Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/i386/mm/fault.c |
| 3 | * |
| 4 | * Copyright (C) 1995 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | #include <linux/signal.h> |
| 8 | #include <linux/sched.h> |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <linux/string.h> |
| 12 | #include <linux/types.h> |
| 13 | #include <linux/ptrace.h> |
| 14 | #include <linux/mman.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/smp.h> |
| 17 | #include <linux/smp_lock.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/tty.h> |
| 21 | #include <linux/vt_kern.h> /* For unblank_screen() */ |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/module.h> |
Prasanna S Panchamukhi | 3d97ae5 | 2005-09-06 15:19:27 -0700 | [diff] [blame] | 24 | #include <linux/kprobes.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 25 | |
| 26 | #include <asm/system.h> |
| 27 | #include <asm/uaccess.h> |
| 28 | #include <asm/desc.h> |
| 29 | #include <asm/kdebug.h> |
| 30 | |
| 31 | extern void die(const char *,struct pt_regs *,long); |
| 32 | |
| 33 | /* |
| 34 | * Unlock any spinlocks which will prevent us from getting the |
| 35 | * message out |
| 36 | */ |
| 37 | void bust_spinlocks(int yes) |
| 38 | { |
| 39 | int loglevel_save = console_loglevel; |
| 40 | |
| 41 | if (yes) { |
| 42 | oops_in_progress = 1; |
| 43 | return; |
| 44 | } |
| 45 | #ifdef CONFIG_VT |
| 46 | unblank_screen(); |
| 47 | #endif |
| 48 | oops_in_progress = 0; |
| 49 | /* |
| 50 | * OK, the message is on the console. Now we call printk() |
| 51 | * without oops_in_progress set so that printk will give klogd |
| 52 | * a poke. Hold onto your hats... |
| 53 | */ |
| 54 | console_loglevel = 15; /* NMI oopser may have shut the console up */ |
| 55 | printk(" "); |
| 56 | console_loglevel = loglevel_save; |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * Return EIP plus the CS segment base. The segment limit is also |
| 61 | * adjusted, clamped to the kernel/user address space (whichever is |
| 62 | * appropriate), and returned in *eip_limit. |
| 63 | * |
| 64 | * The segment is checked, because it might have been changed by another |
| 65 | * task between the original faulting instruction and here. |
| 66 | * |
| 67 | * If CS is no longer a valid code segment, or if EIP is beyond the |
| 68 | * limit, or if it is a kernel address when CS is not a kernel segment, |
| 69 | * then the returned value will be greater than *eip_limit. |
| 70 | * |
| 71 | * This is slow, but is very rarely executed. |
| 72 | */ |
| 73 | static inline unsigned long get_segment_eip(struct pt_regs *regs, |
| 74 | unsigned long *eip_limit) |
| 75 | { |
| 76 | unsigned long eip = regs->eip; |
| 77 | unsigned seg = regs->xcs & 0xffff; |
| 78 | u32 seg_ar, seg_limit, base, *desc; |
| 79 | |
| 80 | /* The standard kernel/user address space limit. */ |
| 81 | *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg; |
| 82 | |
| 83 | /* Unlikely, but must come before segment checks. */ |
| 84 | if (unlikely((regs->eflags & VM_MASK) != 0)) |
| 85 | return eip + (seg << 4); |
| 86 | |
| 87 | /* By far the most common cases. */ |
| 88 | if (likely(seg == __USER_CS || seg == __KERNEL_CS)) |
| 89 | return eip; |
| 90 | |
| 91 | /* Check the segment exists, is within the current LDT/GDT size, |
| 92 | that kernel/user (ring 0..3) has the appropriate privilege, |
| 93 | that it's a code segment, and get the limit. */ |
| 94 | __asm__ ("larl %3,%0; lsll %3,%1" |
| 95 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); |
| 96 | if ((~seg_ar & 0x9800) || eip > seg_limit) { |
| 97 | *eip_limit = 0; |
| 98 | return 1; /* So that returned eip > *eip_limit. */ |
| 99 | } |
| 100 | |
| 101 | /* Get the GDT/LDT descriptor base. |
| 102 | When you look for races in this code remember that |
| 103 | LDT and other horrors are only used in user space. */ |
| 104 | if (seg & (1<<2)) { |
| 105 | /* Must lock the LDT while reading it. */ |
| 106 | down(¤t->mm->context.sem); |
| 107 | desc = current->mm->context.ldt; |
| 108 | desc = (void *)desc + (seg & ~7); |
| 109 | } else { |
| 110 | /* Must disable preemption while reading the GDT. */ |
| 111 | desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu()); |
| 112 | desc = (void *)desc + (seg & ~7); |
| 113 | } |
| 114 | |
| 115 | /* Decode the code segment base from the descriptor */ |
| 116 | base = get_desc_base((unsigned long *)desc); |
| 117 | |
| 118 | if (seg & (1<<2)) { |
| 119 | up(¤t->mm->context.sem); |
| 120 | } else |
| 121 | put_cpu(); |
| 122 | |
| 123 | /* Adjust EIP and segment limit, and clamp at the kernel limit. |
| 124 | It's legitimate for segments to wrap at 0xffffffff. */ |
| 125 | seg_limit += base; |
| 126 | if (seg_limit < *eip_limit && seg_limit >= base) |
| 127 | *eip_limit = seg_limit; |
| 128 | return eip + base; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. |
| 133 | * Check that here and ignore it. |
| 134 | */ |
| 135 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) |
| 136 | { |
| 137 | unsigned long limit; |
| 138 | unsigned long instr = get_segment_eip (regs, &limit); |
| 139 | int scan_more = 1; |
| 140 | int prefetch = 0; |
| 141 | int i; |
| 142 | |
| 143 | for (i = 0; scan_more && i < 15; i++) { |
| 144 | unsigned char opcode; |
| 145 | unsigned char instr_hi; |
| 146 | unsigned char instr_lo; |
| 147 | |
| 148 | if (instr > limit) |
| 149 | break; |
Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 150 | if (__get_user(opcode, (unsigned char __user *) instr)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 151 | break; |
| 152 | |
| 153 | instr_hi = opcode & 0xf0; |
| 154 | instr_lo = opcode & 0x0f; |
| 155 | instr++; |
| 156 | |
| 157 | switch (instr_hi) { |
| 158 | case 0x20: |
| 159 | case 0x30: |
| 160 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ |
| 161 | scan_more = ((instr_lo & 7) == 0x6); |
| 162 | break; |
| 163 | |
| 164 | case 0x60: |
| 165 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ |
| 166 | scan_more = (instr_lo & 0xC) == 0x4; |
| 167 | break; |
| 168 | case 0xF0: |
| 169 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ |
| 170 | scan_more = !instr_lo || (instr_lo>>1) == 1; |
| 171 | break; |
| 172 | case 0x00: |
| 173 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ |
| 174 | scan_more = 0; |
| 175 | if (instr > limit) |
| 176 | break; |
Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 177 | if (__get_user(opcode, (unsigned char __user *) instr)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 178 | break; |
| 179 | prefetch = (instr_lo == 0xF) && |
| 180 | (opcode == 0x0D || opcode == 0x18); |
| 181 | break; |
| 182 | default: |
| 183 | scan_more = 0; |
| 184 | break; |
| 185 | } |
| 186 | } |
| 187 | return prefetch; |
| 188 | } |
| 189 | |
| 190 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, |
| 191 | unsigned long error_code) |
| 192 | { |
| 193 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| 194 | boot_cpu_data.x86 >= 6)) { |
| 195 | /* Catch an obscure case of prefetch inside an NX page. */ |
| 196 | if (nx_enabled && (error_code & 16)) |
| 197 | return 0; |
| 198 | return __is_prefetch(regs, addr); |
| 199 | } |
| 200 | return 0; |
| 201 | } |
| 202 | |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 203 | static noinline void force_sig_info_fault(int si_signo, int si_code, |
| 204 | unsigned long address, struct task_struct *tsk) |
| 205 | { |
| 206 | siginfo_t info; |
| 207 | |
| 208 | info.si_signo = si_signo; |
| 209 | info.si_errno = 0; |
| 210 | info.si_code = si_code; |
| 211 | info.si_addr = (void __user *)address; |
| 212 | force_sig_info(si_signo, &info, tsk); |
| 213 | } |
| 214 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 215 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); |
| 216 | |
| 217 | /* |
| 218 | * This routine handles page faults. It determines the address, |
| 219 | * and the problem, and then passes it off to one of the appropriate |
| 220 | * routines. |
| 221 | * |
| 222 | * error_code: |
| 223 | * bit 0 == 0 means no page found, 1 means protection fault |
| 224 | * bit 1 == 0 means read, 1 means write |
| 225 | * bit 2 == 0 means kernel, 1 means user-mode |
| 226 | */ |
Prasanna S Panchamukhi | 3d97ae5 | 2005-09-06 15:19:27 -0700 | [diff] [blame] | 227 | fastcall void __kprobes do_page_fault(struct pt_regs *regs, |
| 228 | unsigned long error_code) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 229 | { |
| 230 | struct task_struct *tsk; |
| 231 | struct mm_struct *mm; |
| 232 | struct vm_area_struct * vma; |
| 233 | unsigned long address; |
| 234 | unsigned long page; |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 235 | int write, si_code; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 236 | |
| 237 | /* get the address */ |
Zachary Amsden | 4bb0d3e | 2005-09-03 15:56:36 -0700 | [diff] [blame] | 238 | address = read_cr2(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 239 | |
| 240 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, |
| 241 | SIGSEGV) == NOTIFY_STOP) |
| 242 | return; |
| 243 | /* It's safe to allow irq's after cr2 has been saved */ |
| 244 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) |
| 245 | local_irq_enable(); |
| 246 | |
| 247 | tsk = current; |
| 248 | |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 249 | si_code = SEGV_MAPERR; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 250 | |
| 251 | /* |
| 252 | * We fault-in kernel-space virtual memory on-demand. The |
| 253 | * 'reference' page table is init_mm.pgd. |
| 254 | * |
| 255 | * NOTE! We MUST NOT take any locks for this case. We may |
| 256 | * be in an interrupt or a critical region, and should |
| 257 | * only copy the information from the master page table, |
| 258 | * nothing more. |
| 259 | * |
| 260 | * This verifies that the fault happens in kernel space |
| 261 | * (error_code & 4) == 0, and that the fault was not a |
| 262 | * protection error (error_code & 1) == 0. |
| 263 | */ |
| 264 | if (unlikely(address >= TASK_SIZE)) { |
| 265 | if (!(error_code & 5)) |
| 266 | goto vmalloc_fault; |
| 267 | /* |
| 268 | * Don't take the mm semaphore here. If we fixup a prefetch |
| 269 | * fault we could otherwise deadlock. |
| 270 | */ |
| 271 | goto bad_area_nosemaphore; |
| 272 | } |
| 273 | |
| 274 | mm = tsk->mm; |
| 275 | |
| 276 | /* |
| 277 | * If we're in an interrupt, have no user context or are running in an |
| 278 | * atomic region then we must not take the fault.. |
| 279 | */ |
| 280 | if (in_atomic() || !mm) |
| 281 | goto bad_area_nosemaphore; |
| 282 | |
| 283 | /* When running in the kernel we expect faults to occur only to |
| 284 | * addresses in user space. All other faults represent errors in the |
| 285 | * kernel and should generate an OOPS. Unfortunatly, in the case of an |
| 286 | * erroneous fault occuring in a code path which already holds mmap_sem |
| 287 | * we will deadlock attempting to validate the fault against the |
| 288 | * address space. Luckily the kernel only validly references user |
| 289 | * space from well defined areas of code, which are listed in the |
| 290 | * exceptions table. |
| 291 | * |
| 292 | * As the vast majority of faults will be valid we will only perform |
| 293 | * the source reference check when there is a possibilty of a deadlock. |
| 294 | * Attempt to lock the address space, if we cannot we then validate the |
| 295 | * source. If this is invalid we can skip the address space check, |
| 296 | * thus avoiding the deadlock. |
| 297 | */ |
| 298 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 299 | if ((error_code & 4) == 0 && |
| 300 | !search_exception_tables(regs->eip)) |
| 301 | goto bad_area_nosemaphore; |
| 302 | down_read(&mm->mmap_sem); |
| 303 | } |
| 304 | |
| 305 | vma = find_vma(mm, address); |
| 306 | if (!vma) |
| 307 | goto bad_area; |
| 308 | if (vma->vm_start <= address) |
| 309 | goto good_area; |
| 310 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 311 | goto bad_area; |
| 312 | if (error_code & 4) { |
| 313 | /* |
| 314 | * accessing the stack below %esp is always a bug. |
| 315 | * The "+ 32" is there due to some instructions (like |
| 316 | * pusha) doing post-decrement on the stack and that |
| 317 | * doesn't show up until later.. |
| 318 | */ |
| 319 | if (address + 32 < regs->esp) |
| 320 | goto bad_area; |
| 321 | } |
| 322 | if (expand_stack(vma, address)) |
| 323 | goto bad_area; |
| 324 | /* |
| 325 | * Ok, we have a good vm_area for this memory access, so |
| 326 | * we can handle it.. |
| 327 | */ |
| 328 | good_area: |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 329 | si_code = SEGV_ACCERR; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 330 | write = 0; |
| 331 | switch (error_code & 3) { |
| 332 | default: /* 3: write, present */ |
| 333 | #ifdef TEST_VERIFY_AREA |
| 334 | if (regs->cs == KERNEL_CS) |
| 335 | printk("WP fault at %08lx\n", regs->eip); |
| 336 | #endif |
| 337 | /* fall through */ |
| 338 | case 2: /* write, not present */ |
| 339 | if (!(vma->vm_flags & VM_WRITE)) |
| 340 | goto bad_area; |
| 341 | write++; |
| 342 | break; |
| 343 | case 1: /* read, present */ |
| 344 | goto bad_area; |
| 345 | case 0: /* read, not present */ |
| 346 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| 347 | goto bad_area; |
| 348 | } |
| 349 | |
| 350 | survive: |
| 351 | /* |
| 352 | * If for any reason at all we couldn't handle the fault, |
| 353 | * make sure we exit gracefully rather than endlessly redo |
| 354 | * the fault. |
| 355 | */ |
| 356 | switch (handle_mm_fault(mm, vma, address, write)) { |
| 357 | case VM_FAULT_MINOR: |
| 358 | tsk->min_flt++; |
| 359 | break; |
| 360 | case VM_FAULT_MAJOR: |
| 361 | tsk->maj_flt++; |
| 362 | break; |
| 363 | case VM_FAULT_SIGBUS: |
| 364 | goto do_sigbus; |
| 365 | case VM_FAULT_OOM: |
| 366 | goto out_of_memory; |
| 367 | default: |
| 368 | BUG(); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Did it hit the DOS screen memory VA from vm86 mode? |
| 373 | */ |
| 374 | if (regs->eflags & VM_MASK) { |
| 375 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; |
| 376 | if (bit < 32) |
| 377 | tsk->thread.screen_bitmap |= 1 << bit; |
| 378 | } |
| 379 | up_read(&mm->mmap_sem); |
| 380 | return; |
| 381 | |
| 382 | /* |
| 383 | * Something tried to access memory that isn't in our memory map.. |
| 384 | * Fix it, but check if it's kernel or user first.. |
| 385 | */ |
| 386 | bad_area: |
| 387 | up_read(&mm->mmap_sem); |
| 388 | |
| 389 | bad_area_nosemaphore: |
| 390 | /* User mode accesses just cause a SIGSEGV */ |
| 391 | if (error_code & 4) { |
| 392 | /* |
| 393 | * Valid to do another page fault here because this one came |
| 394 | * from user space. |
| 395 | */ |
| 396 | if (is_prefetch(regs, address, error_code)) |
| 397 | return; |
| 398 | |
| 399 | tsk->thread.cr2 = address; |
| 400 | /* Kernel addresses are always protection faults */ |
| 401 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); |
| 402 | tsk->thread.trap_no = 14; |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 403 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 404 | return; |
| 405 | } |
| 406 | |
| 407 | #ifdef CONFIG_X86_F00F_BUG |
| 408 | /* |
| 409 | * Pentium F0 0F C7 C8 bug workaround. |
| 410 | */ |
| 411 | if (boot_cpu_data.f00f_bug) { |
| 412 | unsigned long nr; |
| 413 | |
| 414 | nr = (address - idt_descr.address) >> 3; |
| 415 | |
| 416 | if (nr == 6) { |
| 417 | do_invalid_op(regs, 0); |
| 418 | return; |
| 419 | } |
| 420 | } |
| 421 | #endif |
| 422 | |
| 423 | no_context: |
| 424 | /* Are we prepared to handle this kernel fault? */ |
| 425 | if (fixup_exception(regs)) |
| 426 | return; |
| 427 | |
| 428 | /* |
| 429 | * Valid to do another page fault here, because if this fault |
| 430 | * had been triggered by is_prefetch fixup_exception would have |
| 431 | * handled it. |
| 432 | */ |
| 433 | if (is_prefetch(regs, address, error_code)) |
| 434 | return; |
| 435 | |
| 436 | /* |
| 437 | * Oops. The kernel tried to access some bad page. We'll have to |
| 438 | * terminate things with extreme prejudice. |
| 439 | */ |
| 440 | |
| 441 | bust_spinlocks(1); |
| 442 | |
| 443 | #ifdef CONFIG_X86_PAE |
| 444 | if (error_code & 16) { |
| 445 | pte_t *pte = lookup_address(address); |
| 446 | |
| 447 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) |
| 448 | printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid); |
| 449 | } |
| 450 | #endif |
| 451 | if (address < PAGE_SIZE) |
| 452 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); |
| 453 | else |
| 454 | printk(KERN_ALERT "Unable to handle kernel paging request"); |
| 455 | printk(" at virtual address %08lx\n",address); |
| 456 | printk(KERN_ALERT " printing eip:\n"); |
| 457 | printk("%08lx\n", regs->eip); |
Zachary Amsden | 4bb0d3e | 2005-09-03 15:56:36 -0700 | [diff] [blame] | 458 | page = read_cr3(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 459 | page = ((unsigned long *) __va(page))[address >> 22]; |
| 460 | printk(KERN_ALERT "*pde = %08lx\n", page); |
| 461 | /* |
| 462 | * We must not directly access the pte in the highpte |
| 463 | * case, the page table might be allocated in highmem. |
| 464 | * And lets rather not kmap-atomic the pte, just in case |
| 465 | * it's allocated already. |
| 466 | */ |
| 467 | #ifndef CONFIG_HIGHPTE |
| 468 | if (page & 1) { |
| 469 | page &= PAGE_MASK; |
| 470 | address &= 0x003ff000; |
| 471 | page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; |
| 472 | printk(KERN_ALERT "*pte = %08lx\n", page); |
| 473 | } |
| 474 | #endif |
Alexander Nyberg | 4f339ec | 2005-06-25 14:58:27 -0700 | [diff] [blame] | 475 | tsk->thread.cr2 = address; |
| 476 | tsk->thread.trap_no = 14; |
| 477 | tsk->thread.error_code = error_code; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 478 | die("Oops", regs, error_code); |
| 479 | bust_spinlocks(0); |
| 480 | do_exit(SIGKILL); |
| 481 | |
| 482 | /* |
| 483 | * We ran out of memory, or some other thing happened to us that made |
| 484 | * us unable to handle the page fault gracefully. |
| 485 | */ |
| 486 | out_of_memory: |
| 487 | up_read(&mm->mmap_sem); |
| 488 | if (tsk->pid == 1) { |
| 489 | yield(); |
| 490 | down_read(&mm->mmap_sem); |
| 491 | goto survive; |
| 492 | } |
| 493 | printk("VM: killing process %s\n", tsk->comm); |
| 494 | if (error_code & 4) |
| 495 | do_exit(SIGKILL); |
| 496 | goto no_context; |
| 497 | |
| 498 | do_sigbus: |
| 499 | up_read(&mm->mmap_sem); |
| 500 | |
| 501 | /* Kernel mode? Handle exceptions or die */ |
| 502 | if (!(error_code & 4)) |
| 503 | goto no_context; |
| 504 | |
| 505 | /* User space => ok to do another page fault */ |
| 506 | if (is_prefetch(regs, address, error_code)) |
| 507 | return; |
| 508 | |
| 509 | tsk->thread.cr2 = address; |
| 510 | tsk->thread.error_code = error_code; |
| 511 | tsk->thread.trap_no = 14; |
Ingo Molnar | 869f96a | 2005-09-03 15:56:26 -0700 | [diff] [blame] | 512 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 513 | return; |
| 514 | |
| 515 | vmalloc_fault: |
| 516 | { |
| 517 | /* |
| 518 | * Synchronize this task's top level page-table |
| 519 | * with the 'reference' page table. |
| 520 | * |
| 521 | * Do _not_ use "tsk" here. We might be inside |
| 522 | * an interrupt in the middle of a task switch.. |
| 523 | */ |
| 524 | int index = pgd_index(address); |
| 525 | unsigned long pgd_paddr; |
| 526 | pgd_t *pgd, *pgd_k; |
| 527 | pud_t *pud, *pud_k; |
| 528 | pmd_t *pmd, *pmd_k; |
| 529 | pte_t *pte_k; |
| 530 | |
Zachary Amsden | 4bb0d3e | 2005-09-03 15:56:36 -0700 | [diff] [blame] | 531 | pgd_paddr = read_cr3(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 532 | pgd = index + (pgd_t *)__va(pgd_paddr); |
| 533 | pgd_k = init_mm.pgd + index; |
| 534 | |
| 535 | if (!pgd_present(*pgd_k)) |
| 536 | goto no_context; |
| 537 | |
| 538 | /* |
| 539 | * set_pgd(pgd, *pgd_k); here would be useless on PAE |
| 540 | * and redundant with the set_pmd() on non-PAE. As would |
| 541 | * set_pud. |
| 542 | */ |
| 543 | |
| 544 | pud = pud_offset(pgd, address); |
| 545 | pud_k = pud_offset(pgd_k, address); |
| 546 | if (!pud_present(*pud_k)) |
| 547 | goto no_context; |
| 548 | |
| 549 | pmd = pmd_offset(pud, address); |
| 550 | pmd_k = pmd_offset(pud_k, address); |
| 551 | if (!pmd_present(*pmd_k)) |
| 552 | goto no_context; |
| 553 | set_pmd(pmd, *pmd_k); |
| 554 | |
| 555 | pte_k = pte_offset_kernel(pmd_k, address); |
| 556 | if (!pte_present(*pte_k)) |
| 557 | goto no_context; |
| 558 | return; |
| 559 | } |
| 560 | } |