Carolyn Wyborny | f96a8a0 | 2012-04-06 23:25:19 +0000 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) Gigabit Ethernet Linux driver |
| 4 | Copyright(c) 2007-2012 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | ******************************************************************************/ |
| 27 | |
| 28 | /* e1000_i210 |
| 29 | * e1000_i211 |
| 30 | */ |
| 31 | |
| 32 | #include <linux/types.h> |
| 33 | #include <linux/if_ether.h> |
| 34 | |
| 35 | #include "e1000_hw.h" |
| 36 | #include "e1000_i210.h" |
| 37 | |
| 38 | static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw); |
| 39 | static void igb_put_hw_semaphore_i210(struct e1000_hw *hw); |
| 40 | static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, |
| 41 | u16 *data); |
| 42 | static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw); |
| 43 | |
| 44 | /** |
| 45 | * igb_acquire_nvm_i210 - Request for access to EEPROM |
| 46 | * @hw: pointer to the HW structure |
| 47 | * |
| 48 | * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| 49 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 50 | * Return successful if access grant bit set, else clear the request for |
| 51 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 52 | **/ |
| 53 | s32 igb_acquire_nvm_i210(struct e1000_hw *hw) |
| 54 | { |
| 55 | return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| 56 | } |
| 57 | |
| 58 | /** |
| 59 | * igb_release_nvm_i210 - Release exclusive access to EEPROM |
| 60 | * @hw: pointer to the HW structure |
| 61 | * |
| 62 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| 63 | * then release the semaphores acquired. |
| 64 | **/ |
| 65 | void igb_release_nvm_i210(struct e1000_hw *hw) |
| 66 | { |
| 67 | igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| 68 | } |
| 69 | |
| 70 | /** |
| 71 | * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore |
| 72 | * @hw: pointer to the HW structure |
| 73 | * @mask: specifies which semaphore to acquire |
| 74 | * |
| 75 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| 76 | * will also specify which port we're acquiring the lock for. |
| 77 | **/ |
| 78 | s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| 79 | { |
| 80 | u32 swfw_sync; |
| 81 | u32 swmask = mask; |
| 82 | u32 fwmask = mask << 16; |
| 83 | s32 ret_val = E1000_SUCCESS; |
| 84 | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| 85 | |
| 86 | while (i < timeout) { |
| 87 | if (igb_get_hw_semaphore_i210(hw)) { |
| 88 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 89 | goto out; |
| 90 | } |
| 91 | |
| 92 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
| 93 | if (!(swfw_sync & fwmask)) |
| 94 | break; |
| 95 | |
| 96 | /* |
| 97 | * Firmware currently using resource (fwmask) |
| 98 | */ |
| 99 | igb_put_hw_semaphore_i210(hw); |
| 100 | mdelay(5); |
| 101 | i++; |
| 102 | } |
| 103 | |
| 104 | if (i == timeout) { |
| 105 | hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| 106 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 107 | goto out; |
| 108 | } |
| 109 | |
| 110 | swfw_sync |= swmask; |
| 111 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 112 | |
| 113 | igb_put_hw_semaphore_i210(hw); |
| 114 | out: |
| 115 | return ret_val; |
| 116 | } |
| 117 | |
| 118 | /** |
| 119 | * igb_release_swfw_sync_i210 - Release SW/FW semaphore |
| 120 | * @hw: pointer to the HW structure |
| 121 | * @mask: specifies which semaphore to acquire |
| 122 | * |
| 123 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| 124 | * will also specify which port we're releasing the lock for. |
| 125 | **/ |
| 126 | void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| 127 | { |
| 128 | u32 swfw_sync; |
| 129 | |
| 130 | while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS) |
| 131 | ; /* Empty */ |
| 132 | |
| 133 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
| 134 | swfw_sync &= ~mask; |
| 135 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 136 | |
| 137 | igb_put_hw_semaphore_i210(hw); |
| 138 | } |
| 139 | |
| 140 | /** |
| 141 | * igb_get_hw_semaphore_i210 - Acquire hardware semaphore |
| 142 | * @hw: pointer to the HW structure |
| 143 | * |
| 144 | * Acquire the HW semaphore to access the PHY or NVM |
| 145 | **/ |
| 146 | static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw) |
| 147 | { |
| 148 | u32 swsm; |
| 149 | s32 ret_val = E1000_SUCCESS; |
| 150 | s32 timeout = hw->nvm.word_size + 1; |
| 151 | s32 i = 0; |
| 152 | |
| 153 | /* Get the FW semaphore. */ |
| 154 | for (i = 0; i < timeout; i++) { |
| 155 | swsm = rd32(E1000_SWSM); |
| 156 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); |
| 157 | |
| 158 | /* Semaphore acquired if bit latched */ |
| 159 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) |
| 160 | break; |
| 161 | |
| 162 | udelay(50); |
| 163 | } |
| 164 | |
| 165 | if (i == timeout) { |
| 166 | /* Release semaphores */ |
| 167 | igb_put_hw_semaphore(hw); |
| 168 | hw_dbg("Driver can't access the NVM\n"); |
| 169 | ret_val = -E1000_ERR_NVM; |
| 170 | goto out; |
| 171 | } |
| 172 | |
| 173 | out: |
| 174 | return ret_val; |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | * igb_put_hw_semaphore_i210 - Release hardware semaphore |
| 179 | * @hw: pointer to the HW structure |
| 180 | * |
| 181 | * Release hardware semaphore used to access the PHY or NVM |
| 182 | **/ |
| 183 | static void igb_put_hw_semaphore_i210(struct e1000_hw *hw) |
| 184 | { |
| 185 | u32 swsm; |
| 186 | |
| 187 | swsm = rd32(E1000_SWSM); |
| 188 | |
| 189 | swsm &= ~E1000_SWSM_SWESMBI; |
| 190 | |
| 191 | wr32(E1000_SWSM, swsm); |
| 192 | } |
| 193 | |
| 194 | /** |
| 195 | * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register |
| 196 | * @hw: pointer to the HW structure |
| 197 | * @offset: offset of word in the Shadow Ram to read |
| 198 | * @words: number of words to read |
| 199 | * @data: word read from the Shadow Ram |
| 200 | * |
| 201 | * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| 202 | * Uses necessary synchronization semaphores. |
| 203 | **/ |
| 204 | s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| 205 | u16 *data) |
| 206 | { |
| 207 | s32 status = E1000_SUCCESS; |
| 208 | u16 i, count; |
| 209 | |
| 210 | /* We cannot hold synchronization semaphores for too long, |
| 211 | * because of forceful takeover procedure. However it is more efficient |
| 212 | * to read in bursts than synchronizing access for each word. */ |
| 213 | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| 214 | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| 215 | E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| 216 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 217 | status = igb_read_nvm_eerd(hw, offset, count, |
| 218 | data + i); |
| 219 | hw->nvm.ops.release(hw); |
| 220 | } else { |
| 221 | status = E1000_ERR_SWFW_SYNC; |
| 222 | } |
| 223 | |
| 224 | if (status != E1000_SUCCESS) |
| 225 | break; |
| 226 | } |
| 227 | |
| 228 | return status; |
| 229 | } |
| 230 | |
| 231 | /** |
| 232 | * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR |
| 233 | * @hw: pointer to the HW structure |
| 234 | * @offset: offset within the Shadow RAM to be written to |
| 235 | * @words: number of words to write |
| 236 | * @data: 16 bit word(s) to be written to the Shadow RAM |
| 237 | * |
| 238 | * Writes data to Shadow RAM at offset using EEWR register. |
| 239 | * |
| 240 | * If e1000_update_nvm_checksum is not called after this function , the |
| 241 | * data will not be committed to FLASH and also Shadow RAM will most likely |
| 242 | * contain an invalid checksum. |
| 243 | * |
| 244 | * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| 245 | * partially written. |
| 246 | **/ |
| 247 | s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| 248 | u16 *data) |
| 249 | { |
| 250 | s32 status = E1000_SUCCESS; |
| 251 | u16 i, count; |
| 252 | |
| 253 | /* We cannot hold synchronization semaphores for too long, |
| 254 | * because of forceful takeover procedure. However it is more efficient |
| 255 | * to write in bursts than synchronizing access for each word. */ |
| 256 | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| 257 | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| 258 | E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| 259 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 260 | status = igb_write_nvm_srwr(hw, offset, count, |
| 261 | data + i); |
| 262 | hw->nvm.ops.release(hw); |
| 263 | } else { |
| 264 | status = E1000_ERR_SWFW_SYNC; |
| 265 | } |
| 266 | |
| 267 | if (status != E1000_SUCCESS) |
| 268 | break; |
| 269 | } |
| 270 | |
| 271 | return status; |
| 272 | } |
| 273 | |
| 274 | /** |
| 275 | * igb_write_nvm_srwr - Write to Shadow Ram using EEWR |
| 276 | * @hw: pointer to the HW structure |
| 277 | * @offset: offset within the Shadow Ram to be written to |
| 278 | * @words: number of words to write |
| 279 | * @data: 16 bit word(s) to be written to the Shadow Ram |
| 280 | * |
| 281 | * Writes data to Shadow Ram at offset using EEWR register. |
| 282 | * |
| 283 | * If igb_update_nvm_checksum is not called after this function , the |
| 284 | * Shadow Ram will most likely contain an invalid checksum. |
| 285 | **/ |
| 286 | static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, |
| 287 | u16 *data) |
| 288 | { |
| 289 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 290 | u32 i, k, eewr = 0; |
| 291 | u32 attempts = 100000; |
| 292 | s32 ret_val = E1000_SUCCESS; |
| 293 | |
| 294 | /* |
| 295 | * A check for invalid values: offset too large, too many words, |
| 296 | * too many words for the offset, and not enough words. |
| 297 | */ |
| 298 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 299 | (words == 0)) { |
| 300 | hw_dbg("nvm parameter(s) out of bounds\n"); |
| 301 | ret_val = -E1000_ERR_NVM; |
| 302 | goto out; |
| 303 | } |
| 304 | |
| 305 | for (i = 0; i < words; i++) { |
| 306 | eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
| 307 | (data[i] << E1000_NVM_RW_REG_DATA) | |
| 308 | E1000_NVM_RW_REG_START; |
| 309 | |
| 310 | wr32(E1000_SRWR, eewr); |
| 311 | |
| 312 | for (k = 0; k < attempts; k++) { |
| 313 | if (E1000_NVM_RW_REG_DONE & |
| 314 | rd32(E1000_SRWR)) { |
| 315 | ret_val = E1000_SUCCESS; |
| 316 | break; |
| 317 | } |
| 318 | udelay(5); |
| 319 | } |
| 320 | |
| 321 | if (ret_val != E1000_SUCCESS) { |
| 322 | hw_dbg("Shadow RAM write EEWR timed out\n"); |
| 323 | break; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | out: |
| 328 | return ret_val; |
| 329 | } |
| 330 | |
| 331 | /** |
| 332 | * igb_read_nvm_i211 - Read NVM wrapper function for I211 |
| 333 | * @hw: pointer to the HW structure |
| 334 | * @address: the word address (aka eeprom offset) to read |
| 335 | * @data: pointer to the data read |
| 336 | * |
| 337 | * Wrapper function to return data formerly found in the NVM. |
| 338 | **/ |
| 339 | s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, |
| 340 | u16 *data) |
| 341 | { |
| 342 | s32 ret_val = E1000_SUCCESS; |
| 343 | |
| 344 | /* Only the MAC addr is required to be present in the iNVM */ |
| 345 | switch (offset) { |
| 346 | case NVM_MAC_ADDR: |
| 347 | ret_val = igb_read_invm_i211(hw, offset, &data[0]); |
| 348 | ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]); |
| 349 | ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]); |
| 350 | if (ret_val != E1000_SUCCESS) |
| 351 | hw_dbg("MAC Addr not found in iNVM\n"); |
| 352 | break; |
| 353 | case NVM_ID_LED_SETTINGS: |
| 354 | case NVM_INIT_CTRL_2: |
| 355 | case NVM_INIT_CTRL_4: |
| 356 | case NVM_LED_1_CFG: |
| 357 | case NVM_LED_0_2_CFG: |
| 358 | igb_read_invm_i211(hw, offset, data); |
| 359 | break; |
| 360 | case NVM_COMPAT: |
| 361 | *data = ID_LED_DEFAULT_I210; |
| 362 | break; |
| 363 | case NVM_SUB_DEV_ID: |
| 364 | *data = hw->subsystem_device_id; |
| 365 | break; |
| 366 | case NVM_SUB_VEN_ID: |
| 367 | *data = hw->subsystem_vendor_id; |
| 368 | break; |
| 369 | case NVM_DEV_ID: |
| 370 | *data = hw->device_id; |
| 371 | break; |
| 372 | case NVM_VEN_ID: |
| 373 | *data = hw->vendor_id; |
| 374 | break; |
| 375 | default: |
| 376 | hw_dbg("NVM word 0x%02x is not mapped.\n", offset); |
| 377 | *data = NVM_RESERVED_WORD; |
| 378 | break; |
| 379 | } |
| 380 | return ret_val; |
| 381 | } |
| 382 | |
| 383 | /** |
| 384 | * igb_read_invm_i211 - Reads OTP |
| 385 | * @hw: pointer to the HW structure |
| 386 | * @address: the word address (aka eeprom offset) to read |
| 387 | * @data: pointer to the data read |
| 388 | * |
| 389 | * Reads 16-bit words from the OTP. Return error when the word is not |
| 390 | * stored in OTP. |
| 391 | **/ |
| 392 | s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data) |
| 393 | { |
| 394 | s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; |
| 395 | u32 invm_dword; |
| 396 | u16 i; |
| 397 | u8 record_type, word_address; |
| 398 | |
| 399 | for (i = 0; i < E1000_INVM_SIZE; i++) { |
| 400 | invm_dword = rd32(E1000_INVM_DATA_REG(i)); |
| 401 | /* Get record type */ |
| 402 | record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); |
| 403 | if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) |
| 404 | break; |
| 405 | if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) |
| 406 | i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; |
| 407 | if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) |
| 408 | i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; |
| 409 | if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { |
| 410 | word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); |
| 411 | if (word_address == (u8)address) { |
| 412 | *data = INVM_DWORD_TO_WORD_DATA(invm_dword); |
| 413 | hw_dbg("Read INVM Word 0x%02x = %x", |
| 414 | address, *data); |
| 415 | status = E1000_SUCCESS; |
| 416 | break; |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | if (status != E1000_SUCCESS) |
| 421 | hw_dbg("Requested word 0x%02x not found in OTP\n", address); |
| 422 | return status; |
| 423 | } |
| 424 | |
| 425 | /** |
| 426 | * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum |
| 427 | * @hw: pointer to the HW structure |
| 428 | * |
| 429 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 430 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 431 | **/ |
| 432 | s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) |
| 433 | { |
| 434 | s32 status = E1000_SUCCESS; |
| 435 | s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); |
| 436 | |
| 437 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 438 | |
| 439 | /* |
| 440 | * Replace the read function with semaphore grabbing with |
| 441 | * the one that skips this for a while. |
| 442 | * We have semaphore taken already here. |
| 443 | */ |
| 444 | read_op_ptr = hw->nvm.ops.read; |
| 445 | hw->nvm.ops.read = igb_read_nvm_eerd; |
| 446 | |
| 447 | status = igb_validate_nvm_checksum(hw); |
| 448 | |
| 449 | /* Revert original read operation. */ |
| 450 | hw->nvm.ops.read = read_op_ptr; |
| 451 | |
| 452 | hw->nvm.ops.release(hw); |
| 453 | } else { |
| 454 | status = E1000_ERR_SWFW_SYNC; |
| 455 | } |
| 456 | |
| 457 | return status; |
| 458 | } |
| 459 | |
| 460 | |
| 461 | /** |
| 462 | * igb_update_nvm_checksum_i210 - Update EEPROM checksum |
| 463 | * @hw: pointer to the HW structure |
| 464 | * |
| 465 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 466 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 467 | * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| 468 | **/ |
| 469 | s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) |
| 470 | { |
| 471 | s32 ret_val = E1000_SUCCESS; |
| 472 | u16 checksum = 0; |
| 473 | u16 i, nvm_data; |
| 474 | |
| 475 | /* |
| 476 | * Read the first word from the EEPROM. If this times out or fails, do |
| 477 | * not continue or we could be in for a very long wait while every |
| 478 | * EEPROM read fails |
| 479 | */ |
| 480 | ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| 481 | if (ret_val != E1000_SUCCESS) { |
| 482 | hw_dbg("EEPROM read failed\n"); |
| 483 | goto out; |
| 484 | } |
| 485 | |
| 486 | if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { |
| 487 | /* |
| 488 | * Do not use hw->nvm.ops.write, hw->nvm.ops.read |
| 489 | * because we do not want to take the synchronization |
| 490 | * semaphores twice here. |
| 491 | */ |
| 492 | |
| 493 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| 494 | ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data); |
| 495 | if (ret_val) { |
| 496 | hw->nvm.ops.release(hw); |
| 497 | hw_dbg("NVM Read Error while updating checksum.\n"); |
| 498 | goto out; |
| 499 | } |
| 500 | checksum += nvm_data; |
| 501 | } |
| 502 | checksum = (u16) NVM_SUM - checksum; |
| 503 | ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, |
| 504 | &checksum); |
| 505 | if (ret_val != E1000_SUCCESS) { |
| 506 | hw->nvm.ops.release(hw); |
| 507 | hw_dbg("NVM Write Error while updating checksum.\n"); |
| 508 | goto out; |
| 509 | } |
| 510 | |
| 511 | hw->nvm.ops.release(hw); |
| 512 | |
| 513 | ret_val = igb_update_flash_i210(hw); |
| 514 | } else { |
| 515 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 516 | } |
| 517 | out: |
| 518 | return ret_val; |
| 519 | } |
| 520 | |
| 521 | /** |
| 522 | * igb_update_flash_i210 - Commit EEPROM to the flash |
| 523 | * @hw: pointer to the HW structure |
| 524 | * |
| 525 | **/ |
| 526 | s32 igb_update_flash_i210(struct e1000_hw *hw) |
| 527 | { |
| 528 | s32 ret_val = E1000_SUCCESS; |
| 529 | u32 flup; |
| 530 | |
| 531 | ret_val = igb_pool_flash_update_done_i210(hw); |
| 532 | if (ret_val == -E1000_ERR_NVM) { |
| 533 | hw_dbg("Flash update time out\n"); |
| 534 | goto out; |
| 535 | } |
| 536 | |
| 537 | flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210; |
| 538 | wr32(E1000_EECD, flup); |
| 539 | |
| 540 | ret_val = igb_pool_flash_update_done_i210(hw); |
| 541 | if (ret_val == E1000_SUCCESS) |
| 542 | hw_dbg("Flash update complete\n"); |
| 543 | else |
| 544 | hw_dbg("Flash update time out\n"); |
| 545 | |
| 546 | out: |
| 547 | return ret_val; |
| 548 | } |
| 549 | |
| 550 | /** |
| 551 | * igb_pool_flash_update_done_i210 - Pool FLUDONE status. |
| 552 | * @hw: pointer to the HW structure |
| 553 | * |
| 554 | **/ |
| 555 | s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw) |
| 556 | { |
| 557 | s32 ret_val = -E1000_ERR_NVM; |
| 558 | u32 i, reg; |
| 559 | |
| 560 | for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { |
| 561 | reg = rd32(E1000_EECD); |
| 562 | if (reg & E1000_EECD_FLUDONE_I210) { |
| 563 | ret_val = E1000_SUCCESS; |
| 564 | break; |
| 565 | } |
| 566 | udelay(5); |
| 567 | } |
| 568 | |
| 569 | return ret_val; |
| 570 | } |
| 571 | |
| 572 | /** |
| 573 | * igb_valid_led_default_i210 - Verify a valid default LED config |
| 574 | * @hw: pointer to the HW structure |
| 575 | * @data: pointer to the NVM (EEPROM) |
| 576 | * |
| 577 | * Read the EEPROM for the current default LED configuration. If the |
| 578 | * LED configuration is not valid, set to a valid LED configuration. |
| 579 | **/ |
| 580 | s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) |
| 581 | { |
| 582 | s32 ret_val; |
| 583 | |
| 584 | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); |
| 585 | if (ret_val) { |
| 586 | hw_dbg("NVM Read Error\n"); |
| 587 | goto out; |
| 588 | } |
| 589 | |
| 590 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { |
| 591 | switch (hw->phy.media_type) { |
| 592 | case e1000_media_type_internal_serdes: |
| 593 | *data = ID_LED_DEFAULT_I210_SERDES; |
| 594 | break; |
| 595 | case e1000_media_type_copper: |
| 596 | default: |
| 597 | *data = ID_LED_DEFAULT_I210; |
| 598 | break; |
| 599 | } |
| 600 | } |
| 601 | out: |
| 602 | return ret_val; |
| 603 | } |