Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * pptt.c - parsing of Processor Properties Topology Table (PPTT) |
| 4 | * |
| 5 | * Copyright (C) 2018, ARM |
| 6 | * |
| 7 | * This file implements parsing of the Processor Properties Topology Table |
| 8 | * which is optionally used to describe the processor and cache topology. |
| 9 | * Due to the relative pointers used throughout the table, this doesn't |
| 10 | * leverage the existing subtable parsing in the kernel. |
| 11 | * |
| 12 | * The PPTT structure is an inverted tree, with each node potentially |
| 13 | * holding one or two inverted tree data structures describing |
| 14 | * the caches available at that level. Each cache structure optionally |
| 15 | * contains properties describing the cache at a given level which can be |
| 16 | * used to override hardware probed values. |
| 17 | */ |
| 18 | #define pr_fmt(fmt) "ACPI PPTT: " fmt |
| 19 | |
| 20 | #include <linux/acpi.h> |
| 21 | #include <linux/cacheinfo.h> |
| 22 | #include <acpi/processor.h> |
| 23 | |
| 24 | static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, |
| 25 | u32 pptt_ref) |
| 26 | { |
| 27 | struct acpi_subtable_header *entry; |
| 28 | |
| 29 | /* there isn't a subtable at reference 0 */ |
| 30 | if (pptt_ref < sizeof(struct acpi_subtable_header)) |
| 31 | return NULL; |
| 32 | |
| 33 | if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) |
| 34 | return NULL; |
| 35 | |
| 36 | entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); |
| 37 | |
| 38 | if (entry->length == 0) |
| 39 | return NULL; |
| 40 | |
| 41 | if (pptt_ref + entry->length > table_hdr->length) |
| 42 | return NULL; |
| 43 | |
| 44 | return entry; |
| 45 | } |
| 46 | |
| 47 | static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, |
| 48 | u32 pptt_ref) |
| 49 | { |
| 50 | return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); |
| 51 | } |
| 52 | |
| 53 | static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, |
| 54 | u32 pptt_ref) |
| 55 | { |
| 56 | return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); |
| 57 | } |
| 58 | |
| 59 | static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, |
| 60 | struct acpi_pptt_processor *node, |
| 61 | int resource) |
| 62 | { |
| 63 | u32 *ref; |
| 64 | |
| 65 | if (resource >= node->number_of_priv_resources) |
| 66 | return NULL; |
| 67 | |
| 68 | ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); |
| 69 | ref += resource; |
| 70 | |
| 71 | return fetch_pptt_subtable(table_hdr, *ref); |
| 72 | } |
| 73 | |
| 74 | static inline bool acpi_pptt_match_type(int table_type, int type) |
| 75 | { |
| 76 | return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || |
| 77 | table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); |
| 78 | } |
| 79 | |
| 80 | /** |
| 81 | * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache |
| 82 | * @table_hdr: Pointer to the head of the PPTT table |
| 83 | * @local_level: passed res reflects this cache level |
| 84 | * @res: cache resource in the PPTT we want to walk |
| 85 | * @found: returns a pointer to the requested level if found |
| 86 | * @level: the requested cache level |
| 87 | * @type: the requested cache type |
| 88 | * |
| 89 | * Attempt to find a given cache level, while counting the max number |
| 90 | * of cache levels for the cache node. |
| 91 | * |
| 92 | * Given a pptt resource, verify that it is a cache node, then walk |
| 93 | * down each level of caches, counting how many levels are found |
| 94 | * as well as checking the cache type (icache, dcache, unified). If a |
| 95 | * level & type match, then we set found, and continue the search. |
| 96 | * Once the entire cache branch has been walked return its max |
| 97 | * depth. |
| 98 | * |
| 99 | * Return: The cache structure and the level we terminated with. |
| 100 | */ |
| 101 | static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, |
| 102 | int local_level, |
| 103 | struct acpi_subtable_header *res, |
| 104 | struct acpi_pptt_cache **found, |
| 105 | int level, int type) |
| 106 | { |
| 107 | struct acpi_pptt_cache *cache; |
| 108 | |
| 109 | if (res->type != ACPI_PPTT_TYPE_CACHE) |
| 110 | return 0; |
| 111 | |
| 112 | cache = (struct acpi_pptt_cache *) res; |
| 113 | while (cache) { |
| 114 | local_level++; |
| 115 | |
| 116 | if (local_level == level && |
| 117 | cache->flags & ACPI_PPTT_CACHE_TYPE_VALID && |
| 118 | acpi_pptt_match_type(cache->attributes, type)) { |
| 119 | if (*found != NULL && cache != *found) |
| 120 | pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); |
| 121 | |
| 122 | pr_debug("Found cache @ level %d\n", level); |
| 123 | *found = cache; |
| 124 | /* |
| 125 | * continue looking at this node's resource list |
| 126 | * to verify that we don't find a duplicate |
| 127 | * cache node. |
| 128 | */ |
| 129 | } |
| 130 | cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); |
| 131 | } |
| 132 | return local_level; |
| 133 | } |
| 134 | |
| 135 | static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr, |
| 136 | struct acpi_pptt_processor *cpu_node, |
| 137 | int *starting_level, int level, |
| 138 | int type) |
| 139 | { |
| 140 | struct acpi_subtable_header *res; |
| 141 | int number_of_levels = *starting_level; |
| 142 | int resource = 0; |
| 143 | struct acpi_pptt_cache *ret = NULL; |
| 144 | int local_level; |
| 145 | |
| 146 | /* walk down from processor node */ |
| 147 | while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { |
| 148 | resource++; |
| 149 | |
| 150 | local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, |
| 151 | res, &ret, level, type); |
| 152 | /* |
| 153 | * we are looking for the max depth. Since its potentially |
| 154 | * possible for a given node to have resources with differing |
| 155 | * depths verify that the depth we have found is the largest. |
| 156 | */ |
| 157 | if (number_of_levels < local_level) |
| 158 | number_of_levels = local_level; |
| 159 | } |
| 160 | if (number_of_levels > *starting_level) |
| 161 | *starting_level = number_of_levels; |
| 162 | |
| 163 | return ret; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * acpi_count_levels() - Given a PPTT table, and a cpu node, count the caches |
| 168 | * @table_hdr: Pointer to the head of the PPTT table |
| 169 | * @cpu_node: processor node we wish to count caches for |
| 170 | * |
| 171 | * Given a processor node containing a processing unit, walk into it and count |
| 172 | * how many levels exist solely for it, and then walk up each level until we hit |
| 173 | * the root node (ignore the package level because it may be possible to have |
| 174 | * caches that exist across packages). Count the number of cache levels that |
| 175 | * exist at each level on the way up. |
| 176 | * |
| 177 | * Return: Total number of levels found. |
| 178 | */ |
| 179 | static int acpi_count_levels(struct acpi_table_header *table_hdr, |
| 180 | struct acpi_pptt_processor *cpu_node) |
| 181 | { |
| 182 | int total_levels = 0; |
| 183 | |
| 184 | do { |
| 185 | acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); |
| 186 | cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); |
| 187 | } while (cpu_node); |
| 188 | |
| 189 | return total_levels; |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf |
| 194 | * @table_hdr: Pointer to the head of the PPTT table |
| 195 | * @node: passed node is checked to see if its a leaf |
| 196 | * |
| 197 | * Determine if the *node parameter is a leaf node by iterating the |
| 198 | * PPTT table, looking for nodes which reference it. |
| 199 | * |
| 200 | * Return: 0 if we find a node referencing the passed node (or table error), |
| 201 | * or 1 if we don't. |
| 202 | */ |
| 203 | static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, |
| 204 | struct acpi_pptt_processor *node) |
| 205 | { |
| 206 | struct acpi_subtable_header *entry; |
| 207 | unsigned long table_end; |
| 208 | u32 node_entry; |
| 209 | struct acpi_pptt_processor *cpu_node; |
| 210 | u32 proc_sz; |
| 211 | |
| 212 | table_end = (unsigned long)table_hdr + table_hdr->length; |
| 213 | node_entry = ACPI_PTR_DIFF(node, table_hdr); |
| 214 | entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, |
| 215 | sizeof(struct acpi_table_pptt)); |
| 216 | proc_sz = sizeof(struct acpi_pptt_processor *); |
| 217 | |
| 218 | while ((unsigned long)entry + proc_sz < table_end) { |
| 219 | cpu_node = (struct acpi_pptt_processor *)entry; |
| 220 | if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && |
| 221 | cpu_node->parent == node_entry) |
| 222 | return 0; |
| 223 | if (entry->length == 0) |
| 224 | return 0; |
| 225 | entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, |
| 226 | entry->length); |
| 227 | |
| 228 | } |
| 229 | return 1; |
| 230 | } |
| 231 | |
| 232 | /** |
| 233 | * acpi_find_processor_node() - Given a PPTT table find the requested processor |
| 234 | * @table_hdr: Pointer to the head of the PPTT table |
| 235 | * @acpi_cpu_id: cpu we are searching for |
| 236 | * |
| 237 | * Find the subtable entry describing the provided processor. |
| 238 | * This is done by iterating the PPTT table looking for processor nodes |
| 239 | * which have an acpi_processor_id that matches the acpi_cpu_id parameter |
| 240 | * passed into the function. If we find a node that matches this criteria |
| 241 | * we verify that its a leaf node in the topology rather than depending |
| 242 | * on the valid flag, which doesn't need to be set for leaf nodes. |
| 243 | * |
| 244 | * Return: NULL, or the processors acpi_pptt_processor* |
| 245 | */ |
| 246 | static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, |
| 247 | u32 acpi_cpu_id) |
| 248 | { |
| 249 | struct acpi_subtable_header *entry; |
| 250 | unsigned long table_end; |
| 251 | struct acpi_pptt_processor *cpu_node; |
| 252 | u32 proc_sz; |
| 253 | |
| 254 | table_end = (unsigned long)table_hdr + table_hdr->length; |
| 255 | entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, |
| 256 | sizeof(struct acpi_table_pptt)); |
| 257 | proc_sz = sizeof(struct acpi_pptt_processor *); |
| 258 | |
| 259 | /* find the processor structure associated with this cpuid */ |
| 260 | while ((unsigned long)entry + proc_sz < table_end) { |
| 261 | cpu_node = (struct acpi_pptt_processor *)entry; |
| 262 | |
| 263 | if (entry->length == 0) { |
| 264 | pr_warn("Invalid zero length subtable\n"); |
| 265 | break; |
| 266 | } |
| 267 | if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && |
| 268 | acpi_cpu_id == cpu_node->acpi_processor_id && |
| 269 | acpi_pptt_leaf_node(table_hdr, cpu_node)) { |
| 270 | return (struct acpi_pptt_processor *)entry; |
| 271 | } |
| 272 | |
| 273 | entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, |
| 274 | entry->length); |
| 275 | } |
| 276 | |
| 277 | return NULL; |
| 278 | } |
| 279 | |
| 280 | static int acpi_find_cache_levels(struct acpi_table_header *table_hdr, |
| 281 | u32 acpi_cpu_id) |
| 282 | { |
| 283 | int number_of_levels = 0; |
| 284 | struct acpi_pptt_processor *cpu; |
| 285 | |
| 286 | cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); |
| 287 | if (cpu) |
| 288 | number_of_levels = acpi_count_levels(table_hdr, cpu); |
| 289 | |
| 290 | return number_of_levels; |
| 291 | } |
| 292 | |
| 293 | static u8 acpi_cache_type(enum cache_type type) |
| 294 | { |
| 295 | switch (type) { |
| 296 | case CACHE_TYPE_DATA: |
| 297 | pr_debug("Looking for data cache\n"); |
| 298 | return ACPI_PPTT_CACHE_TYPE_DATA; |
| 299 | case CACHE_TYPE_INST: |
| 300 | pr_debug("Looking for instruction cache\n"); |
| 301 | return ACPI_PPTT_CACHE_TYPE_INSTR; |
| 302 | default: |
| 303 | case CACHE_TYPE_UNIFIED: |
| 304 | pr_debug("Looking for unified cache\n"); |
| 305 | /* |
| 306 | * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED |
| 307 | * contains the bit pattern that will match both |
| 308 | * ACPI unified bit patterns because we use it later |
| 309 | * to match both cases. |
| 310 | */ |
| 311 | return ACPI_PPTT_CACHE_TYPE_UNIFIED; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, |
| 316 | u32 acpi_cpu_id, |
| 317 | enum cache_type type, |
| 318 | unsigned int level, |
| 319 | struct acpi_pptt_processor **node) |
| 320 | { |
| 321 | int total_levels = 0; |
| 322 | struct acpi_pptt_cache *found = NULL; |
| 323 | struct acpi_pptt_processor *cpu_node; |
| 324 | u8 acpi_type = acpi_cache_type(type); |
| 325 | |
| 326 | pr_debug("Looking for CPU %d's level %d cache type %d\n", |
| 327 | acpi_cpu_id, level, acpi_type); |
| 328 | |
| 329 | cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); |
| 330 | |
| 331 | while (cpu_node && !found) { |
| 332 | found = acpi_find_cache_level(table_hdr, cpu_node, |
| 333 | &total_levels, level, acpi_type); |
| 334 | *node = cpu_node; |
| 335 | cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); |
| 336 | } |
| 337 | |
| 338 | return found; |
| 339 | } |
| 340 | |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 341 | /** |
| 342 | * update_cache_properties() - Update cacheinfo for the given processor |
| 343 | * @this_leaf: Kernel cache info structure being updated |
| 344 | * @found_cache: The PPTT node describing this cache instance |
| 345 | * @cpu_node: A unique reference to describe this cache instance |
| 346 | * |
| 347 | * The ACPI spec implies that the fields in the cache structures are used to |
| 348 | * extend and correct the information probed from the hardware. Lets only |
| 349 | * set fields that we determine are VALID. |
| 350 | * |
| 351 | * Return: nothing. Side effect of updating the global cacheinfo |
| 352 | */ |
| 353 | static void update_cache_properties(struct cacheinfo *this_leaf, |
| 354 | struct acpi_pptt_cache *found_cache, |
| 355 | struct acpi_pptt_processor *cpu_node) |
| 356 | { |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 357 | this_leaf->fw_token = cpu_node; |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 358 | if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 359 | this_leaf->size = found_cache->size; |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 360 | if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 361 | this_leaf->coherency_line_size = found_cache->line_size; |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 362 | if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 363 | this_leaf->number_of_sets = found_cache->number_of_sets; |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 364 | if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 365 | this_leaf->ways_of_associativity = found_cache->associativity; |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 366 | if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { |
| 367 | switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { |
| 368 | case ACPI_PPTT_CACHE_POLICY_WT: |
| 369 | this_leaf->attributes = CACHE_WRITE_THROUGH; |
| 370 | break; |
| 371 | case ACPI_PPTT_CACHE_POLICY_WB: |
| 372 | this_leaf->attributes = CACHE_WRITE_BACK; |
| 373 | break; |
| 374 | } |
| 375 | } |
| 376 | if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { |
| 377 | switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { |
| 378 | case ACPI_PPTT_CACHE_READ_ALLOCATE: |
| 379 | this_leaf->attributes |= CACHE_READ_ALLOCATE; |
| 380 | break; |
| 381 | case ACPI_PPTT_CACHE_WRITE_ALLOCATE: |
| 382 | this_leaf->attributes |= CACHE_WRITE_ALLOCATE; |
| 383 | break; |
| 384 | case ACPI_PPTT_CACHE_RW_ALLOCATE: |
| 385 | case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: |
| 386 | this_leaf->attributes |= |
| 387 | CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; |
| 388 | break; |
| 389 | } |
| 390 | } |
| 391 | /* |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 392 | * If cache type is NOCACHE, then the cache hasn't been specified |
| 393 | * via other mechanisms. Update the type if a cache type has been |
| 394 | * provided. |
| 395 | * |
| 396 | * Note, we assume such caches are unified based on conventional system |
| 397 | * design and known examples. Significant work is required elsewhere to |
| 398 | * fully support data/instruction only type caches which are only |
| 399 | * specified in PPTT. |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 400 | */ |
| 401 | if (this_leaf->type == CACHE_TYPE_NOCACHE && |
Jeffrey Hugo | 59bbff3 | 2018-10-04 09:20:06 -0600 | [diff] [blame] | 402 | found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 403 | this_leaf->type = CACHE_TYPE_UNIFIED; |
| 404 | } |
| 405 | |
| 406 | static void cache_setup_acpi_cpu(struct acpi_table_header *table, |
| 407 | unsigned int cpu) |
| 408 | { |
| 409 | struct acpi_pptt_cache *found_cache; |
| 410 | struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| 411 | u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| 412 | struct cacheinfo *this_leaf; |
| 413 | unsigned int index = 0; |
| 414 | struct acpi_pptt_processor *cpu_node = NULL; |
| 415 | |
| 416 | while (index < get_cpu_cacheinfo(cpu)->num_leaves) { |
| 417 | this_leaf = this_cpu_ci->info_list + index; |
| 418 | found_cache = acpi_find_cache_node(table, acpi_cpu_id, |
| 419 | this_leaf->type, |
| 420 | this_leaf->level, |
| 421 | &cpu_node); |
| 422 | pr_debug("found = %p %p\n", found_cache, cpu_node); |
| 423 | if (found_cache) |
| 424 | update_cache_properties(this_leaf, |
| 425 | found_cache, |
| 426 | cpu_node); |
| 427 | |
| 428 | index++; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | /* Passing level values greater than this will result in search termination */ |
| 433 | #define PPTT_ABORT_PACKAGE 0xFF |
| 434 | |
| 435 | static struct acpi_pptt_processor *acpi_find_processor_package_id(struct acpi_table_header *table_hdr, |
| 436 | struct acpi_pptt_processor *cpu, |
| 437 | int level, int flag) |
| 438 | { |
| 439 | struct acpi_pptt_processor *prev_node; |
| 440 | |
| 441 | while (cpu && level) { |
| 442 | if (cpu->flags & flag) |
| 443 | break; |
| 444 | pr_debug("level %d\n", level); |
| 445 | prev_node = fetch_pptt_node(table_hdr, cpu->parent); |
| 446 | if (prev_node == NULL) |
| 447 | break; |
| 448 | cpu = prev_node; |
| 449 | level--; |
| 450 | } |
| 451 | return cpu; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature |
| 456 | * @table: Pointer to the head of the PPTT table |
| 457 | * @cpu: Kernel logical cpu number |
| 458 | * @level: A level that terminates the search |
| 459 | * @flag: A flag which terminates the search |
| 460 | * |
| 461 | * Get a unique value given a cpu, and a topology level, that can be |
| 462 | * matched to determine which cpus share common topological features |
| 463 | * at that level. |
| 464 | * |
| 465 | * Return: Unique value, or -ENOENT if unable to locate cpu |
| 466 | */ |
| 467 | static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, |
| 468 | unsigned int cpu, int level, int flag) |
| 469 | { |
| 470 | struct acpi_pptt_processor *cpu_node; |
| 471 | u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| 472 | |
| 473 | cpu_node = acpi_find_processor_node(table, acpi_cpu_id); |
| 474 | if (cpu_node) { |
| 475 | cpu_node = acpi_find_processor_package_id(table, cpu_node, |
| 476 | level, flag); |
Sudeep Holla | 3099803 | 2018-06-29 17:17:57 +0100 | [diff] [blame] | 477 | /* |
| 478 | * As per specification if the processor structure represents |
| 479 | * an actual processor, then ACPI processor ID must be valid. |
| 480 | * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID |
| 481 | * should be set if the UID is valid |
| 482 | */ |
| 483 | if (level == 0 || |
| 484 | cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) |
Jeremy Linton | 2bd00bc | 2018-05-11 18:58:00 -0500 | [diff] [blame] | 485 | return cpu_node->acpi_processor_id; |
| 486 | return ACPI_PTR_DIFF(cpu_node, table); |
| 487 | } |
| 488 | pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", |
| 489 | cpu, acpi_cpu_id); |
| 490 | return -ENOENT; |
| 491 | } |
| 492 | |
| 493 | static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) |
| 494 | { |
| 495 | struct acpi_table_header *table; |
| 496 | acpi_status status; |
| 497 | int retval; |
| 498 | |
| 499 | status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); |
| 500 | if (ACPI_FAILURE(status)) { |
| 501 | pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n"); |
| 502 | return -ENOENT; |
| 503 | } |
| 504 | retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); |
| 505 | pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n", |
| 506 | cpu, level, retval); |
| 507 | acpi_put_table(table); |
| 508 | |
| 509 | return retval; |
| 510 | } |
| 511 | |
| 512 | /** |
| 513 | * acpi_find_last_cache_level() - Determines the number of cache levels for a PE |
| 514 | * @cpu: Kernel logical cpu number |
| 515 | * |
| 516 | * Given a logical cpu number, returns the number of levels of cache represented |
| 517 | * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 |
| 518 | * indicating we didn't find any cache levels. |
| 519 | * |
| 520 | * Return: Cache levels visible to this core. |
| 521 | */ |
| 522 | int acpi_find_last_cache_level(unsigned int cpu) |
| 523 | { |
| 524 | u32 acpi_cpu_id; |
| 525 | struct acpi_table_header *table; |
| 526 | int number_of_levels = 0; |
| 527 | acpi_status status; |
| 528 | |
| 529 | pr_debug("Cache Setup find last level cpu=%d\n", cpu); |
| 530 | |
| 531 | acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| 532 | status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); |
| 533 | if (ACPI_FAILURE(status)) { |
| 534 | pr_warn_once("No PPTT table found, cache topology may be inaccurate\n"); |
| 535 | } else { |
| 536 | number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id); |
| 537 | acpi_put_table(table); |
| 538 | } |
| 539 | pr_debug("Cache Setup find last level level=%d\n", number_of_levels); |
| 540 | |
| 541 | return number_of_levels; |
| 542 | } |
| 543 | |
| 544 | /** |
| 545 | * cache_setup_acpi() - Override CPU cache topology with data from the PPTT |
| 546 | * @cpu: Kernel logical cpu number |
| 547 | * |
| 548 | * Updates the global cache info provided by cpu_get_cacheinfo() |
| 549 | * when there are valid properties in the acpi_pptt_cache nodes. A |
| 550 | * successful parse may not result in any updates if none of the |
| 551 | * cache levels have any valid flags set. Futher, a unique value is |
| 552 | * associated with each known CPU cache entry. This unique value |
| 553 | * can be used to determine whether caches are shared between cpus. |
| 554 | * |
| 555 | * Return: -ENOENT on failure to find table, or 0 on success |
| 556 | */ |
| 557 | int cache_setup_acpi(unsigned int cpu) |
| 558 | { |
| 559 | struct acpi_table_header *table; |
| 560 | acpi_status status; |
| 561 | |
| 562 | pr_debug("Cache Setup ACPI cpu %d\n", cpu); |
| 563 | |
| 564 | status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); |
| 565 | if (ACPI_FAILURE(status)) { |
| 566 | pr_warn_once("No PPTT table found, cache topology may be inaccurate\n"); |
| 567 | return -ENOENT; |
| 568 | } |
| 569 | |
| 570 | cache_setup_acpi_cpu(table, cpu); |
| 571 | acpi_put_table(table); |
| 572 | |
| 573 | return status; |
| 574 | } |
| 575 | |
| 576 | /** |
| 577 | * find_acpi_cpu_topology() - Determine a unique topology value for a given cpu |
| 578 | * @cpu: Kernel logical cpu number |
| 579 | * @level: The topological level for which we would like a unique ID |
| 580 | * |
| 581 | * Determine a topology unique ID for each thread/core/cluster/mc_grouping |
| 582 | * /socket/etc. This ID can then be used to group peers, which will have |
| 583 | * matching ids. |
| 584 | * |
| 585 | * The search terminates when either the requested level is found or |
| 586 | * we reach a root node. Levels beyond the termination point will return the |
| 587 | * same unique ID. The unique id for level 0 is the acpi processor id. All |
| 588 | * other levels beyond this use a generated value to uniquely identify |
| 589 | * a topological feature. |
| 590 | * |
| 591 | * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. |
| 592 | * Otherwise returns a value which represents a unique topological feature. |
| 593 | */ |
| 594 | int find_acpi_cpu_topology(unsigned int cpu, int level) |
| 595 | { |
| 596 | return find_acpi_cpu_topology_tag(cpu, level, 0); |
| 597 | } |
| 598 | |
| 599 | /** |
| 600 | * find_acpi_cpu_cache_topology() - Determine a unique cache topology value |
| 601 | * @cpu: Kernel logical cpu number |
| 602 | * @level: The cache level for which we would like a unique ID |
| 603 | * |
| 604 | * Determine a unique ID for each unified cache in the system |
| 605 | * |
| 606 | * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. |
| 607 | * Otherwise returns a value which represents a unique topological feature. |
| 608 | */ |
| 609 | int find_acpi_cpu_cache_topology(unsigned int cpu, int level) |
| 610 | { |
| 611 | struct acpi_table_header *table; |
| 612 | struct acpi_pptt_cache *found_cache; |
| 613 | acpi_status status; |
| 614 | u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| 615 | struct acpi_pptt_processor *cpu_node = NULL; |
| 616 | int ret = -1; |
| 617 | |
| 618 | status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); |
| 619 | if (ACPI_FAILURE(status)) { |
| 620 | pr_warn_once("No PPTT table found, topology may be inaccurate\n"); |
| 621 | return -ENOENT; |
| 622 | } |
| 623 | |
| 624 | found_cache = acpi_find_cache_node(table, acpi_cpu_id, |
| 625 | CACHE_TYPE_UNIFIED, |
| 626 | level, |
| 627 | &cpu_node); |
| 628 | if (found_cache) |
| 629 | ret = ACPI_PTR_DIFF(cpu_node, table); |
| 630 | |
| 631 | acpi_put_table(table); |
| 632 | |
| 633 | return ret; |
| 634 | } |
| 635 | |
| 636 | |
| 637 | /** |
| 638 | * find_acpi_cpu_topology_package() - Determine a unique cpu package value |
| 639 | * @cpu: Kernel logical cpu number |
| 640 | * |
| 641 | * Determine a topology unique package ID for the given cpu. |
| 642 | * This ID can then be used to group peers, which will have matching ids. |
| 643 | * |
| 644 | * The search terminates when either a level is found with the PHYSICAL_PACKAGE |
| 645 | * flag set or we reach a root node. |
| 646 | * |
| 647 | * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. |
| 648 | * Otherwise returns a value which represents the package for this cpu. |
| 649 | */ |
| 650 | int find_acpi_cpu_topology_package(unsigned int cpu) |
| 651 | { |
| 652 | return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, |
| 653 | ACPI_PPTT_PHYSICAL_PACKAGE); |
| 654 | } |