Dave Airlie | f453ba0 | 2008-11-07 14:05:41 -0800 | [diff] [blame] | 1 | /* |
| 2 | * The list_sort function is (presumably) licensed under the GPL (see the |
| 3 | * top level "COPYING" file for details). |
| 4 | * |
| 5 | * The remainder of this file is: |
| 6 | * |
| 7 | * Copyright © 1997-2003 by The XFree86 Project, Inc. |
| 8 | * Copyright © 2007 Dave Airlie |
| 9 | * Copyright © 2007-2008 Intel Corporation |
| 10 | * Jesse Barnes <jesse.barnes@intel.com> |
Zhao Yakui | d782c3f | 2009-06-22 13:17:08 +0800 | [diff] [blame] | 11 | * Copyright 2005-2006 Luc Verhaegen |
Zhao Yakui | 26bbdad | 2009-06-22 13:17:09 +0800 | [diff] [blame] | 12 | * Copyright (c) 2001, Andy Ritger aritger@nvidia.com |
Dave Airlie | f453ba0 | 2008-11-07 14:05:41 -0800 | [diff] [blame] | 13 | * |
| 14 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 15 | * copy of this software and associated documentation files (the "Software"), |
| 16 | * to deal in the Software without restriction, including without limitation |
| 17 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 18 | * and/or sell copies of the Software, and to permit persons to whom the |
| 19 | * Software is furnished to do so, subject to the following conditions: |
| 20 | * |
| 21 | * The above copyright notice and this permission notice shall be included in |
| 22 | * all copies or substantial portions of the Software. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 25 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 26 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 27 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 28 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 29 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 30 | * OTHER DEALINGS IN THE SOFTWARE. |
| 31 | * |
| 32 | * Except as contained in this notice, the name of the copyright holder(s) |
| 33 | * and author(s) shall not be used in advertising or otherwise to promote |
| 34 | * the sale, use or other dealings in this Software without prior written |
| 35 | * authorization from the copyright holder(s) and author(s). |
| 36 | */ |
| 37 | |
| 38 | #include <linux/list.h> |
| 39 | #include "drmP.h" |
| 40 | #include "drm.h" |
| 41 | #include "drm_crtc.h" |
| 42 | |
| 43 | /** |
| 44 | * drm_mode_debug_printmodeline - debug print a mode |
| 45 | * @dev: DRM device |
| 46 | * @mode: mode to print |
| 47 | * |
| 48 | * LOCKING: |
| 49 | * None. |
| 50 | * |
| 51 | * Describe @mode using DRM_DEBUG. |
| 52 | */ |
| 53 | void drm_mode_debug_printmodeline(struct drm_display_mode *mode) |
| 54 | { |
Zhao Yakui | f940f37 | 2009-07-20 13:48:05 +0800 | [diff] [blame^] | 55 | DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d " |
Zhao Yakui | 8a4c47f | 2009-07-20 13:48:04 +0800 | [diff] [blame] | 56 | "0x%x 0x%x\n", |
yakui_zhao | f053185 | 2009-06-02 14:12:47 +0800 | [diff] [blame] | 57 | mode->base.id, mode->name, mode->vrefresh, mode->clock, |
| 58 | mode->hdisplay, mode->hsync_start, |
| 59 | mode->hsync_end, mode->htotal, |
| 60 | mode->vdisplay, mode->vsync_start, |
| 61 | mode->vsync_end, mode->vtotal, mode->type, mode->flags); |
Dave Airlie | f453ba0 | 2008-11-07 14:05:41 -0800 | [diff] [blame] | 62 | } |
| 63 | EXPORT_SYMBOL(drm_mode_debug_printmodeline); |
| 64 | |
| 65 | /** |
Zhao Yakui | d782c3f | 2009-06-22 13:17:08 +0800 | [diff] [blame] | 66 | * drm_cvt_mode -create a modeline based on CVT algorithm |
| 67 | * @dev: DRM device |
| 68 | * @hdisplay: hdisplay size |
| 69 | * @vdisplay: vdisplay size |
| 70 | * @vrefresh : vrefresh rate |
| 71 | * @reduced : Whether the GTF calculation is simplified |
| 72 | * @interlaced:Whether the interlace is supported |
| 73 | * |
| 74 | * LOCKING: |
| 75 | * none. |
| 76 | * |
| 77 | * return the modeline based on CVT algorithm |
| 78 | * |
| 79 | * This function is called to generate the modeline based on CVT algorithm |
| 80 | * according to the hdisplay, vdisplay, vrefresh. |
| 81 | * It is based from the VESA(TM) Coordinated Video Timing Generator by |
| 82 | * Graham Loveridge April 9, 2003 available at |
| 83 | * http://www.vesa.org/public/CVT/CVTd6r1.xls |
| 84 | * |
| 85 | * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c. |
| 86 | * What I have done is to translate it by using integer calculation. |
| 87 | */ |
| 88 | #define HV_FACTOR 1000 |
| 89 | struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay, |
| 90 | int vdisplay, int vrefresh, |
| 91 | bool reduced, bool interlaced) |
| 92 | { |
| 93 | /* 1) top/bottom margin size (% of height) - default: 1.8, */ |
| 94 | #define CVT_MARGIN_PERCENTAGE 18 |
| 95 | /* 2) character cell horizontal granularity (pixels) - default 8 */ |
| 96 | #define CVT_H_GRANULARITY 8 |
| 97 | /* 3) Minimum vertical porch (lines) - default 3 */ |
| 98 | #define CVT_MIN_V_PORCH 3 |
| 99 | /* 4) Minimum number of vertical back porch lines - default 6 */ |
| 100 | #define CVT_MIN_V_BPORCH 6 |
| 101 | /* Pixel Clock step (kHz) */ |
| 102 | #define CVT_CLOCK_STEP 250 |
| 103 | struct drm_display_mode *drm_mode; |
| 104 | bool margins = false; |
| 105 | unsigned int vfieldrate, hperiod; |
| 106 | int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync; |
| 107 | int interlace; |
| 108 | |
| 109 | /* allocate the drm_display_mode structure. If failure, we will |
| 110 | * return directly |
| 111 | */ |
| 112 | drm_mode = drm_mode_create(dev); |
| 113 | if (!drm_mode) |
| 114 | return NULL; |
| 115 | |
| 116 | /* the CVT default refresh rate is 60Hz */ |
| 117 | if (!vrefresh) |
| 118 | vrefresh = 60; |
| 119 | |
| 120 | /* the required field fresh rate */ |
| 121 | if (interlaced) |
| 122 | vfieldrate = vrefresh * 2; |
| 123 | else |
| 124 | vfieldrate = vrefresh; |
| 125 | |
| 126 | /* horizontal pixels */ |
| 127 | hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY); |
| 128 | |
| 129 | /* determine the left&right borders */ |
| 130 | hmargin = 0; |
| 131 | if (margins) { |
| 132 | hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; |
| 133 | hmargin -= hmargin % CVT_H_GRANULARITY; |
| 134 | } |
| 135 | /* find the total active pixels */ |
| 136 | drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin; |
| 137 | |
| 138 | /* find the number of lines per field */ |
| 139 | if (interlaced) |
| 140 | vdisplay_rnd = vdisplay / 2; |
| 141 | else |
| 142 | vdisplay_rnd = vdisplay; |
| 143 | |
| 144 | /* find the top & bottom borders */ |
| 145 | vmargin = 0; |
| 146 | if (margins) |
| 147 | vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; |
| 148 | |
| 149 | drm_mode->vdisplay = vdisplay_rnd + 2 * vmargin; |
| 150 | |
| 151 | /* Interlaced */ |
| 152 | if (interlaced) |
| 153 | interlace = 1; |
| 154 | else |
| 155 | interlace = 0; |
| 156 | |
| 157 | /* Determine VSync Width from aspect ratio */ |
| 158 | if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay)) |
| 159 | vsync = 4; |
| 160 | else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay)) |
| 161 | vsync = 5; |
| 162 | else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay)) |
| 163 | vsync = 6; |
| 164 | else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay)) |
| 165 | vsync = 7; |
| 166 | else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay)) |
| 167 | vsync = 7; |
| 168 | else /* custom */ |
| 169 | vsync = 10; |
| 170 | |
| 171 | if (!reduced) { |
| 172 | /* simplify the GTF calculation */ |
| 173 | /* 4) Minimum time of vertical sync + back porch interval (µs) |
| 174 | * default 550.0 |
| 175 | */ |
| 176 | int tmp1, tmp2; |
| 177 | #define CVT_MIN_VSYNC_BP 550 |
| 178 | /* 3) Nominal HSync width (% of line period) - default 8 */ |
| 179 | #define CVT_HSYNC_PERCENTAGE 8 |
| 180 | unsigned int hblank_percentage; |
| 181 | int vsyncandback_porch, vback_porch, hblank; |
| 182 | |
| 183 | /* estimated the horizontal period */ |
| 184 | tmp1 = HV_FACTOR * 1000000 - |
| 185 | CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate; |
| 186 | tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 + |
| 187 | interlace; |
| 188 | hperiod = tmp1 * 2 / (tmp2 * vfieldrate); |
| 189 | |
| 190 | tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1; |
| 191 | /* 9. Find number of lines in sync + backporch */ |
| 192 | if (tmp1 < (vsync + CVT_MIN_V_PORCH)) |
| 193 | vsyncandback_porch = vsync + CVT_MIN_V_PORCH; |
| 194 | else |
| 195 | vsyncandback_porch = tmp1; |
| 196 | /* 10. Find number of lines in back porch */ |
| 197 | vback_porch = vsyncandback_porch - vsync; |
| 198 | drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + |
| 199 | vsyncandback_porch + CVT_MIN_V_PORCH; |
| 200 | /* 5) Definition of Horizontal blanking time limitation */ |
| 201 | /* Gradient (%/kHz) - default 600 */ |
| 202 | #define CVT_M_FACTOR 600 |
| 203 | /* Offset (%) - default 40 */ |
| 204 | #define CVT_C_FACTOR 40 |
| 205 | /* Blanking time scaling factor - default 128 */ |
| 206 | #define CVT_K_FACTOR 128 |
| 207 | /* Scaling factor weighting - default 20 */ |
| 208 | #define CVT_J_FACTOR 20 |
| 209 | #define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256) |
| 210 | #define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \ |
| 211 | CVT_J_FACTOR) |
| 212 | /* 12. Find ideal blanking duty cycle from formula */ |
| 213 | hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME * |
| 214 | hperiod / 1000; |
| 215 | /* 13. Blanking time */ |
| 216 | if (hblank_percentage < 20 * HV_FACTOR) |
| 217 | hblank_percentage = 20 * HV_FACTOR; |
| 218 | hblank = drm_mode->hdisplay * hblank_percentage / |
| 219 | (100 * HV_FACTOR - hblank_percentage); |
| 220 | hblank -= hblank % (2 * CVT_H_GRANULARITY); |
| 221 | /* 14. find the total pixes per line */ |
| 222 | drm_mode->htotal = drm_mode->hdisplay + hblank; |
| 223 | drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2; |
| 224 | drm_mode->hsync_start = drm_mode->hsync_end - |
| 225 | (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100; |
| 226 | drm_mode->hsync_start += CVT_H_GRANULARITY - |
| 227 | drm_mode->hsync_start % CVT_H_GRANULARITY; |
| 228 | /* fill the Vsync values */ |
| 229 | drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH; |
| 230 | drm_mode->vsync_end = drm_mode->vsync_start + vsync; |
| 231 | } else { |
| 232 | /* Reduced blanking */ |
| 233 | /* Minimum vertical blanking interval time (µs)- default 460 */ |
| 234 | #define CVT_RB_MIN_VBLANK 460 |
| 235 | /* Fixed number of clocks for horizontal sync */ |
| 236 | #define CVT_RB_H_SYNC 32 |
| 237 | /* Fixed number of clocks for horizontal blanking */ |
| 238 | #define CVT_RB_H_BLANK 160 |
| 239 | /* Fixed number of lines for vertical front porch - default 3*/ |
| 240 | #define CVT_RB_VFPORCH 3 |
| 241 | int vbilines; |
| 242 | int tmp1, tmp2; |
| 243 | /* 8. Estimate Horizontal period. */ |
| 244 | tmp1 = HV_FACTOR * 1000000 - |
| 245 | CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate; |
| 246 | tmp2 = vdisplay_rnd + 2 * vmargin; |
| 247 | hperiod = tmp1 / (tmp2 * vfieldrate); |
| 248 | /* 9. Find number of lines in vertical blanking */ |
| 249 | vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1; |
| 250 | /* 10. Check if vertical blanking is sufficient */ |
| 251 | if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH)) |
| 252 | vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH; |
| 253 | /* 11. Find total number of lines in vertical field */ |
| 254 | drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines; |
| 255 | /* 12. Find total number of pixels in a line */ |
| 256 | drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK; |
| 257 | /* Fill in HSync values */ |
| 258 | drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2; |
| 259 | drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC; |
| 260 | } |
| 261 | /* 15/13. Find pixel clock frequency (kHz for xf86) */ |
| 262 | drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod; |
| 263 | drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP; |
| 264 | /* 18/16. Find actual vertical frame frequency */ |
| 265 | /* ignore - just set the mode flag for interlaced */ |
| 266 | if (interlaced) |
| 267 | drm_mode->vtotal *= 2; |
| 268 | /* Fill the mode line name */ |
| 269 | drm_mode_set_name(drm_mode); |
| 270 | if (reduced) |
| 271 | drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC | |
| 272 | DRM_MODE_FLAG_NVSYNC); |
| 273 | else |
| 274 | drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC | |
| 275 | DRM_MODE_FLAG_NHSYNC); |
| 276 | if (interlaced) |
| 277 | drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; |
| 278 | |
| 279 | return drm_mode; |
| 280 | } |
| 281 | EXPORT_SYMBOL(drm_cvt_mode); |
| 282 | |
| 283 | /** |
Zhao Yakui | 26bbdad | 2009-06-22 13:17:09 +0800 | [diff] [blame] | 284 | * drm_gtf_mode - create the modeline based on GTF algorithm |
| 285 | * |
| 286 | * @dev :drm device |
| 287 | * @hdisplay :hdisplay size |
| 288 | * @vdisplay :vdisplay size |
| 289 | * @vrefresh :vrefresh rate. |
| 290 | * @interlaced :whether the interlace is supported |
| 291 | * @margins :whether the margin is supported |
| 292 | * |
| 293 | * LOCKING. |
| 294 | * none. |
| 295 | * |
| 296 | * return the modeline based on GTF algorithm |
| 297 | * |
| 298 | * This function is to create the modeline based on the GTF algorithm. |
| 299 | * Generalized Timing Formula is derived from: |
| 300 | * GTF Spreadsheet by Andy Morrish (1/5/97) |
| 301 | * available at http://www.vesa.org |
| 302 | * |
| 303 | * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c. |
| 304 | * What I have done is to translate it by using integer calculation. |
| 305 | * I also refer to the function of fb_get_mode in the file of |
| 306 | * drivers/video/fbmon.c |
| 307 | */ |
| 308 | struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay, |
| 309 | int vdisplay, int vrefresh, |
| 310 | bool interlaced, int margins) |
| 311 | { |
| 312 | /* 1) top/bottom margin size (% of height) - default: 1.8, */ |
| 313 | #define GTF_MARGIN_PERCENTAGE 18 |
| 314 | /* 2) character cell horizontal granularity (pixels) - default 8 */ |
| 315 | #define GTF_CELL_GRAN 8 |
| 316 | /* 3) Minimum vertical porch (lines) - default 3 */ |
| 317 | #define GTF_MIN_V_PORCH 1 |
| 318 | /* width of vsync in lines */ |
| 319 | #define V_SYNC_RQD 3 |
| 320 | /* width of hsync as % of total line */ |
| 321 | #define H_SYNC_PERCENT 8 |
| 322 | /* min time of vsync + back porch (microsec) */ |
| 323 | #define MIN_VSYNC_PLUS_BP 550 |
| 324 | /* blanking formula gradient */ |
| 325 | #define GTF_M 600 |
| 326 | /* blanking formula offset */ |
| 327 | #define GTF_C 40 |
| 328 | /* blanking formula scaling factor */ |
| 329 | #define GTF_K 128 |
| 330 | /* blanking formula scaling factor */ |
| 331 | #define GTF_J 20 |
| 332 | /* C' and M' are part of the Blanking Duty Cycle computation */ |
| 333 | #define GTF_C_PRIME (((GTF_C - GTF_J) * GTF_K / 256) + GTF_J) |
| 334 | #define GTF_M_PRIME (GTF_K * GTF_M / 256) |
| 335 | struct drm_display_mode *drm_mode; |
| 336 | unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd; |
| 337 | int top_margin, bottom_margin; |
| 338 | int interlace; |
| 339 | unsigned int hfreq_est; |
| 340 | int vsync_plus_bp, vback_porch; |
| 341 | unsigned int vtotal_lines, vfieldrate_est, hperiod; |
| 342 | unsigned int vfield_rate, vframe_rate; |
| 343 | int left_margin, right_margin; |
| 344 | unsigned int total_active_pixels, ideal_duty_cycle; |
| 345 | unsigned int hblank, total_pixels, pixel_freq; |
| 346 | int hsync, hfront_porch, vodd_front_porch_lines; |
| 347 | unsigned int tmp1, tmp2; |
| 348 | |
| 349 | drm_mode = drm_mode_create(dev); |
| 350 | if (!drm_mode) |
| 351 | return NULL; |
| 352 | |
| 353 | /* 1. In order to give correct results, the number of horizontal |
| 354 | * pixels requested is first processed to ensure that it is divisible |
| 355 | * by the character size, by rounding it to the nearest character |
| 356 | * cell boundary: |
| 357 | */ |
| 358 | hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; |
| 359 | hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN; |
| 360 | |
| 361 | /* 2. If interlace is requested, the number of vertical lines assumed |
| 362 | * by the calculation must be halved, as the computation calculates |
| 363 | * the number of vertical lines per field. |
| 364 | */ |
| 365 | if (interlaced) |
| 366 | vdisplay_rnd = vdisplay / 2; |
| 367 | else |
| 368 | vdisplay_rnd = vdisplay; |
| 369 | |
| 370 | /* 3. Find the frame rate required: */ |
| 371 | if (interlaced) |
| 372 | vfieldrate_rqd = vrefresh * 2; |
| 373 | else |
| 374 | vfieldrate_rqd = vrefresh; |
| 375 | |
| 376 | /* 4. Find number of lines in Top margin: */ |
| 377 | top_margin = 0; |
| 378 | if (margins) |
| 379 | top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / |
| 380 | 1000; |
| 381 | /* 5. Find number of lines in bottom margin: */ |
| 382 | bottom_margin = top_margin; |
| 383 | |
| 384 | /* 6. If interlace is required, then set variable interlace: */ |
| 385 | if (interlaced) |
| 386 | interlace = 1; |
| 387 | else |
| 388 | interlace = 0; |
| 389 | |
| 390 | /* 7. Estimate the Horizontal frequency */ |
| 391 | { |
| 392 | tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500; |
| 393 | tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) * |
| 394 | 2 + interlace; |
| 395 | hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1; |
| 396 | } |
| 397 | |
| 398 | /* 8. Find the number of lines in V sync + back porch */ |
| 399 | /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */ |
| 400 | vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000; |
| 401 | vsync_plus_bp = (vsync_plus_bp + 500) / 1000; |
| 402 | /* 9. Find the number of lines in V back porch alone: */ |
| 403 | vback_porch = vsync_plus_bp - V_SYNC_RQD; |
| 404 | /* 10. Find the total number of lines in Vertical field period: */ |
| 405 | vtotal_lines = vdisplay_rnd + top_margin + bottom_margin + |
| 406 | vsync_plus_bp + GTF_MIN_V_PORCH; |
| 407 | /* 11. Estimate the Vertical field frequency: */ |
| 408 | vfieldrate_est = hfreq_est / vtotal_lines; |
| 409 | /* 12. Find the actual horizontal period: */ |
| 410 | hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines); |
| 411 | |
| 412 | /* 13. Find the actual Vertical field frequency: */ |
| 413 | vfield_rate = hfreq_est / vtotal_lines; |
| 414 | /* 14. Find the Vertical frame frequency: */ |
| 415 | if (interlaced) |
| 416 | vframe_rate = vfield_rate / 2; |
| 417 | else |
| 418 | vframe_rate = vfield_rate; |
| 419 | /* 15. Find number of pixels in left margin: */ |
| 420 | if (margins) |
| 421 | left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / |
| 422 | 1000; |
| 423 | else |
| 424 | left_margin = 0; |
| 425 | |
| 426 | /* 16.Find number of pixels in right margin: */ |
| 427 | right_margin = left_margin; |
| 428 | /* 17.Find total number of active pixels in image and left and right */ |
| 429 | total_active_pixels = hdisplay_rnd + left_margin + right_margin; |
| 430 | /* 18.Find the ideal blanking duty cycle from blanking duty cycle */ |
| 431 | ideal_duty_cycle = GTF_C_PRIME * 1000 - |
| 432 | (GTF_M_PRIME * 1000000 / hfreq_est); |
| 433 | /* 19.Find the number of pixels in the blanking time to the nearest |
| 434 | * double character cell: */ |
| 435 | hblank = total_active_pixels * ideal_duty_cycle / |
| 436 | (100000 - ideal_duty_cycle); |
| 437 | hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN); |
| 438 | hblank = hblank * 2 * GTF_CELL_GRAN; |
| 439 | /* 20.Find total number of pixels: */ |
| 440 | total_pixels = total_active_pixels + hblank; |
| 441 | /* 21.Find pixel clock frequency: */ |
| 442 | pixel_freq = total_pixels * hfreq_est / 1000; |
| 443 | /* Stage 1 computations are now complete; I should really pass |
| 444 | * the results to another function and do the Stage 2 computations, |
| 445 | * but I only need a few more values so I'll just append the |
| 446 | * computations here for now */ |
| 447 | /* 17. Find the number of pixels in the horizontal sync period: */ |
| 448 | hsync = H_SYNC_PERCENT * total_pixels / 100; |
| 449 | hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; |
| 450 | hsync = hsync * GTF_CELL_GRAN; |
| 451 | /* 18. Find the number of pixels in horizontal front porch period */ |
| 452 | hfront_porch = hblank / 2 - hsync; |
| 453 | /* 36. Find the number of lines in the odd front porch period: */ |
| 454 | vodd_front_porch_lines = GTF_MIN_V_PORCH ; |
| 455 | |
| 456 | /* finally, pack the results in the mode struct */ |
| 457 | drm_mode->hdisplay = hdisplay_rnd; |
| 458 | drm_mode->hsync_start = hdisplay_rnd + hfront_porch; |
| 459 | drm_mode->hsync_end = drm_mode->hsync_start + hsync; |
| 460 | drm_mode->htotal = total_pixels; |
| 461 | drm_mode->vdisplay = vdisplay_rnd; |
| 462 | drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines; |
| 463 | drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD; |
| 464 | drm_mode->vtotal = vtotal_lines; |
| 465 | |
| 466 | drm_mode->clock = pixel_freq; |
| 467 | |
| 468 | drm_mode_set_name(drm_mode); |
| 469 | drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC; |
| 470 | |
| 471 | if (interlaced) { |
| 472 | drm_mode->vtotal *= 2; |
| 473 | drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; |
| 474 | } |
| 475 | |
| 476 | return drm_mode; |
| 477 | } |
| 478 | EXPORT_SYMBOL(drm_gtf_mode); |
| 479 | /** |
Dave Airlie | f453ba0 | 2008-11-07 14:05:41 -0800 | [diff] [blame] | 480 | * drm_mode_set_name - set the name on a mode |
| 481 | * @mode: name will be set in this mode |
| 482 | * |
| 483 | * LOCKING: |
| 484 | * None. |
| 485 | * |
| 486 | * Set the name of @mode to a standard format. |
| 487 | */ |
| 488 | void drm_mode_set_name(struct drm_display_mode *mode) |
| 489 | { |
| 490 | snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay, |
| 491 | mode->vdisplay); |
| 492 | } |
| 493 | EXPORT_SYMBOL(drm_mode_set_name); |
| 494 | |
| 495 | /** |
| 496 | * drm_mode_list_concat - move modes from one list to another |
| 497 | * @head: source list |
| 498 | * @new: dst list |
| 499 | * |
| 500 | * LOCKING: |
| 501 | * Caller must ensure both lists are locked. |
| 502 | * |
| 503 | * Move all the modes from @head to @new. |
| 504 | */ |
| 505 | void drm_mode_list_concat(struct list_head *head, struct list_head *new) |
| 506 | { |
| 507 | |
| 508 | struct list_head *entry, *tmp; |
| 509 | |
| 510 | list_for_each_safe(entry, tmp, head) { |
| 511 | list_move_tail(entry, new); |
| 512 | } |
| 513 | } |
| 514 | EXPORT_SYMBOL(drm_mode_list_concat); |
| 515 | |
| 516 | /** |
| 517 | * drm_mode_width - get the width of a mode |
| 518 | * @mode: mode |
| 519 | * |
| 520 | * LOCKING: |
| 521 | * None. |
| 522 | * |
| 523 | * Return @mode's width (hdisplay) value. |
| 524 | * |
| 525 | * FIXME: is this needed? |
| 526 | * |
| 527 | * RETURNS: |
| 528 | * @mode->hdisplay |
| 529 | */ |
| 530 | int drm_mode_width(struct drm_display_mode *mode) |
| 531 | { |
| 532 | return mode->hdisplay; |
| 533 | |
| 534 | } |
| 535 | EXPORT_SYMBOL(drm_mode_width); |
| 536 | |
| 537 | /** |
| 538 | * drm_mode_height - get the height of a mode |
| 539 | * @mode: mode |
| 540 | * |
| 541 | * LOCKING: |
| 542 | * None. |
| 543 | * |
| 544 | * Return @mode's height (vdisplay) value. |
| 545 | * |
| 546 | * FIXME: is this needed? |
| 547 | * |
| 548 | * RETURNS: |
| 549 | * @mode->vdisplay |
| 550 | */ |
| 551 | int drm_mode_height(struct drm_display_mode *mode) |
| 552 | { |
| 553 | return mode->vdisplay; |
| 554 | } |
| 555 | EXPORT_SYMBOL(drm_mode_height); |
| 556 | |
| 557 | /** |
| 558 | * drm_mode_vrefresh - get the vrefresh of a mode |
| 559 | * @mode: mode |
| 560 | * |
| 561 | * LOCKING: |
| 562 | * None. |
| 563 | * |
| 564 | * Return @mode's vrefresh rate or calculate it if necessary. |
| 565 | * |
| 566 | * FIXME: why is this needed? shouldn't vrefresh be set already? |
| 567 | * |
| 568 | * RETURNS: |
| 569 | * Vertical refresh rate of @mode x 1000. For precision reasons. |
| 570 | */ |
| 571 | int drm_mode_vrefresh(struct drm_display_mode *mode) |
| 572 | { |
| 573 | int refresh = 0; |
| 574 | unsigned int calc_val; |
| 575 | |
| 576 | if (mode->vrefresh > 0) |
| 577 | refresh = mode->vrefresh; |
| 578 | else if (mode->htotal > 0 && mode->vtotal > 0) { |
| 579 | /* work out vrefresh the value will be x1000 */ |
| 580 | calc_val = (mode->clock * 1000); |
| 581 | |
| 582 | calc_val /= mode->htotal; |
| 583 | calc_val *= 1000; |
| 584 | calc_val /= mode->vtotal; |
| 585 | |
| 586 | refresh = calc_val; |
| 587 | if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| 588 | refresh *= 2; |
| 589 | if (mode->flags & DRM_MODE_FLAG_DBLSCAN) |
| 590 | refresh /= 2; |
| 591 | if (mode->vscan > 1) |
| 592 | refresh /= mode->vscan; |
| 593 | } |
| 594 | return refresh; |
| 595 | } |
| 596 | EXPORT_SYMBOL(drm_mode_vrefresh); |
| 597 | |
| 598 | /** |
| 599 | * drm_mode_set_crtcinfo - set CRTC modesetting parameters |
| 600 | * @p: mode |
| 601 | * @adjust_flags: unused? (FIXME) |
| 602 | * |
| 603 | * LOCKING: |
| 604 | * None. |
| 605 | * |
| 606 | * Setup the CRTC modesetting parameters for @p, adjusting if necessary. |
| 607 | */ |
| 608 | void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags) |
| 609 | { |
| 610 | if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN)) |
| 611 | return; |
| 612 | |
| 613 | p->crtc_hdisplay = p->hdisplay; |
| 614 | p->crtc_hsync_start = p->hsync_start; |
| 615 | p->crtc_hsync_end = p->hsync_end; |
| 616 | p->crtc_htotal = p->htotal; |
| 617 | p->crtc_hskew = p->hskew; |
| 618 | p->crtc_vdisplay = p->vdisplay; |
| 619 | p->crtc_vsync_start = p->vsync_start; |
| 620 | p->crtc_vsync_end = p->vsync_end; |
| 621 | p->crtc_vtotal = p->vtotal; |
| 622 | |
| 623 | if (p->flags & DRM_MODE_FLAG_INTERLACE) { |
| 624 | if (adjust_flags & CRTC_INTERLACE_HALVE_V) { |
| 625 | p->crtc_vdisplay /= 2; |
| 626 | p->crtc_vsync_start /= 2; |
| 627 | p->crtc_vsync_end /= 2; |
| 628 | p->crtc_vtotal /= 2; |
| 629 | } |
| 630 | |
| 631 | p->crtc_vtotal |= 1; |
| 632 | } |
| 633 | |
| 634 | if (p->flags & DRM_MODE_FLAG_DBLSCAN) { |
| 635 | p->crtc_vdisplay *= 2; |
| 636 | p->crtc_vsync_start *= 2; |
| 637 | p->crtc_vsync_end *= 2; |
| 638 | p->crtc_vtotal *= 2; |
| 639 | } |
| 640 | |
| 641 | if (p->vscan > 1) { |
| 642 | p->crtc_vdisplay *= p->vscan; |
| 643 | p->crtc_vsync_start *= p->vscan; |
| 644 | p->crtc_vsync_end *= p->vscan; |
| 645 | p->crtc_vtotal *= p->vscan; |
| 646 | } |
| 647 | |
| 648 | p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay); |
| 649 | p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal); |
| 650 | p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay); |
| 651 | p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal); |
| 652 | |
| 653 | p->crtc_hadjusted = false; |
| 654 | p->crtc_vadjusted = false; |
| 655 | } |
| 656 | EXPORT_SYMBOL(drm_mode_set_crtcinfo); |
| 657 | |
| 658 | |
| 659 | /** |
| 660 | * drm_mode_duplicate - allocate and duplicate an existing mode |
| 661 | * @m: mode to duplicate |
| 662 | * |
| 663 | * LOCKING: |
| 664 | * None. |
| 665 | * |
| 666 | * Just allocate a new mode, copy the existing mode into it, and return |
| 667 | * a pointer to it. Used to create new instances of established modes. |
| 668 | */ |
| 669 | struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev, |
| 670 | struct drm_display_mode *mode) |
| 671 | { |
| 672 | struct drm_display_mode *nmode; |
| 673 | int new_id; |
| 674 | |
| 675 | nmode = drm_mode_create(dev); |
| 676 | if (!nmode) |
| 677 | return NULL; |
| 678 | |
| 679 | new_id = nmode->base.id; |
| 680 | *nmode = *mode; |
| 681 | nmode->base.id = new_id; |
| 682 | INIT_LIST_HEAD(&nmode->head); |
| 683 | return nmode; |
| 684 | } |
| 685 | EXPORT_SYMBOL(drm_mode_duplicate); |
| 686 | |
| 687 | /** |
| 688 | * drm_mode_equal - test modes for equality |
| 689 | * @mode1: first mode |
| 690 | * @mode2: second mode |
| 691 | * |
| 692 | * LOCKING: |
| 693 | * None. |
| 694 | * |
| 695 | * Check to see if @mode1 and @mode2 are equivalent. |
| 696 | * |
| 697 | * RETURNS: |
| 698 | * True if the modes are equal, false otherwise. |
| 699 | */ |
| 700 | bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2) |
| 701 | { |
| 702 | /* do clock check convert to PICOS so fb modes get matched |
| 703 | * the same */ |
| 704 | if (mode1->clock && mode2->clock) { |
| 705 | if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock)) |
| 706 | return false; |
| 707 | } else if (mode1->clock != mode2->clock) |
| 708 | return false; |
| 709 | |
| 710 | if (mode1->hdisplay == mode2->hdisplay && |
| 711 | mode1->hsync_start == mode2->hsync_start && |
| 712 | mode1->hsync_end == mode2->hsync_end && |
| 713 | mode1->htotal == mode2->htotal && |
| 714 | mode1->hskew == mode2->hskew && |
| 715 | mode1->vdisplay == mode2->vdisplay && |
| 716 | mode1->vsync_start == mode2->vsync_start && |
| 717 | mode1->vsync_end == mode2->vsync_end && |
| 718 | mode1->vtotal == mode2->vtotal && |
| 719 | mode1->vscan == mode2->vscan && |
| 720 | mode1->flags == mode2->flags) |
| 721 | return true; |
| 722 | |
| 723 | return false; |
| 724 | } |
| 725 | EXPORT_SYMBOL(drm_mode_equal); |
| 726 | |
| 727 | /** |
| 728 | * drm_mode_validate_size - make sure modes adhere to size constraints |
| 729 | * @dev: DRM device |
| 730 | * @mode_list: list of modes to check |
| 731 | * @maxX: maximum width |
| 732 | * @maxY: maximum height |
| 733 | * @maxPitch: max pitch |
| 734 | * |
| 735 | * LOCKING: |
| 736 | * Caller must hold a lock protecting @mode_list. |
| 737 | * |
| 738 | * The DRM device (@dev) has size and pitch limits. Here we validate the |
| 739 | * modes we probed for @dev against those limits and set their status as |
| 740 | * necessary. |
| 741 | */ |
| 742 | void drm_mode_validate_size(struct drm_device *dev, |
| 743 | struct list_head *mode_list, |
| 744 | int maxX, int maxY, int maxPitch) |
| 745 | { |
| 746 | struct drm_display_mode *mode; |
| 747 | |
| 748 | list_for_each_entry(mode, mode_list, head) { |
| 749 | if (maxPitch > 0 && mode->hdisplay > maxPitch) |
| 750 | mode->status = MODE_BAD_WIDTH; |
| 751 | |
| 752 | if (maxX > 0 && mode->hdisplay > maxX) |
| 753 | mode->status = MODE_VIRTUAL_X; |
| 754 | |
| 755 | if (maxY > 0 && mode->vdisplay > maxY) |
| 756 | mode->status = MODE_VIRTUAL_Y; |
| 757 | } |
| 758 | } |
| 759 | EXPORT_SYMBOL(drm_mode_validate_size); |
| 760 | |
| 761 | /** |
| 762 | * drm_mode_validate_clocks - validate modes against clock limits |
| 763 | * @dev: DRM device |
| 764 | * @mode_list: list of modes to check |
| 765 | * @min: minimum clock rate array |
| 766 | * @max: maximum clock rate array |
| 767 | * @n_ranges: number of clock ranges (size of arrays) |
| 768 | * |
| 769 | * LOCKING: |
| 770 | * Caller must hold a lock protecting @mode_list. |
| 771 | * |
| 772 | * Some code may need to check a mode list against the clock limits of the |
| 773 | * device in question. This function walks the mode list, testing to make |
| 774 | * sure each mode falls within a given range (defined by @min and @max |
| 775 | * arrays) and sets @mode->status as needed. |
| 776 | */ |
| 777 | void drm_mode_validate_clocks(struct drm_device *dev, |
| 778 | struct list_head *mode_list, |
| 779 | int *min, int *max, int n_ranges) |
| 780 | { |
| 781 | struct drm_display_mode *mode; |
| 782 | int i; |
| 783 | |
| 784 | list_for_each_entry(mode, mode_list, head) { |
| 785 | bool good = false; |
| 786 | for (i = 0; i < n_ranges; i++) { |
| 787 | if (mode->clock >= min[i] && mode->clock <= max[i]) { |
| 788 | good = true; |
| 789 | break; |
| 790 | } |
| 791 | } |
| 792 | if (!good) |
| 793 | mode->status = MODE_CLOCK_RANGE; |
| 794 | } |
| 795 | } |
| 796 | EXPORT_SYMBOL(drm_mode_validate_clocks); |
| 797 | |
| 798 | /** |
| 799 | * drm_mode_prune_invalid - remove invalid modes from mode list |
| 800 | * @dev: DRM device |
| 801 | * @mode_list: list of modes to check |
| 802 | * @verbose: be verbose about it |
| 803 | * |
| 804 | * LOCKING: |
| 805 | * Caller must hold a lock protecting @mode_list. |
| 806 | * |
| 807 | * Once mode list generation is complete, a caller can use this routine to |
| 808 | * remove invalid modes from a mode list. If any of the modes have a |
| 809 | * status other than %MODE_OK, they are removed from @mode_list and freed. |
| 810 | */ |
| 811 | void drm_mode_prune_invalid(struct drm_device *dev, |
| 812 | struct list_head *mode_list, bool verbose) |
| 813 | { |
| 814 | struct drm_display_mode *mode, *t; |
| 815 | |
| 816 | list_for_each_entry_safe(mode, t, mode_list, head) { |
| 817 | if (mode->status != MODE_OK) { |
| 818 | list_del(&mode->head); |
| 819 | if (verbose) { |
| 820 | drm_mode_debug_printmodeline(mode); |
Zhao Yakui | f940f37 | 2009-07-20 13:48:05 +0800 | [diff] [blame^] | 821 | DRM_DEBUG_KMS("Not using %s mode %d\n", |
yakui_zhao | f053185 | 2009-06-02 14:12:47 +0800 | [diff] [blame] | 822 | mode->name, mode->status); |
Dave Airlie | f453ba0 | 2008-11-07 14:05:41 -0800 | [diff] [blame] | 823 | } |
| 824 | drm_mode_destroy(dev, mode); |
| 825 | } |
| 826 | } |
| 827 | } |
| 828 | EXPORT_SYMBOL(drm_mode_prune_invalid); |
| 829 | |
| 830 | /** |
| 831 | * drm_mode_compare - compare modes for favorability |
| 832 | * @lh_a: list_head for first mode |
| 833 | * @lh_b: list_head for second mode |
| 834 | * |
| 835 | * LOCKING: |
| 836 | * None. |
| 837 | * |
| 838 | * Compare two modes, given by @lh_a and @lh_b, returning a value indicating |
| 839 | * which is better. |
| 840 | * |
| 841 | * RETURNS: |
| 842 | * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or |
| 843 | * positive if @lh_b is better than @lh_a. |
| 844 | */ |
| 845 | static int drm_mode_compare(struct list_head *lh_a, struct list_head *lh_b) |
| 846 | { |
| 847 | struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head); |
| 848 | struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head); |
| 849 | int diff; |
| 850 | |
| 851 | diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) - |
| 852 | ((a->type & DRM_MODE_TYPE_PREFERRED) != 0); |
| 853 | if (diff) |
| 854 | return diff; |
| 855 | diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay; |
| 856 | if (diff) |
| 857 | return diff; |
| 858 | diff = b->clock - a->clock; |
| 859 | return diff; |
| 860 | } |
| 861 | |
| 862 | /* FIXME: what we don't have a list sort function? */ |
| 863 | /* list sort from Mark J Roberts (mjr@znex.org) */ |
| 864 | void list_sort(struct list_head *head, |
| 865 | int (*cmp)(struct list_head *a, struct list_head *b)) |
| 866 | { |
| 867 | struct list_head *p, *q, *e, *list, *tail, *oldhead; |
| 868 | int insize, nmerges, psize, qsize, i; |
| 869 | |
| 870 | list = head->next; |
| 871 | list_del(head); |
| 872 | insize = 1; |
| 873 | for (;;) { |
| 874 | p = oldhead = list; |
| 875 | list = tail = NULL; |
| 876 | nmerges = 0; |
| 877 | |
| 878 | while (p) { |
| 879 | nmerges++; |
| 880 | q = p; |
| 881 | psize = 0; |
| 882 | for (i = 0; i < insize; i++) { |
| 883 | psize++; |
| 884 | q = q->next == oldhead ? NULL : q->next; |
| 885 | if (!q) |
| 886 | break; |
| 887 | } |
| 888 | |
| 889 | qsize = insize; |
| 890 | while (psize > 0 || (qsize > 0 && q)) { |
| 891 | if (!psize) { |
| 892 | e = q; |
| 893 | q = q->next; |
| 894 | qsize--; |
| 895 | if (q == oldhead) |
| 896 | q = NULL; |
| 897 | } else if (!qsize || !q) { |
| 898 | e = p; |
| 899 | p = p->next; |
| 900 | psize--; |
| 901 | if (p == oldhead) |
| 902 | p = NULL; |
| 903 | } else if (cmp(p, q) <= 0) { |
| 904 | e = p; |
| 905 | p = p->next; |
| 906 | psize--; |
| 907 | if (p == oldhead) |
| 908 | p = NULL; |
| 909 | } else { |
| 910 | e = q; |
| 911 | q = q->next; |
| 912 | qsize--; |
| 913 | if (q == oldhead) |
| 914 | q = NULL; |
| 915 | } |
| 916 | if (tail) |
| 917 | tail->next = e; |
| 918 | else |
| 919 | list = e; |
| 920 | e->prev = tail; |
| 921 | tail = e; |
| 922 | } |
| 923 | p = q; |
| 924 | } |
| 925 | |
| 926 | tail->next = list; |
| 927 | list->prev = tail; |
| 928 | |
| 929 | if (nmerges <= 1) |
| 930 | break; |
| 931 | |
| 932 | insize *= 2; |
| 933 | } |
| 934 | |
| 935 | head->next = list; |
| 936 | head->prev = list->prev; |
| 937 | list->prev->next = head; |
| 938 | list->prev = head; |
| 939 | } |
| 940 | |
| 941 | /** |
| 942 | * drm_mode_sort - sort mode list |
| 943 | * @mode_list: list to sort |
| 944 | * |
| 945 | * LOCKING: |
| 946 | * Caller must hold a lock protecting @mode_list. |
| 947 | * |
| 948 | * Sort @mode_list by favorability, putting good modes first. |
| 949 | */ |
| 950 | void drm_mode_sort(struct list_head *mode_list) |
| 951 | { |
| 952 | list_sort(mode_list, drm_mode_compare); |
| 953 | } |
| 954 | EXPORT_SYMBOL(drm_mode_sort); |
| 955 | |
| 956 | /** |
| 957 | * drm_mode_connector_list_update - update the mode list for the connector |
| 958 | * @connector: the connector to update |
| 959 | * |
| 960 | * LOCKING: |
| 961 | * Caller must hold a lock protecting @mode_list. |
| 962 | * |
| 963 | * This moves the modes from the @connector probed_modes list |
| 964 | * to the actual mode list. It compares the probed mode against the current |
| 965 | * list and only adds different modes. All modes unverified after this point |
| 966 | * will be removed by the prune invalid modes. |
| 967 | */ |
| 968 | void drm_mode_connector_list_update(struct drm_connector *connector) |
| 969 | { |
| 970 | struct drm_display_mode *mode; |
| 971 | struct drm_display_mode *pmode, *pt; |
| 972 | int found_it; |
| 973 | |
| 974 | list_for_each_entry_safe(pmode, pt, &connector->probed_modes, |
| 975 | head) { |
| 976 | found_it = 0; |
| 977 | /* go through current modes checking for the new probed mode */ |
| 978 | list_for_each_entry(mode, &connector->modes, head) { |
| 979 | if (drm_mode_equal(pmode, mode)) { |
| 980 | found_it = 1; |
| 981 | /* if equal delete the probed mode */ |
| 982 | mode->status = pmode->status; |
| 983 | list_del(&pmode->head); |
| 984 | drm_mode_destroy(connector->dev, pmode); |
| 985 | break; |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | if (!found_it) { |
| 990 | list_move_tail(&pmode->head, &connector->modes); |
| 991 | } |
| 992 | } |
| 993 | } |
| 994 | EXPORT_SYMBOL(drm_mode_connector_list_update); |