Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/x86-64/mm/fault.c |
| 3 | * |
| 4 | * Copyright (C) 1995 Linus Torvalds |
| 5 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/config.h> |
| 9 | #include <linux/signal.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/string.h> |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/ptrace.h> |
| 16 | #include <linux/mman.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/smp.h> |
| 19 | #include <linux/smp_lock.h> |
| 20 | #include <linux/interrupt.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/tty.h> |
| 23 | #include <linux/vt_kern.h> /* For unblank_screen() */ |
| 24 | #include <linux/compiler.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/kprobes.h> |
| 27 | |
| 28 | #include <asm/system.h> |
| 29 | #include <asm/uaccess.h> |
| 30 | #include <asm/pgalloc.h> |
| 31 | #include <asm/smp.h> |
| 32 | #include <asm/tlbflush.h> |
| 33 | #include <asm/proto.h> |
| 34 | #include <asm/kdebug.h> |
| 35 | #include <asm-generic/sections.h> |
| 36 | #include <asm/kdebug.h> |
| 37 | |
| 38 | void bust_spinlocks(int yes) |
| 39 | { |
| 40 | int loglevel_save = console_loglevel; |
| 41 | if (yes) { |
| 42 | oops_in_progress = 1; |
| 43 | } else { |
| 44 | #ifdef CONFIG_VT |
| 45 | unblank_screen(); |
| 46 | #endif |
| 47 | oops_in_progress = 0; |
| 48 | /* |
| 49 | * OK, the message is on the console. Now we call printk() |
| 50 | * without oops_in_progress set so that printk will give klogd |
| 51 | * a poke. Hold onto your hats... |
| 52 | */ |
| 53 | console_loglevel = 15; /* NMI oopser may have shut the console up */ |
| 54 | printk(" "); |
| 55 | console_loglevel = loglevel_save; |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | /* Sometimes the CPU reports invalid exceptions on prefetch. |
| 60 | Check that here and ignore. |
| 61 | Opcode checker based on code by Richard Brunner */ |
| 62 | static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr, |
| 63 | unsigned long error_code) |
| 64 | { |
Andi Kleen | f1290ec | 2005-04-16 15:24:59 -0700 | [diff] [blame^] | 65 | unsigned char *instr; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | int scan_more = 1; |
| 67 | int prefetch = 0; |
Andi Kleen | f1290ec | 2005-04-16 15:24:59 -0700 | [diff] [blame^] | 68 | unsigned char *max_instr; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 69 | |
| 70 | /* If it was a exec fault ignore */ |
| 71 | if (error_code & (1<<4)) |
| 72 | return 0; |
| 73 | |
Andi Kleen | f1290ec | 2005-04-16 15:24:59 -0700 | [diff] [blame^] | 74 | instr = (unsigned char *)convert_rip_to_linear(current, regs); |
| 75 | max_instr = instr + 15; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 76 | |
Andi Kleen | f1290ec | 2005-04-16 15:24:59 -0700 | [diff] [blame^] | 77 | if ((regs->cs & 3) != 0 && instr >= (unsigned char *)TASK_SIZE) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 78 | return 0; |
| 79 | |
| 80 | while (scan_more && instr < max_instr) { |
| 81 | unsigned char opcode; |
| 82 | unsigned char instr_hi; |
| 83 | unsigned char instr_lo; |
| 84 | |
| 85 | if (__get_user(opcode, instr)) |
| 86 | break; |
| 87 | |
| 88 | instr_hi = opcode & 0xf0; |
| 89 | instr_lo = opcode & 0x0f; |
| 90 | instr++; |
| 91 | |
| 92 | switch (instr_hi) { |
| 93 | case 0x20: |
| 94 | case 0x30: |
| 95 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 |
| 96 | prefixes. In long mode, the CPU will signal |
| 97 | invalid opcode if some of these prefixes are |
| 98 | present so we will never get here anyway */ |
| 99 | scan_more = ((instr_lo & 7) == 0x6); |
| 100 | break; |
| 101 | |
| 102 | case 0x40: |
| 103 | /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes |
| 104 | Need to figure out under what instruction mode the |
| 105 | instruction was issued ... */ |
| 106 | /* Could check the LDT for lm, but for now it's good |
| 107 | enough to assume that long mode only uses well known |
| 108 | segments or kernel. */ |
| 109 | scan_more = ((regs->cs & 3) == 0) || (regs->cs == __USER_CS); |
| 110 | break; |
| 111 | |
| 112 | case 0x60: |
| 113 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ |
| 114 | scan_more = (instr_lo & 0xC) == 0x4; |
| 115 | break; |
| 116 | case 0xF0: |
| 117 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */ |
| 118 | scan_more = !instr_lo || (instr_lo>>1) == 1; |
| 119 | break; |
| 120 | case 0x00: |
| 121 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ |
| 122 | scan_more = 0; |
| 123 | if (__get_user(opcode, instr)) |
| 124 | break; |
| 125 | prefetch = (instr_lo == 0xF) && |
| 126 | (opcode == 0x0D || opcode == 0x18); |
| 127 | break; |
| 128 | default: |
| 129 | scan_more = 0; |
| 130 | break; |
| 131 | } |
| 132 | } |
| 133 | return prefetch; |
| 134 | } |
| 135 | |
| 136 | static int bad_address(void *p) |
| 137 | { |
| 138 | unsigned long dummy; |
| 139 | return __get_user(dummy, (unsigned long *)p); |
| 140 | } |
| 141 | |
| 142 | void dump_pagetable(unsigned long address) |
| 143 | { |
| 144 | pgd_t *pgd; |
| 145 | pud_t *pud; |
| 146 | pmd_t *pmd; |
| 147 | pte_t *pte; |
| 148 | |
| 149 | asm("movq %%cr3,%0" : "=r" (pgd)); |
| 150 | |
| 151 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); |
| 152 | pgd += pgd_index(address); |
| 153 | printk("PGD %lx ", pgd_val(*pgd)); |
| 154 | if (bad_address(pgd)) goto bad; |
| 155 | if (!pgd_present(*pgd)) goto ret; |
| 156 | |
| 157 | pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address); |
| 158 | if (bad_address(pud)) goto bad; |
| 159 | printk("PUD %lx ", pud_val(*pud)); |
| 160 | if (!pud_present(*pud)) goto ret; |
| 161 | |
| 162 | pmd = pmd_offset(pud, address); |
| 163 | if (bad_address(pmd)) goto bad; |
| 164 | printk("PMD %lx ", pmd_val(*pmd)); |
| 165 | if (!pmd_present(*pmd)) goto ret; |
| 166 | |
| 167 | pte = pte_offset_kernel(pmd, address); |
| 168 | if (bad_address(pte)) goto bad; |
| 169 | printk("PTE %lx", pte_val(*pte)); |
| 170 | ret: |
| 171 | printk("\n"); |
| 172 | return; |
| 173 | bad: |
| 174 | printk("BAD\n"); |
| 175 | } |
| 176 | |
| 177 | static const char errata93_warning[] = |
| 178 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" |
| 179 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" |
| 180 | KERN_ERR "******* Please consider a BIOS update.\n" |
| 181 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; |
| 182 | |
| 183 | /* Workaround for K8 erratum #93 & buggy BIOS. |
| 184 | BIOS SMM functions are required to use a specific workaround |
| 185 | to avoid corruption of the 64bit RIP register on C stepping K8. |
| 186 | A lot of BIOS that didn't get tested properly miss this. |
| 187 | The OS sees this as a page fault with the upper 32bits of RIP cleared. |
| 188 | Try to work around it here. |
| 189 | Note we only handle faults in kernel here. */ |
| 190 | |
| 191 | static int is_errata93(struct pt_regs *regs, unsigned long address) |
| 192 | { |
| 193 | static int warned; |
| 194 | if (address != regs->rip) |
| 195 | return 0; |
| 196 | if ((address >> 32) != 0) |
| 197 | return 0; |
| 198 | address |= 0xffffffffUL << 32; |
| 199 | if ((address >= (u64)_stext && address <= (u64)_etext) || |
| 200 | (address >= MODULES_VADDR && address <= MODULES_END)) { |
| 201 | if (!warned) { |
| 202 | printk(errata93_warning); |
| 203 | warned = 1; |
| 204 | } |
| 205 | regs->rip = address; |
| 206 | return 1; |
| 207 | } |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | int unhandled_signal(struct task_struct *tsk, int sig) |
| 212 | { |
| 213 | if (tsk->pid == 1) |
| 214 | return 1; |
| 215 | /* Warn for strace, but not for gdb */ |
| 216 | if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) && |
| 217 | (tsk->ptrace & PT_PTRACED)) |
| 218 | return 0; |
| 219 | return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || |
| 220 | (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); |
| 221 | } |
| 222 | |
| 223 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, |
| 224 | unsigned long error_code) |
| 225 | { |
| 226 | oops_begin(); |
| 227 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", |
| 228 | current->comm, address); |
| 229 | dump_pagetable(address); |
| 230 | __die("Bad pagetable", regs, error_code); |
| 231 | oops_end(); |
| 232 | do_exit(SIGKILL); |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * Handle a fault on the vmalloc or module mapping area |
| 237 | */ |
| 238 | static int vmalloc_fault(unsigned long address) |
| 239 | { |
| 240 | pgd_t *pgd, *pgd_ref; |
| 241 | pud_t *pud, *pud_ref; |
| 242 | pmd_t *pmd, *pmd_ref; |
| 243 | pte_t *pte, *pte_ref; |
| 244 | |
| 245 | /* Copy kernel mappings over when needed. This can also |
| 246 | happen within a race in page table update. In the later |
| 247 | case just flush. */ |
| 248 | |
| 249 | pgd = pgd_offset(current->mm ?: &init_mm, address); |
| 250 | pgd_ref = pgd_offset_k(address); |
| 251 | if (pgd_none(*pgd_ref)) |
| 252 | return -1; |
| 253 | if (pgd_none(*pgd)) |
| 254 | set_pgd(pgd, *pgd_ref); |
| 255 | |
| 256 | /* Below here mismatches are bugs because these lower tables |
| 257 | are shared */ |
| 258 | |
| 259 | pud = pud_offset(pgd, address); |
| 260 | pud_ref = pud_offset(pgd_ref, address); |
| 261 | if (pud_none(*pud_ref)) |
| 262 | return -1; |
| 263 | if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref)) |
| 264 | BUG(); |
| 265 | pmd = pmd_offset(pud, address); |
| 266 | pmd_ref = pmd_offset(pud_ref, address); |
| 267 | if (pmd_none(*pmd_ref)) |
| 268 | return -1; |
| 269 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) |
| 270 | BUG(); |
| 271 | pte_ref = pte_offset_kernel(pmd_ref, address); |
| 272 | if (!pte_present(*pte_ref)) |
| 273 | return -1; |
| 274 | pte = pte_offset_kernel(pmd, address); |
| 275 | if (!pte_present(*pte) || pte_page(*pte) != pte_page(*pte_ref)) |
| 276 | BUG(); |
| 277 | __flush_tlb_all(); |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | int page_fault_trace = 0; |
| 282 | int exception_trace = 1; |
| 283 | |
| 284 | /* |
| 285 | * This routine handles page faults. It determines the address, |
| 286 | * and the problem, and then passes it off to one of the appropriate |
| 287 | * routines. |
| 288 | * |
| 289 | * error_code: |
| 290 | * bit 0 == 0 means no page found, 1 means protection fault |
| 291 | * bit 1 == 0 means read, 1 means write |
| 292 | * bit 2 == 0 means kernel, 1 means user-mode |
| 293 | * bit 3 == 1 means fault was an instruction fetch |
| 294 | */ |
| 295 | asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code) |
| 296 | { |
| 297 | struct task_struct *tsk; |
| 298 | struct mm_struct *mm; |
| 299 | struct vm_area_struct * vma; |
| 300 | unsigned long address; |
| 301 | const struct exception_table_entry *fixup; |
| 302 | int write; |
| 303 | siginfo_t info; |
| 304 | |
| 305 | #ifdef CONFIG_CHECKING |
| 306 | { |
| 307 | unsigned long gs; |
| 308 | struct x8664_pda *pda = cpu_pda + stack_smp_processor_id(); |
| 309 | rdmsrl(MSR_GS_BASE, gs); |
| 310 | if (gs != (unsigned long)pda) { |
| 311 | wrmsrl(MSR_GS_BASE, pda); |
| 312 | printk("page_fault: wrong gs %lx expected %p\n", gs, pda); |
| 313 | } |
| 314 | } |
| 315 | #endif |
| 316 | |
| 317 | /* get the address */ |
| 318 | __asm__("movq %%cr2,%0":"=r" (address)); |
| 319 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, |
| 320 | SIGSEGV) == NOTIFY_STOP) |
| 321 | return; |
| 322 | |
| 323 | if (likely(regs->eflags & X86_EFLAGS_IF)) |
| 324 | local_irq_enable(); |
| 325 | |
| 326 | if (unlikely(page_fault_trace)) |
| 327 | printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n", |
| 328 | regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); |
| 329 | |
| 330 | tsk = current; |
| 331 | mm = tsk->mm; |
| 332 | info.si_code = SEGV_MAPERR; |
| 333 | |
| 334 | |
| 335 | /* |
| 336 | * We fault-in kernel-space virtual memory on-demand. The |
| 337 | * 'reference' page table is init_mm.pgd. |
| 338 | * |
| 339 | * NOTE! We MUST NOT take any locks for this case. We may |
| 340 | * be in an interrupt or a critical region, and should |
| 341 | * only copy the information from the master page table, |
| 342 | * nothing more. |
| 343 | * |
| 344 | * This verifies that the fault happens in kernel space |
| 345 | * (error_code & 4) == 0, and that the fault was not a |
| 346 | * protection error (error_code & 1) == 0. |
| 347 | */ |
| 348 | if (unlikely(address >= TASK_SIZE)) { |
| 349 | if (!(error_code & 5)) { |
| 350 | if (vmalloc_fault(address) < 0) |
| 351 | goto bad_area_nosemaphore; |
| 352 | return; |
| 353 | } |
| 354 | /* |
| 355 | * Don't take the mm semaphore here. If we fixup a prefetch |
| 356 | * fault we could otherwise deadlock. |
| 357 | */ |
| 358 | goto bad_area_nosemaphore; |
| 359 | } |
| 360 | |
| 361 | if (unlikely(error_code & (1 << 3))) |
| 362 | pgtable_bad(address, regs, error_code); |
| 363 | |
| 364 | /* |
| 365 | * If we're in an interrupt or have no user |
| 366 | * context, we must not take the fault.. |
| 367 | */ |
| 368 | if (unlikely(in_atomic() || !mm)) |
| 369 | goto bad_area_nosemaphore; |
| 370 | |
| 371 | again: |
| 372 | /* When running in the kernel we expect faults to occur only to |
| 373 | * addresses in user space. All other faults represent errors in the |
| 374 | * kernel and should generate an OOPS. Unfortunatly, in the case of an |
| 375 | * erroneous fault occuring in a code path which already holds mmap_sem |
| 376 | * we will deadlock attempting to validate the fault against the |
| 377 | * address space. Luckily the kernel only validly references user |
| 378 | * space from well defined areas of code, which are listed in the |
| 379 | * exceptions table. |
| 380 | * |
| 381 | * As the vast majority of faults will be valid we will only perform |
| 382 | * the source reference check when there is a possibilty of a deadlock. |
| 383 | * Attempt to lock the address space, if we cannot we then validate the |
| 384 | * source. If this is invalid we can skip the address space check, |
| 385 | * thus avoiding the deadlock. |
| 386 | */ |
| 387 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 388 | if ((error_code & 4) == 0 && |
| 389 | !search_exception_tables(regs->rip)) |
| 390 | goto bad_area_nosemaphore; |
| 391 | down_read(&mm->mmap_sem); |
| 392 | } |
| 393 | |
| 394 | vma = find_vma(mm, address); |
| 395 | if (!vma) |
| 396 | goto bad_area; |
| 397 | if (likely(vma->vm_start <= address)) |
| 398 | goto good_area; |
| 399 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 400 | goto bad_area; |
| 401 | if (error_code & 4) { |
| 402 | // XXX: align red zone size with ABI |
| 403 | if (address + 128 < regs->rsp) |
| 404 | goto bad_area; |
| 405 | } |
| 406 | if (expand_stack(vma, address)) |
| 407 | goto bad_area; |
| 408 | /* |
| 409 | * Ok, we have a good vm_area for this memory access, so |
| 410 | * we can handle it.. |
| 411 | */ |
| 412 | good_area: |
| 413 | info.si_code = SEGV_ACCERR; |
| 414 | write = 0; |
| 415 | switch (error_code & 3) { |
| 416 | default: /* 3: write, present */ |
| 417 | /* fall through */ |
| 418 | case 2: /* write, not present */ |
| 419 | if (!(vma->vm_flags & VM_WRITE)) |
| 420 | goto bad_area; |
| 421 | write++; |
| 422 | break; |
| 423 | case 1: /* read, present */ |
| 424 | goto bad_area; |
| 425 | case 0: /* read, not present */ |
| 426 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| 427 | goto bad_area; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * If for any reason at all we couldn't handle the fault, |
| 432 | * make sure we exit gracefully rather than endlessly redo |
| 433 | * the fault. |
| 434 | */ |
| 435 | switch (handle_mm_fault(mm, vma, address, write)) { |
| 436 | case 1: |
| 437 | tsk->min_flt++; |
| 438 | break; |
| 439 | case 2: |
| 440 | tsk->maj_flt++; |
| 441 | break; |
| 442 | case 0: |
| 443 | goto do_sigbus; |
| 444 | default: |
| 445 | goto out_of_memory; |
| 446 | } |
| 447 | |
| 448 | up_read(&mm->mmap_sem); |
| 449 | return; |
| 450 | |
| 451 | /* |
| 452 | * Something tried to access memory that isn't in our memory map.. |
| 453 | * Fix it, but check if it's kernel or user first.. |
| 454 | */ |
| 455 | bad_area: |
| 456 | up_read(&mm->mmap_sem); |
| 457 | |
| 458 | bad_area_nosemaphore: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 459 | /* User mode accesses just cause a SIGSEGV */ |
| 460 | if (error_code & 4) { |
| 461 | if (is_prefetch(regs, address, error_code)) |
| 462 | return; |
| 463 | |
| 464 | /* Work around K8 erratum #100 K8 in compat mode |
| 465 | occasionally jumps to illegal addresses >4GB. We |
| 466 | catch this here in the page fault handler because |
| 467 | these addresses are not reachable. Just detect this |
| 468 | case and return. Any code segment in LDT is |
| 469 | compatibility mode. */ |
| 470 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && |
| 471 | (address >> 32)) |
| 472 | return; |
| 473 | |
| 474 | if (exception_trace && unhandled_signal(tsk, SIGSEGV)) { |
| 475 | printk( |
| 476 | "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n", |
| 477 | tsk->pid > 1 ? KERN_INFO : KERN_EMERG, |
| 478 | tsk->comm, tsk->pid, address, regs->rip, |
| 479 | regs->rsp, error_code); |
| 480 | } |
| 481 | |
| 482 | tsk->thread.cr2 = address; |
| 483 | /* Kernel addresses are always protection faults */ |
| 484 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); |
| 485 | tsk->thread.trap_no = 14; |
| 486 | info.si_signo = SIGSEGV; |
| 487 | info.si_errno = 0; |
| 488 | /* info.si_code has been set above */ |
| 489 | info.si_addr = (void __user *)address; |
| 490 | force_sig_info(SIGSEGV, &info, tsk); |
| 491 | return; |
| 492 | } |
| 493 | |
| 494 | no_context: |
| 495 | |
| 496 | /* Are we prepared to handle this kernel fault? */ |
| 497 | fixup = search_exception_tables(regs->rip); |
| 498 | if (fixup) { |
| 499 | regs->rip = fixup->fixup; |
| 500 | return; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Hall of shame of CPU/BIOS bugs. |
| 505 | */ |
| 506 | |
| 507 | if (is_prefetch(regs, address, error_code)) |
| 508 | return; |
| 509 | |
| 510 | if (is_errata93(regs, address)) |
| 511 | return; |
| 512 | |
| 513 | /* |
| 514 | * Oops. The kernel tried to access some bad page. We'll have to |
| 515 | * terminate things with extreme prejudice. |
| 516 | */ |
| 517 | |
| 518 | oops_begin(); |
| 519 | |
| 520 | if (address < PAGE_SIZE) |
| 521 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); |
| 522 | else |
| 523 | printk(KERN_ALERT "Unable to handle kernel paging request"); |
| 524 | printk(" at %016lx RIP: \n" KERN_ALERT,address); |
| 525 | printk_address(regs->rip); |
| 526 | printk("\n"); |
| 527 | dump_pagetable(address); |
| 528 | __die("Oops", regs, error_code); |
| 529 | /* Executive summary in case the body of the oops scrolled away */ |
| 530 | printk(KERN_EMERG "CR2: %016lx\n", address); |
| 531 | oops_end(); |
| 532 | do_exit(SIGKILL); |
| 533 | |
| 534 | /* |
| 535 | * We ran out of memory, or some other thing happened to us that made |
| 536 | * us unable to handle the page fault gracefully. |
| 537 | */ |
| 538 | out_of_memory: |
| 539 | up_read(&mm->mmap_sem); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 540 | if (current->pid == 1) { |
| 541 | yield(); |
| 542 | goto again; |
| 543 | } |
| 544 | printk("VM: killing process %s\n", tsk->comm); |
| 545 | if (error_code & 4) |
| 546 | do_exit(SIGKILL); |
| 547 | goto no_context; |
| 548 | |
| 549 | do_sigbus: |
| 550 | up_read(&mm->mmap_sem); |
| 551 | |
| 552 | /* Kernel mode? Handle exceptions or die */ |
| 553 | if (!(error_code & 4)) |
| 554 | goto no_context; |
| 555 | |
| 556 | tsk->thread.cr2 = address; |
| 557 | tsk->thread.error_code = error_code; |
| 558 | tsk->thread.trap_no = 14; |
| 559 | info.si_signo = SIGBUS; |
| 560 | info.si_errno = 0; |
| 561 | info.si_code = BUS_ADRERR; |
| 562 | info.si_addr = (void __user *)address; |
| 563 | force_sig_info(SIGBUS, &info, tsk); |
| 564 | return; |
| 565 | } |