
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005216 if (link_up) {
5217 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5218 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00005219 e_dbg("Error getting link speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005220 return ret_val;
5221 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005222
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005223 if (speed == SPEED_1000) {
Joe Perches542c3f42012-02-10 12:07:36 +00005224 ret_val = e1000_1000Mb_check_cable_length(hw);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005225 if (ret_val)
5226 return ret_val;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005227 }
5228 } else {
5229 if (hw->dsp_config_state == e1000_dsp_config_activated) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005230 /* Save off the current value of register 0x2F5B to be
5231 * restored at the end of the routines.
5232 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005233 ret_val =
5234 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005235
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005236 if (ret_val)
5237 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005238
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005239 /* Disable the PHY transmitter */
5240 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005241
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005242 if (ret_val)
5243 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005244
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005245 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005246
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005247 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005248 IGP01E1000_IEEE_FORCE_GIGA);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005249 if (ret_val)
5250 return ret_val;
5251 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5252 ret_val =
5253 e1000_read_phy_reg(hw, dsp_reg_array[i],
5254 &phy_data);
5255 if (ret_val)
5256 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005257
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005258 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5259 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005260
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005261 ret_val =
5262 e1000_write_phy_reg(hw, dsp_reg_array[i],
5263 phy_data);
5264 if (ret_val)
5265 return ret_val;
5266 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005267
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005268 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005269 IGP01E1000_IEEE_RESTART_AUTONEG);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005270 if (ret_val)
5271 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005272
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005273 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005274
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005275 /* Now enable the transmitter */
5276 ret_val =
5277 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005279 if (ret_val)
5280 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005281
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005282 hw->dsp_config_state = e1000_dsp_config_enabled;
5283 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005284
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005285 if (hw->ffe_config_state == e1000_ffe_config_active) {
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005286 /* Save off the current value of register 0x2F5B to be
5287 * restored at the end of the routines.
5288 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005289 ret_val =
5290 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005291
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005292 if (ret_val)
5293 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005294
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005295 /* Disable the PHY transmitter */
5296 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005297
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005298 if (ret_val)
5299 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005300
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005301 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005302
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005303 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005304 IGP01E1000_IEEE_FORCE_GIGA);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005305 if (ret_val)
5306 return ret_val;
5307 ret_val =
5308 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5309 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5310 if (ret_val)
5311 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005312
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005313 ret_val = e1000_write_phy_reg(hw, 0x0000,
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005314 IGP01E1000_IEEE_RESTART_AUTONEG);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005315 if (ret_val)
5316 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005317
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005318 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005319
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005320 /* Now enable the transmitter */
5321 ret_val =
5322 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005323
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005324 if (ret_val)
5325 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005326
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005327 hw->ffe_config_state = e1000_ffe_config_enabled;
5328 }
5329 }
5330 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005331}
5332
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005333/**
5334 * e1000_set_phy_mode - Set PHY to class A mode
5335 * @hw: Struct containing variables accessed by shared code
5336 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337 * Assumes the following operations will follow to enable the new class mode.
5338 * 1. Do a PHY soft reset
5339 * 2. Restart auto-negotiation or force link.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005340 */
Joe Perches64798842008-07-11 15:17:02 -07005341static s32 e1000_set_phy_mode(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005342{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005343 s32 ret_val;
5344 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005346 if ((hw->mac_type == e1000_82545_rev_3) &&
5347 (hw->media_type == e1000_media_type_copper)) {
5348 ret_val =
5349 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5350 &eeprom_data);
5351 if (ret_val) {
5352 return ret_val;
5353 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005354
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005355 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5356 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5357 ret_val =
5358 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5359 0x000B);
5360 if (ret_val)
5361 return ret_val;
5362 ret_val =
5363 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5364 0x8104);
5365 if (ret_val)
5366 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005367
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005368 hw->phy_reset_disable = false;
5369 }
5370 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005371
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005372 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005373}
5374
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005375/**
5376 * e1000_set_d3_lplu_state - set d3 link power state
5377 * @hw: Struct containing variables accessed by shared code
5378 * @active: true to enable lplu false to disable lplu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379 *
5380 * This function sets the lplu state according to the active flag. When
5381 * activating lplu this function also disables smart speed and vise versa.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005382 * lplu will not be activated unless the device autonegotiation advertisement
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005384 *
5385 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5386 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005387 */
Joe Perches64798842008-07-11 15:17:02 -07005388static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005389{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005390 s32 ret_val;
5391 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005392
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005393 if (hw->phy_type != e1000_phy_igp)
5394 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005395
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005396 /* During driver activity LPLU should not be used or it will attain link
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005397 * from the lowest speeds starting from 10Mbps. The capability is used
5398 * for Dx transitions and states
5399 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005400 if (hw->mac_type == e1000_82541_rev_2
5401 || hw->mac_type == e1000_82547_rev_2) {
5402 ret_val =
5403 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5404 if (ret_val)
5405 return ret_val;
5406 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005407
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005408 if (!active) {
5409 if (hw->mac_type == e1000_82541_rev_2 ||
5410 hw->mac_type == e1000_82547_rev_2) {
5411 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5412 ret_val =
5413 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5414 phy_data);
5415 if (ret_val)
5416 return ret_val;
5417 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005418
Jeff Kirsher6cfbd972013-02-09 12:49:21 +00005419 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5420 * during Dx states where the power conservation is most
5421 * important. During driver activity we should enable
5422 * SmartSpeed, so performance is maintained.
5423 */
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005424 if (hw->smart_speed == e1000_smart_speed_on) {
5425 ret_val =
5426 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5427 &phy_data);
5428 if (ret_val)
5429 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005431 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5432 ret_val =
5433 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5434 phy_data);
5435 if (ret_val)
5436 return ret_val;
5437 } else if (hw->smart_speed == e1000_smart_speed_off) {
5438 ret_val =
5439 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5440 &phy_data);
5441 if (ret_val)
5442 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005443
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005444 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5445 ret_val =
5446 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5447 phy_data);
5448 if (ret_val)
5449 return ret_val;
5450 }
5451 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5452 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5453 || (hw->autoneg_advertised ==
5454 AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005455
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005456 if (hw->mac_type == e1000_82541_rev_2 ||
5457 hw->mac_type == e1000_82547_rev_2) {
5458 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5459 ret_val =
5460 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5461 phy_data);
5462 if (ret_val)
5463 return ret_val;
5464 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005465
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005466 /* When LPLU is enabled we should disable SmartSpeed */
5467 ret_val =
5468 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5469 &phy_data);
5470 if (ret_val)
5471 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005472
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005473 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5474 ret_val =
5475 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5476 phy_data);
5477 if (ret_val)
5478 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005479
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005480 }
5481 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005482}
5483
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005484/**
5485 * e1000_set_vco_speed
5486 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07005487 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005488 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5489 */
Joe Perches64798842008-07-11 15:17:02 -07005490static s32 e1000_set_vco_speed(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005491{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005492 s32 ret_val;
5493 u16 default_page = 0;
5494 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005495
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005496 switch (hw->mac_type) {
5497 case e1000_82545_rev_3:
5498 case e1000_82546_rev_3:
5499 break;
5500 default:
5501 return E1000_SUCCESS;
5502 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005503
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005504 /* Set PHY register 30, page 5, bit 8 to 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005505
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005506 ret_val =
5507 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5508 if (ret_val)
5509 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005510
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005511 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5512 if (ret_val)
5513 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005514
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005515 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5516 if (ret_val)
5517 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005518
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005519 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5520 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5521 if (ret_val)
5522 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005523
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005524 /* Set PHY register 30, page 4, bit 11 to 1 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005525
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005526 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5527 if (ret_val)
5528 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005529
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005530 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5531 if (ret_val)
5532 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005533
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005534 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5535 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5536 if (ret_val)
5537 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005538
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005539 ret_val =
5540 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5541 if (ret_val)
5542 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005543
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005544 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005545}
5546
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005547
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005548/**
5549 * e1000_enable_mng_pass_thru - check for bmc pass through
5550 * @hw: Struct containing variables accessed by shared code
5551 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005552 * Verifies the hardware needs to allow ARPs to be processed by the host
Joe Perchesc3033b02008-03-21 11:06:25 -07005553 * returns: - true/false
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005554 */
Joe Perches64798842008-07-11 15:17:02 -07005555u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005556{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005557 u32 manc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005558
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005559 if (hw->asf_firmware_present) {
5560 manc = er32(MANC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005561
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005562 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5563 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5564 return false;
5565 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5566 return true;
5567 }
5568 return false;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005569}
5570
Joe Perches64798842008-07-11 15:17:02 -07005571static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005572{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005573 s32 ret_val;
5574 u16 mii_status_reg;
5575 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005576
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005577 /* Polarity reversal workaround for forced 10F/10H links. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005578
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005579 /* Disable the transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005580
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005581 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5582 if (ret_val)
5583 return ret_val;
5584 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5585 if (ret_val)
5586 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005587
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005588 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5589 if (ret_val)
5590 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005591
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005592 /* This loop will early-out if the NO link condition has been met. */
5593 for (i = PHY_FORCE_TIME; i > 0; i--) {
5594 /* Read the MII Status Register and wait for Link Status bit
5595 * to be clear.
5596 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005598 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5599 if (ret_val)
5600 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005601
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005602 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5603 if (ret_val)
5604 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005605
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005606 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5607 break;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005608 msleep(100);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005609 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005610
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005611 /* Recommended delay time after link has been lost */
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005612 msleep(1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005614 /* Now we will re-enable th transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005615
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005616 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5617 if (ret_val)
5618 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005619 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005620 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5621 if (ret_val)
5622 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005623 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005624 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5625 if (ret_val)
5626 return ret_val;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005627 msleep(50);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005628 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5629 if (ret_val)
5630 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005631
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005632 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5633 if (ret_val)
5634 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005635
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005636 /* This loop will early-out if the link condition has been met. */
5637 for (i = PHY_FORCE_TIME; i > 0; i--) {
5638 /* Read the MII Status Register and wait for Link Status bit
5639 * to be set.
5640 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005641
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005642 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5643 if (ret_val)
5644 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005645
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005646 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5647 if (ret_val)
5648 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005649
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005650 if (mii_status_reg & MII_SR_LINK_STATUS)
5651 break;
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005652 msleep(100);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005653 }
5654 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005655}
5656
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005657/**
5658 * e1000_get_auto_rd_done
5659 * @hw: Struct containing variables accessed by shared code
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005660 *
5661 * Check for EEPROM Auto Read bit done.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005662 * returns: - E1000_ERR_RESET if fail to reset MAC
5663 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005664 */
Joe Perches64798842008-07-11 15:17:02 -07005665static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005666{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005667 msleep(5);
5668 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005669}
5670
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005671/**
5672 * e1000_get_phy_cfg_done
5673 * @hw: Struct containing variables accessed by shared code
5674 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005675 * Checks if the PHY configuration is done
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005676 * returns: - E1000_ERR_RESET if fail to reset MAC
5677 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005678 */
Joe Perches64798842008-07-11 15:17:02 -07005679static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005680{
Jesse Brandeburg4e0d8f7d2011-10-05 07:24:46 +00005681 msleep(10);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005682 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005683}