| /* drivers/android/pmem.c |
| * |
| * Copyright (C) 2007 Google, Inc. |
| * Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved. |
| * |
| * This software is licensed under the terms of the GNU General Public |
| * License version 2, as published by the Free Software Foundation, and |
| * may be copied, distributed, and modified under those terms. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/miscdevice.h> |
| #include <linux/platform_device.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/fmem.h> |
| #include <linux/mm.h> |
| #include <linux/list.h> |
| #include <linux/debugfs.h> |
| #include <linux/android_pmem.h> |
| #include <linux/mempolicy.h> |
| #include <linux/kobject.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/memory_alloc.h> |
| #include <linux/vmalloc.h> |
| #include <linux/io.h> |
| #include <linux/mm_types.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <asm/cacheflush.h> |
| #include <asm/sizes.h> |
| #include <asm/mach/map.h> |
| #include <asm/page.h> |
| |
| #define PMEM_MAX_DEVICES (10) |
| |
| #define PMEM_MAX_ORDER (128) |
| #define PMEM_MIN_ALLOC PAGE_SIZE |
| |
| #define PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS (64) |
| |
| #define PMEM_32BIT_WORD_ORDER (5) |
| #define PMEM_BITS_PER_WORD_MASK (BITS_PER_LONG - 1) |
| |
| #ifdef CONFIG_ANDROID_PMEM_DEBUG |
| #define PMEM_DEBUG 1 |
| #else |
| #define PMEM_DEBUG 0 |
| #endif |
| |
| #define SYSTEM_ALLOC_RETRY 10 |
| |
| /* indicates that a refernce to this file has been taken via get_pmem_file, |
| * the file should not be released until put_pmem_file is called */ |
| #define PMEM_FLAGS_BUSY 0x1 |
| /* indicates that this is a suballocation of a larger master range */ |
| #define PMEM_FLAGS_CONNECTED 0x1 << 1 |
| /* indicates this is a master and not a sub allocation and that it is mmaped */ |
| #define PMEM_FLAGS_MASTERMAP 0x1 << 2 |
| /* submap and unsubmap flags indicate: |
| * 00: subregion has never been mmaped |
| * 10: subregion has been mmaped, reference to the mm was taken |
| * 11: subretion has ben released, refernece to the mm still held |
| * 01: subretion has been released, reference to the mm has been released |
| */ |
| #define PMEM_FLAGS_SUBMAP 0x1 << 3 |
| #define PMEM_FLAGS_UNSUBMAP 0x1 << 4 |
| |
| struct pmem_data { |
| /* in alloc mode: an index into the bitmap |
| * in no_alloc mode: the size of the allocation */ |
| int index; |
| /* see flags above for descriptions */ |
| unsigned int flags; |
| /* protects this data field, if the mm_mmap sem will be held at the |
| * same time as this sem, the mm sem must be taken first (as this is |
| * the order for vma_open and vma_close ops */ |
| struct rw_semaphore sem; |
| /* info about the mmaping process */ |
| struct vm_area_struct *vma; |
| /* task struct of the mapping process */ |
| struct task_struct *task; |
| /* process id of teh mapping process */ |
| pid_t pid; |
| /* file descriptor of the master */ |
| int master_fd; |
| /* file struct of the master */ |
| struct file *master_file; |
| /* a list of currently available regions if this is a suballocation */ |
| struct list_head region_list; |
| /* a linked list of data so we can access them for debugging */ |
| struct list_head list; |
| #if PMEM_DEBUG |
| int ref; |
| #endif |
| }; |
| |
| struct pmem_bits { |
| unsigned allocated:1; /* 1 if allocated, 0 if free */ |
| unsigned order:7; /* size of the region in pmem space */ |
| }; |
| |
| struct pmem_region_node { |
| struct pmem_region region; |
| struct list_head list; |
| }; |
| |
| #define PMEM_DEBUG_MSGS 0 |
| #if PMEM_DEBUG_MSGS |
| #define DLOG(fmt,args...) \ |
| do { pr_debug("[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \ |
| ##args); } \ |
| while (0) |
| #else |
| #define DLOG(x...) do {} while (0) |
| #endif |
| |
| enum pmem_align { |
| PMEM_ALIGN_4K, |
| PMEM_ALIGN_1M, |
| }; |
| |
| #define PMEM_NAME_SIZE 16 |
| |
| struct alloc_list { |
| void *addr; /* physical addr of allocation */ |
| void *aaddr; /* aligned physical addr */ |
| unsigned int size; /* total size of allocation */ |
| unsigned char __iomem *vaddr; /* Virtual addr */ |
| struct list_head allocs; |
| }; |
| |
| struct pmem_info { |
| struct miscdevice dev; |
| /* physical start address of the remaped pmem space */ |
| unsigned long base; |
| /* vitual start address of the remaped pmem space */ |
| unsigned char __iomem *vbase; |
| /* total size of the pmem space */ |
| unsigned long size; |
| /* number of entries in the pmem space */ |
| unsigned long num_entries; |
| /* pfn of the garbage page in memory */ |
| unsigned long garbage_pfn; |
| /* which memory type (i.e. SMI, EBI1) this PMEM device is backed by */ |
| unsigned memory_type; |
| |
| char name[PMEM_NAME_SIZE]; |
| |
| /* index of the garbage page in the pmem space */ |
| int garbage_index; |
| /* reserved virtual address range */ |
| struct vm_struct *area; |
| |
| enum pmem_allocator_type allocator_type; |
| |
| int (*allocate)(const int, |
| const unsigned long, |
| const unsigned int); |
| int (*free)(int, int); |
| int (*free_space)(int, struct pmem_freespace *); |
| unsigned long (*len)(int, struct pmem_data *); |
| unsigned long (*start_addr)(int, struct pmem_data *); |
| |
| /* actual size of memory element, e.g.: (4 << 10) is 4K */ |
| unsigned int quantum; |
| |
| /* indicates maps of this region should be cached, if a mix of |
| * cached and uncached is desired, set this and open the device with |
| * O_SYNC to get an uncached region */ |
| unsigned cached; |
| unsigned buffered; |
| union { |
| struct { |
| /* in all_or_nothing allocator mode the first mapper |
| * gets the whole space and sets this flag */ |
| unsigned allocated; |
| } all_or_nothing; |
| |
| struct { |
| /* the buddy allocator bitmap for the region |
| * indicating which entries are allocated and which |
| * are free. |
| */ |
| |
| struct pmem_bits *buddy_bitmap; |
| } buddy_bestfit; |
| |
| struct { |
| unsigned int bitmap_free; /* # of zero bits/quanta */ |
| uint32_t *bitmap; |
| int32_t bitmap_allocs; |
| struct { |
| short bit; |
| unsigned short quanta; |
| } *bitm_alloc; |
| } bitmap; |
| |
| struct { |
| unsigned long used; /* Bytes currently allocated */ |
| struct list_head alist; /* List of allocations */ |
| } system_mem; |
| } allocator; |
| |
| int id; |
| struct kobject kobj; |
| |
| /* for debugging, creates a list of pmem file structs, the |
| * data_list_mutex should be taken before pmem_data->sem if both are |
| * needed */ |
| struct mutex data_list_mutex; |
| struct list_head data_list; |
| /* arena_mutex protects the global allocation arena |
| * |
| * IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER: |
| * down(pmem_data->sem) => mutex_lock(arena_mutex) |
| */ |
| struct mutex arena_mutex; |
| |
| long (*ioctl)(struct file *, unsigned int, unsigned long); |
| int (*release)(struct inode *, struct file *); |
| /* reference count of allocations */ |
| atomic_t allocation_cnt; |
| /* |
| * request function for a region when the allocation count goes |
| * from 0 -> 1 |
| */ |
| int (*mem_request)(void *); |
| /* |
| * release function for a region when the allocation count goes |
| * from 1 -> 0 |
| */ |
| int (*mem_release)(void *); |
| /* |
| * private data for the request/release callback |
| */ |
| void *region_data; |
| /* |
| * map and unmap as needed |
| */ |
| int map_on_demand; |
| /* |
| * memory will be reused through fmem |
| */ |
| int reusable; |
| }; |
| #define to_pmem_info_id(a) (container_of(a, struct pmem_info, kobj)->id) |
| |
| static void ioremap_pmem(int id); |
| static void pmem_put_region(int id); |
| static int pmem_get_region(int id); |
| |
| static struct pmem_info pmem[PMEM_MAX_DEVICES]; |
| static int id_count; |
| |
| #define PMEM_SYSFS_DIR_NAME "pmem_regions" /* under /sys/kernel/ */ |
| static struct kset *pmem_kset; |
| |
| #define PMEM_IS_FREE_BUDDY(id, index) \ |
| (!(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].allocated)) |
| #define PMEM_BUDDY_ORDER(id, index) \ |
| (pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].order) |
| #define PMEM_BUDDY_INDEX(id, index) \ |
| (index ^ (1 << PMEM_BUDDY_ORDER(id, index))) |
| #define PMEM_BUDDY_NEXT_INDEX(id, index) \ |
| (index + (1 << PMEM_BUDDY_ORDER(id, index))) |
| #define PMEM_OFFSET(index) (index * pmem[id].quantum) |
| #define PMEM_START_ADDR(id, index) \ |
| (PMEM_OFFSET(index) + pmem[id].base) |
| #define PMEM_BUDDY_LEN(id, index) \ |
| ((1 << PMEM_BUDDY_ORDER(id, index)) * pmem[id].quantum) |
| #define PMEM_END_ADDR(id, index) \ |
| (PMEM_START_ADDR(id, index) + PMEM_LEN(id, index)) |
| #define PMEM_START_VADDR(id, index) \ |
| (PMEM_OFFSET(id, index) + pmem[id].vbase) |
| #define PMEM_END_VADDR(id, index) \ |
| (PMEM_START_VADDR(id, index) + PMEM_LEN(id, index)) |
| #define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED) |
| #define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK))) |
| #define PMEM_IS_SUBMAP(data) \ |
| ((data->flags & PMEM_FLAGS_SUBMAP) && \ |
| (!(data->flags & PMEM_FLAGS_UNSUBMAP))) |
| |
| static int pmem_release(struct inode *, struct file *); |
| static int pmem_mmap(struct file *, struct vm_area_struct *); |
| static int pmem_open(struct inode *, struct file *); |
| static long pmem_ioctl(struct file *, unsigned int, unsigned long); |
| |
| struct file_operations pmem_fops = { |
| .release = pmem_release, |
| .mmap = pmem_mmap, |
| .open = pmem_open, |
| .unlocked_ioctl = pmem_ioctl, |
| }; |
| |
| #define PMEM_ATTR(_name, _mode, _show, _store) { \ |
| .attr = {.name = __stringify(_name), .mode = _mode }, \ |
| .show = _show, \ |
| .store = _store, \ |
| } |
| |
| struct pmem_attr { |
| struct attribute attr; |
| ssize_t(*show) (const int id, char * const); |
| ssize_t(*store) (const int id, const char * const, const size_t count); |
| }; |
| #define to_pmem_attr(a) container_of(a, struct pmem_attr, attr) |
| |
| #define RW_PMEM_ATTR(name) \ |
| static struct pmem_attr pmem_attr_## name = \ |
| PMEM_ATTR(name, S_IRUGO | S_IWUSR, show_pmem_## name, store_pmem_## name) |
| |
| #define RO_PMEM_ATTR(name) \ |
| static struct pmem_attr pmem_attr_## name = \ |
| PMEM_ATTR(name, S_IRUGO, show_pmem_## name, NULL) |
| |
| #define WO_PMEM_ATTR(name) \ |
| static struct pmem_attr pmem_attr_## name = \ |
| PMEM_ATTR(name, S_IWUSR, NULL, store_pmem_## name) |
| |
| static ssize_t show_pmem(struct kobject *kobj, |
| struct attribute *attr, |
| char *buf) |
| { |
| struct pmem_attr *a = to_pmem_attr(attr); |
| return a->show ? a->show(to_pmem_info_id(kobj), buf) : -EIO; |
| } |
| |
| static ssize_t store_pmem(struct kobject *kobj, struct attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct pmem_attr *a = to_pmem_attr(attr); |
| return a->store ? a->store(to_pmem_info_id(kobj), buf, count) : -EIO; |
| } |
| |
| static struct sysfs_ops pmem_ops = { |
| .show = show_pmem, |
| .store = store_pmem, |
| }; |
| |
| static ssize_t show_pmem_base(int id, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n", |
| pmem[id].base, pmem[id].base); |
| } |
| RO_PMEM_ATTR(base); |
| |
| static ssize_t show_pmem_size(int id, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n", |
| pmem[id].size, pmem[id].size); |
| } |
| RO_PMEM_ATTR(size); |
| |
| static ssize_t show_pmem_allocator_type(int id, char *buf) |
| { |
| switch (pmem[id].allocator_type) { |
| case PMEM_ALLOCATORTYPE_ALLORNOTHING: |
| return scnprintf(buf, PAGE_SIZE, "%s\n", "All or Nothing"); |
| case PMEM_ALLOCATORTYPE_BUDDYBESTFIT: |
| return scnprintf(buf, PAGE_SIZE, "%s\n", "Buddy Bestfit"); |
| case PMEM_ALLOCATORTYPE_BITMAP: |
| return scnprintf(buf, PAGE_SIZE, "%s\n", "Bitmap"); |
| case PMEM_ALLOCATORTYPE_SYSTEM: |
| return scnprintf(buf, PAGE_SIZE, "%s\n", "System heap"); |
| default: |
| return scnprintf(buf, PAGE_SIZE, |
| "??? Invalid allocator type (%d) for this region! " |
| "Something isn't right.\n", |
| pmem[id].allocator_type); |
| } |
| } |
| RO_PMEM_ATTR(allocator_type); |
| |
| static ssize_t show_pmem_mapped_regions(int id, char *buf) |
| { |
| struct list_head *elt; |
| int ret; |
| |
| ret = scnprintf(buf, PAGE_SIZE, |
| "pid #: mapped regions (offset, len) (offset,len)...\n"); |
| |
| mutex_lock(&pmem[id].data_list_mutex); |
| list_for_each(elt, &pmem[id].data_list) { |
| struct pmem_data *data = |
| list_entry(elt, struct pmem_data, list); |
| struct list_head *elt2; |
| |
| down_read(&data->sem); |
| ret += scnprintf(buf + ret, PAGE_SIZE - ret, "pid %u:", |
| data->pid); |
| list_for_each(elt2, &data->region_list) { |
| struct pmem_region_node *region_node = list_entry(elt2, |
| struct pmem_region_node, |
| list); |
| ret += scnprintf(buf + ret, PAGE_SIZE - ret, |
| "(%lx,%lx) ", |
| region_node->region.offset, |
| region_node->region.len); |
| } |
| up_read(&data->sem); |
| ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n"); |
| } |
| mutex_unlock(&pmem[id].data_list_mutex); |
| return ret; |
| } |
| RO_PMEM_ATTR(mapped_regions); |
| |
| #define PMEM_COMMON_SYSFS_ATTRS \ |
| &pmem_attr_base.attr, \ |
| &pmem_attr_size.attr, \ |
| &pmem_attr_allocator_type.attr, \ |
| &pmem_attr_mapped_regions.attr |
| |
| |
| static ssize_t show_pmem_allocated(int id, char *buf) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| ret = scnprintf(buf, PAGE_SIZE, "%s\n", |
| pmem[id].allocator.all_or_nothing.allocated ? |
| "is allocated" : "is NOT allocated"); |
| mutex_unlock(&pmem[id].arena_mutex); |
| return ret; |
| } |
| RO_PMEM_ATTR(allocated); |
| |
| static struct attribute *pmem_allornothing_attrs[] = { |
| PMEM_COMMON_SYSFS_ATTRS, |
| |
| &pmem_attr_allocated.attr, |
| |
| NULL |
| }; |
| |
| static struct kobj_type pmem_allornothing_ktype = { |
| .sysfs_ops = &pmem_ops, |
| .default_attrs = pmem_allornothing_attrs, |
| }; |
| |
| static ssize_t show_pmem_total_entries(int id, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%lu\n", pmem[id].num_entries); |
| } |
| RO_PMEM_ATTR(total_entries); |
| |
| static ssize_t show_pmem_quantum_size(int id, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%u (%#x)\n", |
| pmem[id].quantum, pmem[id].quantum); |
| } |
| RO_PMEM_ATTR(quantum_size); |
| |
| static ssize_t show_pmem_buddy_bitmap_dump(int id, char *buf) |
| { |
| int ret, i; |
| |
| mutex_lock(&pmem[id].data_list_mutex); |
| ret = scnprintf(buf, PAGE_SIZE, "index\torder\tlength\tallocated\n"); |
| |
| for (i = 0; i < pmem[id].num_entries && (PAGE_SIZE - ret); |
| i = PMEM_BUDDY_NEXT_INDEX(id, i)) |
| ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%d\t%d\t%d\t%d\n", |
| i, PMEM_BUDDY_ORDER(id, i), |
| PMEM_BUDDY_LEN(id, i), |
| !PMEM_IS_FREE_BUDDY(id, i)); |
| |
| mutex_unlock(&pmem[id].data_list_mutex); |
| return ret; |
| } |
| RO_PMEM_ATTR(buddy_bitmap_dump); |
| |
| #define PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS \ |
| &pmem_attr_quantum_size.attr, \ |
| &pmem_attr_total_entries.attr |
| |
| static struct attribute *pmem_buddy_bestfit_attrs[] = { |
| PMEM_COMMON_SYSFS_ATTRS, |
| |
| PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS, |
| |
| &pmem_attr_buddy_bitmap_dump.attr, |
| |
| NULL |
| }; |
| |
| static struct kobj_type pmem_buddy_bestfit_ktype = { |
| .sysfs_ops = &pmem_ops, |
| .default_attrs = pmem_buddy_bestfit_attrs, |
| }; |
| |
| static ssize_t show_pmem_free_quanta(int id, char *buf) |
| { |
| ssize_t ret; |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| ret = scnprintf(buf, PAGE_SIZE, "%u\n", |
| pmem[id].allocator.bitmap.bitmap_free); |
| mutex_unlock(&pmem[id].arena_mutex); |
| return ret; |
| } |
| RO_PMEM_ATTR(free_quanta); |
| |
| static ssize_t show_pmem_bits_allocated(int id, char *buf) |
| { |
| ssize_t ret; |
| unsigned int i; |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| |
| ret = scnprintf(buf, PAGE_SIZE, |
| "id: %d\nbitnum\tindex\tquanta allocated\n", id); |
| |
| for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) |
| if (pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1) |
| ret += scnprintf(buf + ret, PAGE_SIZE - ret, |
| "%u\t%u\t%u\n", |
| i, |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit, |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta |
| ); |
| |
| mutex_unlock(&pmem[id].arena_mutex); |
| return ret; |
| } |
| RO_PMEM_ATTR(bits_allocated); |
| |
| static struct attribute *pmem_bitmap_attrs[] = { |
| PMEM_COMMON_SYSFS_ATTRS, |
| |
| PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS, |
| |
| &pmem_attr_free_quanta.attr, |
| &pmem_attr_bits_allocated.attr, |
| |
| NULL |
| }; |
| |
| static struct attribute *pmem_system_attrs[] = { |
| PMEM_COMMON_SYSFS_ATTRS, |
| |
| NULL |
| }; |
| |
| static struct kobj_type pmem_bitmap_ktype = { |
| .sysfs_ops = &pmem_ops, |
| .default_attrs = pmem_bitmap_attrs, |
| }; |
| |
| static struct kobj_type pmem_system_ktype = { |
| .sysfs_ops = &pmem_ops, |
| .default_attrs = pmem_system_attrs, |
| }; |
| |
| static int pmem_allocate_from_id(const int id, const unsigned long size, |
| const unsigned int align) |
| { |
| int ret; |
| ret = pmem_get_region(id); |
| |
| if (ret) |
| return -1; |
| |
| ret = pmem[id].allocate(id, size, align); |
| |
| if (ret < 0) |
| pmem_put_region(id); |
| |
| return ret; |
| } |
| |
| static int pmem_free_from_id(const int id, const int index) |
| { |
| pmem_put_region(id); |
| return pmem[id].free(id, index); |
| } |
| |
| static int pmem_get_region(int id) |
| { |
| /* Must be called with arena mutex locked */ |
| atomic_inc(&pmem[id].allocation_cnt); |
| if (!pmem[id].vbase) { |
| DLOG("PMEMDEBUG: mapping for %s", pmem[id].name); |
| if (pmem[id].mem_request) { |
| int ret = pmem[id].mem_request(pmem[id].region_data); |
| if (ret) { |
| atomic_dec(&pmem[id].allocation_cnt); |
| return 1; |
| } |
| } |
| ioremap_pmem(id); |
| } |
| |
| if (pmem[id].vbase) { |
| return 0; |
| } else { |
| if (pmem[id].mem_release) |
| pmem[id].mem_release(pmem[id].region_data); |
| atomic_dec(&pmem[id].allocation_cnt); |
| return 1; |
| } |
| } |
| |
| static void pmem_put_region(int id) |
| { |
| /* Must be called with arena mutex locked */ |
| if (atomic_dec_and_test(&pmem[id].allocation_cnt)) { |
| DLOG("PMEMDEBUG: unmapping for %s", pmem[id].name); |
| BUG_ON(!pmem[id].vbase); |
| if (pmem[id].map_on_demand) { |
| /* unmap_kernel_range() flushes the caches |
| * and removes the page table entries |
| */ |
| unmap_kernel_range((unsigned long)pmem[id].vbase, |
| pmem[id].size); |
| pmem[id].vbase = NULL; |
| if (pmem[id].mem_release) { |
| int ret = pmem[id].mem_release( |
| pmem[id].region_data); |
| WARN(ret, "mem_release failed"); |
| } |
| |
| } |
| } |
| } |
| |
| static int get_id(struct file *file) |
| { |
| return MINOR(file->f_dentry->d_inode->i_rdev); |
| } |
| |
| static char *get_name(struct file *file) |
| { |
| int id = get_id(file); |
| return pmem[id].name; |
| } |
| |
| static int is_pmem_file(struct file *file) |
| { |
| int id; |
| |
| if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode)) |
| return 0; |
| |
| id = get_id(file); |
| return (unlikely(id >= PMEM_MAX_DEVICES || |
| file->f_dentry->d_inode->i_rdev != |
| MKDEV(MISC_MAJOR, pmem[id].dev.minor))) ? 0 : 1; |
| } |
| |
| static int has_allocation(struct file *file) |
| { |
| /* must be called with at least read lock held on |
| * ((struct pmem_data *)(file->private_data))->sem which |
| * means that file is guaranteed not to be NULL upon entry!! |
| * check is_pmem_file first if not accessed via pmem_file_ops */ |
| struct pmem_data *pdata = file->private_data; |
| return pdata && pdata->index != -1; |
| } |
| |
| static int is_master_owner(struct file *file) |
| { |
| struct file *master_file; |
| struct pmem_data *data = file->private_data; |
| int put_needed, ret = 0; |
| |
| if (!has_allocation(file)) |
| return 0; |
| if (PMEM_FLAGS_MASTERMAP & data->flags) |
| return 1; |
| master_file = fget_light(data->master_fd, &put_needed); |
| if (master_file && data->master_file == master_file) |
| ret = 1; |
| if (master_file) |
| fput_light(master_file, put_needed); |
| return ret; |
| } |
| |
| static int pmem_free_all_or_nothing(int id, int index) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| DLOG("index %d\n", index); |
| |
| pmem[id].allocator.all_or_nothing.allocated = 0; |
| return 0; |
| } |
| |
| static int pmem_free_space_all_or_nothing(int id, |
| struct pmem_freespace *fs) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| fs->total = (unsigned long) |
| pmem[id].allocator.all_or_nothing.allocated == 0 ? |
| pmem[id].size : 0; |
| |
| fs->largest = fs->total; |
| return 0; |
| } |
| |
| |
| static int pmem_free_buddy_bestfit(int id, int index) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| int curr = index; |
| DLOG("index %d\n", index); |
| |
| |
| /* clean up the bitmap, merging any buddies */ |
| pmem[id].allocator.buddy_bestfit.buddy_bitmap[curr].allocated = 0; |
| /* find a slots buddy Buddy# = Slot# ^ (1 << order) |
| * if the buddy is also free merge them |
| * repeat until the buddy is not free or end of the bitmap is reached |
| */ |
| do { |
| int buddy = PMEM_BUDDY_INDEX(id, curr); |
| if (buddy < pmem[id].num_entries && |
| PMEM_IS_FREE_BUDDY(id, buddy) && |
| PMEM_BUDDY_ORDER(id, buddy) == |
| PMEM_BUDDY_ORDER(id, curr)) { |
| PMEM_BUDDY_ORDER(id, buddy)++; |
| PMEM_BUDDY_ORDER(id, curr)++; |
| curr = min(buddy, curr); |
| } else { |
| break; |
| } |
| } while (curr < pmem[id].num_entries); |
| |
| return 0; |
| } |
| |
| |
| static int pmem_free_space_buddy_bestfit(int id, |
| struct pmem_freespace *fs) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| int curr; |
| unsigned long size; |
| fs->total = 0; |
| fs->largest = 0; |
| |
| for (curr = 0; curr < pmem[id].num_entries; |
| curr = PMEM_BUDDY_NEXT_INDEX(id, curr)) { |
| if (PMEM_IS_FREE_BUDDY(id, curr)) { |
| size = PMEM_BUDDY_LEN(id, curr); |
| if (size > fs->largest) |
| fs->largest = size; |
| fs->total += size; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static inline uint32_t start_mask(int bit_start) |
| { |
| return (uint32_t)(~0) << (bit_start & PMEM_BITS_PER_WORD_MASK); |
| } |
| |
| static inline uint32_t end_mask(int bit_end) |
| { |
| return (uint32_t)(~0) >> |
| ((BITS_PER_LONG - bit_end) & PMEM_BITS_PER_WORD_MASK); |
| } |
| |
| static inline int compute_total_words(int bit_end, int word_index) |
| { |
| return ((bit_end + BITS_PER_LONG - 1) >> |
| PMEM_32BIT_WORD_ORDER) - word_index; |
| } |
| |
| static void bitmap_bits_clear_all(uint32_t *bitp, int bit_start, int bit_end) |
| { |
| int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words; |
| |
| total_words = compute_total_words(bit_end, word_index); |
| if (total_words > 0) { |
| if (total_words == 1) { |
| bitp[word_index] &= |
| ~(start_mask(bit_start) & end_mask(bit_end)); |
| } else { |
| bitp[word_index++] &= ~start_mask(bit_start); |
| if (total_words > 2) { |
| int total_bytes; |
| |
| total_words -= 2; |
| total_bytes = total_words << 2; |
| |
| memset(&bitp[word_index], 0, total_bytes); |
| word_index += total_words; |
| } |
| bitp[word_index] &= ~end_mask(bit_end); |
| } |
| } |
| } |
| |
| static int pmem_free_bitmap(int id, int bitnum) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| int i; |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| |
| DLOG("bitnum %d\n", bitnum); |
| |
| for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) { |
| const int curr_bit = |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit; |
| |
| if (curr_bit == bitnum) { |
| const int curr_quanta = |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta; |
| |
| bitmap_bits_clear_all(pmem[id].allocator.bitmap.bitmap, |
| curr_bit, curr_bit + curr_quanta); |
| pmem[id].allocator.bitmap.bitmap_free += curr_quanta; |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1; |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0; |
| return 0; |
| } |
| } |
| printk(KERN_ALERT "pmem: %s: Attempt to free unallocated index %d, id" |
| " %d, pid %d(%s)\n", __func__, bitnum, id, current->pid, |
| get_task_comm(currtask_name, current)); |
| |
| return -1; |
| } |
| |
| static int pmem_free_system(int id, int index) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| struct alloc_list *item; |
| |
| DLOG("index %d\n", index); |
| if (index != 0) |
| item = (struct alloc_list *)index; |
| else |
| return 0; |
| |
| if (item->vaddr != NULL) { |
| iounmap(item->vaddr); |
| kfree(__va(item->addr)); |
| list_del(&item->allocs); |
| kfree(item); |
| } |
| |
| return 0; |
| } |
| |
| static int pmem_free_space_bitmap(int id, struct pmem_freespace *fs) |
| { |
| int i, j; |
| int max_allocs = pmem[id].allocator.bitmap.bitmap_allocs; |
| int alloc_start = 0; |
| int next_alloc; |
| unsigned long size = 0; |
| |
| fs->total = 0; |
| fs->largest = 0; |
| |
| for (i = 0; i < max_allocs; i++) { |
| |
| int alloc_quanta = 0; |
| int alloc_idx = 0; |
| next_alloc = pmem[id].num_entries; |
| |
| /* Look for the lowest bit where next allocation starts */ |
| for (j = 0; j < max_allocs; j++) { |
| const int curr_alloc = pmem[id].allocator. |
| bitmap.bitm_alloc[j].bit; |
| if (curr_alloc != -1) { |
| if (alloc_start == curr_alloc) |
| alloc_idx = j; |
| if (alloc_start >= curr_alloc) |
| continue; |
| if (curr_alloc < next_alloc) |
| next_alloc = curr_alloc; |
| } |
| } |
| alloc_quanta = pmem[id].allocator.bitmap. |
| bitm_alloc[alloc_idx].quanta; |
| size = (next_alloc - (alloc_start + alloc_quanta)) * |
| pmem[id].quantum; |
| |
| if (size > fs->largest) |
| fs->largest = size; |
| fs->total += size; |
| |
| if (next_alloc == pmem[id].num_entries) |
| break; |
| else |
| alloc_start = next_alloc; |
| } |
| |
| return 0; |
| } |
| |
| static int pmem_free_space_system(int id, struct pmem_freespace *fs) |
| { |
| fs->total = pmem[id].size; |
| fs->largest = pmem[id].size; |
| |
| return 0; |
| } |
| |
| static void pmem_revoke(struct file *file, struct pmem_data *data); |
| |
| static int pmem_release(struct inode *inode, struct file *file) |
| { |
| struct pmem_data *data = file->private_data; |
| struct pmem_region_node *region_node; |
| struct list_head *elt, *elt2; |
| int id = get_id(file), ret = 0; |
| |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("releasing memory pid %u(%s) file %p(%ld) dev %s(id: %d)\n", |
| current->pid, get_task_comm(currtask_name, current), |
| file, file_count(file), get_name(file), id); |
| mutex_lock(&pmem[id].data_list_mutex); |
| /* if this file is a master, revoke all the memory in the connected |
| * files */ |
| if (PMEM_FLAGS_MASTERMAP & data->flags) { |
| list_for_each(elt, &pmem[id].data_list) { |
| struct pmem_data *sub_data = |
| list_entry(elt, struct pmem_data, list); |
| int is_master; |
| |
| down_read(&sub_data->sem); |
| is_master = (PMEM_IS_SUBMAP(sub_data) && |
| file == sub_data->master_file); |
| up_read(&sub_data->sem); |
| |
| if (is_master) |
| pmem_revoke(file, sub_data); |
| } |
| } |
| list_del(&data->list); |
| mutex_unlock(&pmem[id].data_list_mutex); |
| |
| down_write(&data->sem); |
| |
| /* if it is not a connected file and it has an allocation, free it */ |
| if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) { |
| mutex_lock(&pmem[id].arena_mutex); |
| ret = pmem_free_from_id(id, data->index); |
| mutex_unlock(&pmem[id].arena_mutex); |
| } |
| |
| /* if this file is a submap (mapped, connected file), downref the |
| * task struct */ |
| if (PMEM_FLAGS_SUBMAP & data->flags) |
| if (data->task) { |
| put_task_struct(data->task); |
| data->task = NULL; |
| } |
| |
| file->private_data = NULL; |
| |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, list); |
| list_del(elt); |
| kfree(region_node); |
| } |
| BUG_ON(!list_empty(&data->region_list)); |
| |
| up_write(&data->sem); |
| kfree(data); |
| if (pmem[id].release) |
| ret = pmem[id].release(inode, file); |
| |
| return ret; |
| } |
| |
| static int pmem_open(struct inode *inode, struct file *file) |
| { |
| struct pmem_data *data; |
| int id = get_id(file); |
| int ret = 0; |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| |
| DLOG("pid %u(%s) file %p(%ld) dev %s(id: %d)\n", |
| current->pid, get_task_comm(currtask_name, current), |
| file, file_count(file), get_name(file), id); |
| data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL); |
| if (!data) { |
| printk(KERN_ALERT "pmem: %s: unable to allocate memory for " |
| "pmem metadata.", __func__); |
| return -1; |
| } |
| data->flags = 0; |
| data->index = -1; |
| data->task = NULL; |
| data->vma = NULL; |
| data->pid = 0; |
| data->master_file = NULL; |
| #if PMEM_DEBUG |
| data->ref = 0; |
| #endif |
| INIT_LIST_HEAD(&data->region_list); |
| init_rwsem(&data->sem); |
| |
| file->private_data = data; |
| INIT_LIST_HEAD(&data->list); |
| |
| mutex_lock(&pmem[id].data_list_mutex); |
| list_add(&data->list, &pmem[id].data_list); |
| mutex_unlock(&pmem[id].data_list_mutex); |
| return ret; |
| } |
| |
| static unsigned long pmem_order(unsigned long len, int id) |
| { |
| int i; |
| |
| len = (len + pmem[id].quantum - 1)/pmem[id].quantum; |
| len--; |
| for (i = 0; i < sizeof(len)*8; i++) |
| if (len >> i == 0) |
| break; |
| return i; |
| } |
| |
| static int pmem_allocator_all_or_nothing(const int id, |
| const unsigned long len, |
| const unsigned int align) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| DLOG("all or nothing\n"); |
| if ((len > pmem[id].size) || |
| pmem[id].allocator.all_or_nothing.allocated) |
| return -1; |
| pmem[id].allocator.all_or_nothing.allocated = 1; |
| return len; |
| } |
| |
| static int pmem_allocator_buddy_bestfit(const int id, |
| const unsigned long len, |
| unsigned int align) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| int curr; |
| int best_fit = -1; |
| unsigned long order; |
| |
| DLOG("buddy bestfit\n"); |
| order = pmem_order(len, id); |
| if (order > PMEM_MAX_ORDER) |
| goto out; |
| |
| DLOG("order %lx\n", order); |
| |
| /* Look through the bitmap. |
| * If a free slot of the correct order is found, use it. |
| * Otherwise, use the best fit (smallest with size > order) slot. |
| */ |
| for (curr = 0; |
| curr < pmem[id].num_entries; |
| curr = PMEM_BUDDY_NEXT_INDEX(id, curr)) |
| if (PMEM_IS_FREE_BUDDY(id, curr)) { |
| if (PMEM_BUDDY_ORDER(id, curr) == |
| (unsigned char)order) { |
| /* set the not free bit and clear others */ |
| best_fit = curr; |
| break; |
| } |
| if (PMEM_BUDDY_ORDER(id, curr) > |
| (unsigned char)order && |
| (best_fit < 0 || |
| PMEM_BUDDY_ORDER(id, curr) < |
| PMEM_BUDDY_ORDER(id, best_fit))) |
| best_fit = curr; |
| } |
| |
| /* if best_fit < 0, there are no suitable slots; return an error */ |
| if (best_fit < 0) { |
| #if PMEM_DEBUG |
| printk(KERN_ALERT "pmem: %s: no space left to allocate!\n", |
| __func__); |
| #endif |
| goto out; |
| } |
| |
| /* now partition the best fit: |
| * split the slot into 2 buddies of order - 1 |
| * repeat until the slot is of the correct order |
| */ |
| while (PMEM_BUDDY_ORDER(id, best_fit) > (unsigned char)order) { |
| int buddy; |
| PMEM_BUDDY_ORDER(id, best_fit) -= 1; |
| buddy = PMEM_BUDDY_INDEX(id, best_fit); |
| PMEM_BUDDY_ORDER(id, buddy) = PMEM_BUDDY_ORDER(id, best_fit); |
| } |
| pmem[id].allocator.buddy_bestfit.buddy_bitmap[best_fit].allocated = 1; |
| out: |
| return best_fit; |
| } |
| |
| |
| static inline unsigned long paddr_from_bit(const int id, const int bitnum) |
| { |
| return pmem[id].base + pmem[id].quantum * bitnum; |
| } |
| |
| static inline unsigned long bit_from_paddr(const int id, |
| const unsigned long paddr) |
| { |
| return (paddr - pmem[id].base) / pmem[id].quantum; |
| } |
| |
| static void bitmap_bits_set_all(uint32_t *bitp, int bit_start, int bit_end) |
| { |
| int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words; |
| |
| total_words = compute_total_words(bit_end, word_index); |
| if (total_words > 0) { |
| if (total_words == 1) { |
| bitp[word_index] |= |
| (start_mask(bit_start) & end_mask(bit_end)); |
| } else { |
| bitp[word_index++] |= start_mask(bit_start); |
| if (total_words > 2) { |
| int total_bytes; |
| |
| total_words -= 2; |
| total_bytes = total_words << 2; |
| |
| memset(&bitp[word_index], ~0, total_bytes); |
| word_index += total_words; |
| } |
| bitp[word_index] |= end_mask(bit_end); |
| } |
| } |
| } |
| |
| static int |
| bitmap_allocate_contiguous(uint32_t *bitp, int num_bits_to_alloc, |
| int total_bits, int spacing, int start_bit) |
| { |
| int bit_start, last_bit, word_index; |
| |
| if (num_bits_to_alloc <= 0) |
| return -1; |
| |
| for (bit_start = start_bit; ; |
| bit_start = ((last_bit + |
| (word_index << PMEM_32BIT_WORD_ORDER) + spacing - 1) |
| & ~(spacing - 1)) + start_bit) { |
| int bit_end = bit_start + num_bits_to_alloc, total_words; |
| |
| if (bit_end > total_bits) |
| return -1; /* out of contiguous memory */ |
| |
| word_index = bit_start >> PMEM_32BIT_WORD_ORDER; |
| total_words = compute_total_words(bit_end, word_index); |
| |
| if (total_words <= 0) |
| return -1; |
| |
| if (total_words == 1) { |
| last_bit = fls(bitp[word_index] & |
| (start_mask(bit_start) & |
| end_mask(bit_end))); |
| if (last_bit) |
| continue; |
| } else { |
| int end_word = word_index + (total_words - 1); |
| last_bit = |
| fls(bitp[word_index] & start_mask(bit_start)); |
| if (last_bit) |
| continue; |
| |
| for (word_index++; |
| word_index < end_word; |
| word_index++) { |
| last_bit = fls(bitp[word_index]); |
| if (last_bit) |
| break; |
| } |
| if (last_bit) |
| continue; |
| |
| last_bit = fls(bitp[word_index] & end_mask(bit_end)); |
| if (last_bit) |
| continue; |
| } |
| bitmap_bits_set_all(bitp, bit_start, bit_end); |
| return bit_start; |
| } |
| return -1; |
| } |
| |
| static int reserve_quanta(const unsigned int quanta_needed, |
| const int id, |
| unsigned int align) |
| { |
| /* alignment should be a valid power of 2 */ |
| int ret = -1, start_bit = 0, spacing = 1; |
| |
| /* Sanity check */ |
| if (quanta_needed > pmem[id].allocator.bitmap.bitmap_free) { |
| #if PMEM_DEBUG |
| printk(KERN_ALERT "pmem: %s: request (%d) too big for" |
| " available free (%d)\n", __func__, quanta_needed, |
| pmem[id].allocator.bitmap.bitmap_free); |
| #endif |
| return -1; |
| } |
| |
| start_bit = bit_from_paddr(id, |
| (pmem[id].base + align - 1) & ~(align - 1)); |
| if (start_bit <= -1) { |
| #if PMEM_DEBUG |
| printk(KERN_ALERT |
| "pmem: %s: bit_from_paddr fails for" |
| " %u alignment.\n", __func__, align); |
| #endif |
| return -1; |
| } |
| spacing = align / pmem[id].quantum; |
| spacing = spacing > 1 ? spacing : 1; |
| |
| ret = bitmap_allocate_contiguous(pmem[id].allocator.bitmap.bitmap, |
| quanta_needed, |
| (pmem[id].size + pmem[id].quantum - 1) / pmem[id].quantum, |
| spacing, |
| start_bit); |
| |
| #if PMEM_DEBUG |
| if (ret < 0) |
| printk(KERN_ALERT "pmem: %s: not enough contiguous bits free " |
| "in bitmap! Region memory is either too fragmented or" |
| " request is too large for available memory.\n", |
| __func__); |
| #endif |
| |
| return ret; |
| } |
| |
| static int pmem_allocator_bitmap(const int id, |
| const unsigned long len, |
| const unsigned int align) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| int bitnum, i; |
| unsigned int quanta_needed; |
| |
| DLOG("bitmap id %d, len %ld, align %u\n", id, len, align); |
| if (!pmem[id].allocator.bitmap.bitm_alloc) { |
| #if PMEM_DEBUG |
| printk(KERN_ALERT "pmem: bitm_alloc not present! id: %d\n", |
| id); |
| #endif |
| return -1; |
| } |
| |
| quanta_needed = (len + pmem[id].quantum - 1) / pmem[id].quantum; |
| DLOG("quantum size %u quanta needed %u free %u id %d\n", |
| pmem[id].quantum, quanta_needed, |
| pmem[id].allocator.bitmap.bitmap_free, id); |
| |
| if (pmem[id].allocator.bitmap.bitmap_free < quanta_needed) { |
| #if PMEM_DEBUG |
| printk(KERN_ALERT "pmem: memory allocation failure. " |
| "PMEM memory region exhausted, id %d." |
| " Unable to comply with allocation request.\n", id); |
| #endif |
| return -1; |
| } |
| |
| bitnum = reserve_quanta(quanta_needed, id, align); |
| if (bitnum == -1) |
| goto leave; |
| |
| for (i = 0; |
| i < pmem[id].allocator.bitmap.bitmap_allocs && |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1; |
| i++) |
| ; |
| |
| if (i >= pmem[id].allocator.bitmap.bitmap_allocs) { |
| void *temp; |
| int32_t new_bitmap_allocs = |
| pmem[id].allocator.bitmap.bitmap_allocs << 1; |
| int j; |
| |
| if (!new_bitmap_allocs) { /* failed sanity check!! */ |
| #if PMEM_DEBUG |
| pr_alert("pmem: bitmap_allocs number" |
| " wrapped around to zero! Something " |
| "is VERY wrong.\n"); |
| #endif |
| return -1; |
| } |
| |
| if (new_bitmap_allocs > pmem[id].num_entries) { |
| /* failed sanity check!! */ |
| #if PMEM_DEBUG |
| pr_alert("pmem: required bitmap_allocs" |
| " number exceeds maximum entries possible" |
| " for current quanta\n"); |
| #endif |
| return -1; |
| } |
| |
| temp = krealloc(pmem[id].allocator.bitmap.bitm_alloc, |
| new_bitmap_allocs * |
| sizeof(*pmem[id].allocator.bitmap.bitm_alloc), |
| GFP_KERNEL); |
| if (!temp) { |
| #if PMEM_DEBUG |
| pr_alert("pmem: can't realloc bitmap_allocs," |
| "id %d, current num bitmap allocs %d\n", |
| id, pmem[id].allocator.bitmap.bitmap_allocs); |
| #endif |
| return -1; |
| } |
| pmem[id].allocator.bitmap.bitmap_allocs = new_bitmap_allocs; |
| pmem[id].allocator.bitmap.bitm_alloc = temp; |
| |
| for (j = i; j < new_bitmap_allocs; j++) { |
| pmem[id].allocator.bitmap.bitm_alloc[j].bit = -1; |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0; |
| } |
| |
| DLOG("increased # of allocated regions to %d for id %d\n", |
| pmem[id].allocator.bitmap.bitmap_allocs, id); |
| } |
| |
| DLOG("bitnum %d, bitm_alloc index %d\n", bitnum, i); |
| |
| pmem[id].allocator.bitmap.bitmap_free -= quanta_needed; |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit = bitnum; |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta = quanta_needed; |
| leave: |
| return bitnum; |
| } |
| |
| static int pmem_allocator_system(const int id, |
| const unsigned long len, |
| const unsigned int align) |
| { |
| /* caller should hold the lock on arena_mutex! */ |
| struct alloc_list *list; |
| unsigned long aligned_len; |
| int count = SYSTEM_ALLOC_RETRY; |
| void *buf; |
| |
| DLOG("system id %d, len %ld, align %u\n", id, len, align); |
| |
| if ((pmem[id].allocator.system_mem.used + len) > pmem[id].size) { |
| DLOG("requested size would be larger than quota\n"); |
| return -1; |
| } |
| |
| /* Handle alignment */ |
| aligned_len = len + align; |
| |
| /* Attempt allocation */ |
| list = kmalloc(sizeof(struct alloc_list), GFP_KERNEL); |
| if (list == NULL) { |
| printk(KERN_ERR "pmem: failed to allocate system metadata\n"); |
| return -1; |
| } |
| list->vaddr = NULL; |
| |
| buf = NULL; |
| while ((buf == NULL) && count--) { |
| buf = kmalloc((aligned_len), GFP_KERNEL); |
| if (buf == NULL) { |
| DLOG("pmem: kmalloc %d temporarily failed len= %ld\n", |
| count, aligned_len); |
| } |
| } |
| if (!buf) { |
| printk(KERN_CRIT "pmem: kmalloc failed for id= %d len= %ld\n", |
| id, aligned_len); |
| kfree(list); |
| return -1; |
| } |
| list->size = aligned_len; |
| list->addr = (void *)__pa(buf); |
| list->aaddr = (void *)(((unsigned int)(list->addr) + (align - 1)) & |
| ~(align - 1)); |
| |
| if (!pmem[id].cached) |
| list->vaddr = ioremap(__pa(buf), aligned_len); |
| else |
| list->vaddr = ioremap_cached(__pa(buf), aligned_len); |
| |
| INIT_LIST_HEAD(&list->allocs); |
| list_add(&list->allocs, &pmem[id].allocator.system_mem.alist); |
| |
| return (int)list; |
| } |
| |
| static pgprot_t pmem_phys_mem_access_prot(struct file *file, pgprot_t vma_prot) |
| { |
| int id = get_id(file); |
| #ifdef pgprot_writecombine |
| if (pmem[id].cached == 0 || file->f_flags & O_SYNC) |
| /* on ARMv6 and ARMv7 this expands to Normal Noncached */ |
| return pgprot_writecombine(vma_prot); |
| #endif |
| #ifdef pgprot_ext_buffered |
| else if (pmem[id].buffered) |
| return pgprot_ext_buffered(vma_prot); |
| #endif |
| return vma_prot; |
| } |
| |
| static unsigned long pmem_start_addr_all_or_nothing(int id, |
| struct pmem_data *data) |
| { |
| return PMEM_START_ADDR(id, 0); |
| } |
| |
| static unsigned long pmem_start_addr_buddy_bestfit(int id, |
| struct pmem_data *data) |
| { |
| return PMEM_START_ADDR(id, data->index); |
| } |
| |
| static unsigned long pmem_start_addr_bitmap(int id, struct pmem_data *data) |
| { |
| return data->index * pmem[id].quantum + pmem[id].base; |
| } |
| |
| static unsigned long pmem_start_addr_system(int id, struct pmem_data *data) |
| { |
| return (unsigned long)(((struct alloc_list *)(data->index))->aaddr); |
| } |
| |
| static void *pmem_start_vaddr(int id, struct pmem_data *data) |
| { |
| if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM) |
| return ((struct alloc_list *)(data->index))->vaddr; |
| else |
| return pmem[id].start_addr(id, data) - pmem[id].base + pmem[id].vbase; |
| } |
| |
| static unsigned long pmem_len_all_or_nothing(int id, struct pmem_data *data) |
| { |
| return data->index; |
| } |
| |
| static unsigned long pmem_len_buddy_bestfit(int id, struct pmem_data *data) |
| { |
| return PMEM_BUDDY_LEN(id, data->index); |
| } |
| |
| static unsigned long pmem_len_bitmap(int id, struct pmem_data *data) |
| { |
| int i; |
| unsigned long ret = 0; |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| |
| for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) |
| if (pmem[id].allocator.bitmap.bitm_alloc[i].bit == |
| data->index) { |
| ret = pmem[id].allocator.bitmap.bitm_alloc[i].quanta * |
| pmem[id].quantum; |
| break; |
| } |
| |
| mutex_unlock(&pmem[id].arena_mutex); |
| #if PMEM_DEBUG |
| if (i >= pmem[id].allocator.bitmap.bitmap_allocs) |
| pr_alert("pmem: %s: can't find bitnum %d in " |
| "alloc'd array!\n", __func__, data->index); |
| #endif |
| return ret; |
| } |
| |
| static unsigned long pmem_len_system(int id, struct pmem_data *data) |
| { |
| unsigned long ret = 0; |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| |
| ret = ((struct alloc_list *)data->index)->size; |
| mutex_unlock(&pmem[id].arena_mutex); |
| |
| return ret; |
| } |
| |
| static int pmem_map_garbage(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| int i, garbage_pages = len >> PAGE_SHIFT; |
| |
| vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE; |
| for (i = 0; i < garbage_pages; i++) { |
| if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE), |
| pmem[id].garbage_pfn)) |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| int garbage_pages; |
| DLOG("unmap offset %lx len %lx\n", offset, len); |
| |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); |
| |
| garbage_pages = len >> PAGE_SHIFT; |
| zap_page_range(vma, vma->vm_start + offset, len, NULL); |
| pmem_map_garbage(id, vma, data, offset, len); |
| return 0; |
| } |
| |
| static int pmem_map_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| int ret; |
| DLOG("map offset %lx len %lx\n", offset, len); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(len)); |
| BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset)); |
| |
| ret = io_remap_pfn_range(vma, vma->vm_start + offset, |
| (pmem[id].start_addr(id, data) + offset) >> PAGE_SHIFT, |
| len, vma->vm_page_prot); |
| if (ret) { |
| #if PMEM_DEBUG |
| pr_alert("pmem: %s: io_remap_pfn_range fails with " |
| "return value: %d!\n", __func__, ret); |
| #endif |
| |
| ret = -EAGAIN; |
| } |
| return ret; |
| } |
| |
| static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma, |
| struct pmem_data *data, unsigned long offset, |
| unsigned long len) |
| { |
| /* hold the mm semp for the vma you are modifying when you call this */ |
| BUG_ON(!vma); |
| zap_page_range(vma, vma->vm_start + offset, len, NULL); |
| return pmem_map_pfn_range(id, vma, data, offset, len); |
| } |
| |
| static void pmem_vma_open(struct vm_area_struct *vma) |
| { |
| struct file *file = vma->vm_file; |
| struct pmem_data *data = file->private_data; |
| int id = get_id(file); |
| |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n", |
| get_name(file), id, current->pid, |
| get_task_comm(currtask_name, current), |
| current->parent->pid, file, file_count(file)); |
| /* this should never be called as we don't support copying pmem |
| * ranges via fork */ |
| down_read(&data->sem); |
| BUG_ON(!has_allocation(file)); |
| /* remap the garbage pages, forkers don't get access to the data */ |
| pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end); |
| up_read(&data->sem); |
| } |
| |
| static void pmem_vma_close(struct vm_area_struct *vma) |
| { |
| struct file *file = vma->vm_file; |
| struct pmem_data *data = file->private_data; |
| |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n", |
| get_name(file), get_id(file), current->pid, |
| get_task_comm(currtask_name, current), |
| current->parent->pid, file, file_count(file)); |
| |
| if (unlikely(!is_pmem_file(file))) { |
| pr_warning("pmem: something is very wrong, you are " |
| "closing a vm backing an allocation that doesn't " |
| "exist!\n"); |
| return; |
| } |
| |
| down_write(&data->sem); |
| if (unlikely(!has_allocation(file))) { |
| up_write(&data->sem); |
| pr_warning("pmem: something is very wrong, you are " |
| "closing a vm backing an allocation that doesn't " |
| "exist!\n"); |
| return; |
| } |
| if (data->vma == vma) { |
| data->vma = NULL; |
| if ((data->flags & PMEM_FLAGS_CONNECTED) && |
| (data->flags & PMEM_FLAGS_SUBMAP)) |
| data->flags |= PMEM_FLAGS_UNSUBMAP; |
| } |
| /* the kernel is going to free this vma now anyway */ |
| up_write(&data->sem); |
| } |
| |
| static struct vm_operations_struct vm_ops = { |
| .open = pmem_vma_open, |
| .close = pmem_vma_close, |
| }; |
| |
| static int pmem_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct pmem_data *data = file->private_data; |
| int index = -1; |
| unsigned long vma_size = vma->vm_end - vma->vm_start; |
| int ret = 0, id = get_id(file); |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| |
| if (!data) { |
| pr_err("pmem: Invalid file descriptor, no private data\n"); |
| return -EINVAL; |
| } |
| DLOG("pid %u(%s) mmap vma_size %lu on dev %s(id: %d)\n", current->pid, |
| get_task_comm(currtask_name, current), vma_size, |
| get_name(file), id); |
| if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) { |
| #if PMEM_DEBUG |
| pr_err("pmem: mmaps must be at offset zero, aligned" |
| " and a multiple of pages_size.\n"); |
| #endif |
| return -EINVAL; |
| } |
| |
| down_write(&data->sem); |
| /* check this file isn't already mmaped, for submaps check this file |
| * has never been mmaped */ |
| if ((data->flags & PMEM_FLAGS_SUBMAP) || |
| (data->flags & PMEM_FLAGS_UNSUBMAP)) { |
| #if PMEM_DEBUG |
| pr_err("pmem: you can only mmap a pmem file once, " |
| "this file is already mmaped. %x\n", data->flags); |
| #endif |
| ret = -EINVAL; |
| goto error; |
| } |
| /* if file->private_data == unalloced, alloc*/ |
| if (data->index == -1) { |
| mutex_lock(&pmem[id].arena_mutex); |
| index = pmem_allocate_from_id(id, |
| vma->vm_end - vma->vm_start, |
| SZ_4K); |
| mutex_unlock(&pmem[id].arena_mutex); |
| /* either no space was available or an error occured */ |
| if (index == -1) { |
| pr_err("pmem: mmap unable to allocate memory" |
| "on %s\n", get_name(file)); |
| ret = -ENOMEM; |
| goto error; |
| } |
| /* store the index of a successful allocation */ |
| data->index = index; |
| } |
| |
| if (pmem[id].len(id, data) < vma_size) { |
| #if PMEM_DEBUG |
| pr_err("pmem: mmap size [%lu] does not match" |
| " size of backing region [%lu].\n", vma_size, |
| pmem[id].len(id, data)); |
| #endif |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| vma->vm_pgoff = pmem[id].start_addr(id, data) >> PAGE_SHIFT; |
| |
| vma->vm_page_prot = pmem_phys_mem_access_prot(file, vma->vm_page_prot); |
| |
| if (data->flags & PMEM_FLAGS_CONNECTED) { |
| struct pmem_region_node *region_node; |
| struct list_head *elt; |
| if (pmem_map_garbage(id, vma, data, 0, vma_size)) { |
| pr_alert("pmem: mmap failed in kernel!\n"); |
| ret = -EAGAIN; |
| goto error; |
| } |
| list_for_each(elt, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| DLOG("remapping file: %p %lx %lx\n", file, |
| region_node->region.offset, |
| region_node->region.len); |
| if (pmem_remap_pfn_range(id, vma, data, |
| region_node->region.offset, |
| region_node->region.len)) { |
| ret = -EAGAIN; |
| goto error; |
| } |
| } |
| data->flags |= PMEM_FLAGS_SUBMAP; |
| get_task_struct(current->group_leader); |
| data->task = current->group_leader; |
| data->vma = vma; |
| #if PMEM_DEBUG |
| data->pid = current->pid; |
| #endif |
| DLOG("submmapped file %p vma %p pid %u\n", file, vma, |
| current->pid); |
| } else { |
| if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) { |
| pr_err("pmem: mmap failed in kernel!\n"); |
| ret = -EAGAIN; |
| goto error; |
| } |
| data->flags |= PMEM_FLAGS_MASTERMAP; |
| data->pid = current->pid; |
| } |
| vma->vm_ops = &vm_ops; |
| error: |
| up_write(&data->sem); |
| return ret; |
| } |
| |
| /* the following are the api for accessing pmem regions by other drivers |
| * from inside the kernel */ |
| int get_pmem_user_addr(struct file *file, unsigned long *start, |
| unsigned long *len) |
| { |
| int ret = -1; |
| |
| if (is_pmem_file(file)) { |
| struct pmem_data *data = file->private_data; |
| |
| down_read(&data->sem); |
| if (has_allocation(file)) { |
| if (data->vma) { |
| *start = data->vma->vm_start; |
| *len = data->vma->vm_end - data->vma->vm_start; |
| } else { |
| *start = *len = 0; |
| #if PMEM_DEBUG |
| pr_err("pmem: %s: no vma present.\n", |
| __func__); |
| #endif |
| } |
| ret = 0; |
| } |
| up_read(&data->sem); |
| } |
| |
| #if PMEM_DEBUG |
| if (ret) |
| pr_err("pmem: %s: requested pmem data from invalid" |
| "file.\n", __func__); |
| #endif |
| return ret; |
| } |
| |
| int get_pmem_addr(struct file *file, unsigned long *start, |
| unsigned long *vstart, unsigned long *len) |
| { |
| int ret = -1; |
| |
| if (is_pmem_file(file)) { |
| struct pmem_data *data = file->private_data; |
| |
| down_read(&data->sem); |
| if (has_allocation(file)) { |
| int id = get_id(file); |
| |
| *start = pmem[id].start_addr(id, data); |
| *len = pmem[id].len(id, data); |
| *vstart = (unsigned long) |
| pmem_start_vaddr(id, data); |
| up_read(&data->sem); |
| #if PMEM_DEBUG |
| down_write(&data->sem); |
| data->ref++; |
| up_write(&data->sem); |
| #endif |
| DLOG("returning start %#lx len %lu " |
| "vstart %#lx\n", |
| *start, *len, *vstart); |
| ret = 0; |
| } else { |
| up_read(&data->sem); |
| } |
| } |
| return ret; |
| } |
| |
| int get_pmem_file(unsigned int fd, unsigned long *start, unsigned long *vstart, |
| unsigned long *len, struct file **filp) |
| { |
| int ret = -1; |
| struct file *file = fget(fd); |
| |
| if (unlikely(file == NULL)) { |
| pr_err("pmem: %s: requested data from file " |
| "descriptor that doesn't exist.\n", __func__); |
| } else { |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("filp %p rdev %d pid %u(%s) file %p(%ld)" |
| " dev %s(id: %d)\n", filp, |
| file->f_dentry->d_inode->i_rdev, |
| current->pid, get_task_comm(currtask_name, current), |
| file, file_count(file), get_name(file), get_id(file)); |
| |
| if (!get_pmem_addr(file, start, vstart, len)) { |
| if (filp) |
| *filp = file; |
| ret = 0; |
| } else { |
| fput(file); |
| } |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(get_pmem_file); |
| |
| int get_pmem_fd(int fd, unsigned long *start, unsigned long *len) |
| { |
| unsigned long vstart; |
| return get_pmem_file(fd, start, &vstart, len, NULL); |
| } |
| EXPORT_SYMBOL(get_pmem_fd); |
| |
| void put_pmem_file(struct file *file) |
| { |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("rdev %d pid %u(%s) file %p(%ld)" " dev %s(id: %d)\n", |
| file->f_dentry->d_inode->i_rdev, current->pid, |
| get_task_comm(currtask_name, current), file, |
| file_count(file), get_name(file), get_id(file)); |
| if (is_pmem_file(file)) { |
| #if PMEM_DEBUG |
| struct pmem_data *data = file->private_data; |
| |
| down_write(&data->sem); |
| if (!data->ref--) { |
| data->ref++; |
| pr_alert("pmem: pmem_put > pmem_get %s " |
| "(pid %d)\n", |
| pmem[get_id(file)].dev.name, data->pid); |
| BUG(); |
| } |
| up_write(&data->sem); |
| #endif |
| fput(file); |
| } |
| } |
| EXPORT_SYMBOL(put_pmem_file); |
| |
| void put_pmem_fd(int fd) |
| { |
| int put_needed; |
| struct file *file = fget_light(fd, &put_needed); |
| |
| if (file) { |
| put_pmem_file(file); |
| fput_light(file, put_needed); |
| } |
| } |
| |
| void flush_pmem_fd(int fd, unsigned long offset, unsigned long len) |
| { |
| int fput_needed; |
| struct file *file = fget_light(fd, &fput_needed); |
| |
| if (file) { |
| flush_pmem_file(file, offset, len); |
| fput_light(file, fput_needed); |
| } |
| } |
| |
| void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len) |
| { |
| struct pmem_data *data; |
| int id; |
| void *vaddr; |
| struct pmem_region_node *region_node; |
| struct list_head *elt; |
| void *flush_start, *flush_end; |
| #ifdef CONFIG_OUTER_CACHE |
| unsigned long phy_start, phy_end; |
| #endif |
| if (!is_pmem_file(file)) |
| return; |
| |
| id = get_id(file); |
| if (!pmem[id].cached) |
| return; |
| |
| /* is_pmem_file fails if !file */ |
| data = file->private_data; |
| |
| down_read(&data->sem); |
| if (!has_allocation(file)) |
| goto end; |
| |
| vaddr = pmem_start_vaddr(id, data); |
| |
| if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM) { |
| dmac_flush_range(vaddr, |
| (void *)((unsigned long)vaddr + |
| ((struct alloc_list *)(data->index))->size)); |
| #ifdef CONFIG_OUTER_CACHE |
| phy_start = pmem_start_addr_system(id, data); |
| |
| phy_end = phy_start + |
| ((struct alloc_list *)(data->index))->size; |
| |
| outer_flush_range(phy_start, phy_end); |
| #endif |
| goto end; |
| } |
| /* if this isn't a submmapped file, flush the whole thing */ |
| if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) { |
| dmac_flush_range(vaddr, vaddr + pmem[id].len(id, data)); |
| #ifdef CONFIG_OUTER_CACHE |
| phy_start = (unsigned long)vaddr - |
| (unsigned long)pmem[id].vbase + pmem[id].base; |
| |
| phy_end = phy_start + pmem[id].len(id, data); |
| |
| outer_flush_range(phy_start, phy_end); |
| #endif |
| goto end; |
| } |
| /* otherwise, flush the region of the file we are drawing */ |
| list_for_each(elt, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, list); |
| if ((offset >= region_node->region.offset) && |
| ((offset + len) <= (region_node->region.offset + |
| region_node->region.len))) { |
| flush_start = vaddr + region_node->region.offset; |
| flush_end = flush_start + region_node->region.len; |
| dmac_flush_range(flush_start, flush_end); |
| #ifdef CONFIG_OUTER_CACHE |
| |
| phy_start = (unsigned long)flush_start - |
| (unsigned long)pmem[id].vbase + pmem[id].base; |
| |
| phy_end = phy_start + region_node->region.len; |
| |
| outer_flush_range(phy_start, phy_end); |
| #endif |
| break; |
| } |
| } |
| end: |
| up_read(&data->sem); |
| } |
| |
| int pmem_cache_maint(struct file *file, unsigned int cmd, |
| struct pmem_addr *pmem_addr) |
| { |
| struct pmem_data *data; |
| int id; |
| unsigned long vaddr, paddr, length, offset, |
| pmem_len, pmem_start_addr; |
| |
| /* Called from kernel-space so file may be NULL */ |
| if (!file) |
| return -EBADF; |
| |
| /* |
| * check that the vaddr passed for flushing is valid |
| * so that you don't crash the kernel |
| */ |
| if (!pmem_addr->vaddr) |
| return -EINVAL; |
| |
| data = file->private_data; |
| id = get_id(file); |
| |
| if (!pmem[id].cached) |
| return 0; |
| |
| offset = pmem_addr->offset; |
| length = pmem_addr->length; |
| |
| down_read(&data->sem); |
| if (!has_allocation(file)) { |
| up_read(&data->sem); |
| return -EINVAL; |
| } |
| pmem_len = pmem[id].len(id, data); |
| pmem_start_addr = pmem[id].start_addr(id, data); |
| up_read(&data->sem); |
| |
| if (offset + length > pmem_len) |
| return -EINVAL; |
| |
| vaddr = pmem_addr->vaddr; |
| paddr = pmem_start_addr + offset; |
| |
| DLOG("pmem cache maint on dev %s(id: %d)" |
| "(vaddr %lx paddr %lx len %lu bytes)\n", |
| get_name(file), id, vaddr, paddr, length); |
| if (cmd == PMEM_CLEAN_INV_CACHES) |
| clean_and_invalidate_caches(vaddr, |
| length, paddr); |
| else if (cmd == PMEM_CLEAN_CACHES) |
| clean_caches(vaddr, length, paddr); |
| else if (cmd == PMEM_INV_CACHES) |
| invalidate_caches(vaddr, length, paddr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(pmem_cache_maint); |
| |
| static int pmem_connect(unsigned long connect, struct file *file) |
| { |
| int ret = 0, put_needed; |
| struct file *src_file; |
| |
| if (!file) { |
| pr_err("pmem: %s: NULL file pointer passed in, " |
| "bailing out!\n", __func__); |
| ret = -EINVAL; |
| goto leave; |
| } |
| |
| src_file = fget_light(connect, &put_needed); |
| |
| if (!src_file) { |
| pr_err("pmem: %s: src file not found!\n", __func__); |
| ret = -EBADF; |
| goto leave; |
| } |
| |
| if (src_file == file) { /* degenerative case, operator error */ |
| pr_err("pmem: %s: src_file and passed in file are " |
| "the same; refusing to connect to self!\n", __func__); |
| ret = -EINVAL; |
| goto put_src_file; |
| } |
| |
| if (unlikely(!is_pmem_file(src_file))) { |
| pr_err("pmem: %s: src file is not a pmem file!\n", |
| __func__); |
| ret = -EINVAL; |
| goto put_src_file; |
| } else { |
| struct pmem_data *src_data = src_file->private_data; |
| |
| if (!src_data) { |
| pr_err("pmem: %s: src file pointer has no" |
| "private data, bailing out!\n", __func__); |
| ret = -EINVAL; |
| goto put_src_file; |
| } |
| |
| down_read(&src_data->sem); |
| |
| if (unlikely(!has_allocation(src_file))) { |
| up_read(&src_data->sem); |
| pr_err("pmem: %s: src file has no allocation!\n", |
| __func__); |
| ret = -EINVAL; |
| } else { |
| struct pmem_data *data; |
| int src_index = src_data->index; |
| |
| up_read(&src_data->sem); |
| |
| data = file->private_data; |
| if (!data) { |
| pr_err("pmem: %s: passed in file " |
| "pointer has no private data, bailing" |
| " out!\n", __func__); |
| ret = -EINVAL; |
| goto put_src_file; |
| } |
| |
| down_write(&data->sem); |
| if (has_allocation(file) && |
| (data->index != src_index)) { |
| up_write(&data->sem); |
| |
| pr_err("pmem: %s: file is already " |
| "mapped but doesn't match this " |
| "src_file!\n", __func__); |
| ret = -EINVAL; |
| } else { |
| data->index = src_index; |
| data->flags |= PMEM_FLAGS_CONNECTED; |
| data->master_fd = connect; |
| data->master_file = src_file; |
| |
| up_write(&data->sem); |
| |
| DLOG("connect %p to %p\n", file, src_file); |
| } |
| } |
| } |
| put_src_file: |
| fput_light(src_file, put_needed); |
| leave: |
| return ret; |
| } |
| |
| static void pmem_unlock_data_and_mm(struct pmem_data *data, |
| struct mm_struct *mm) |
| { |
| up_write(&data->sem); |
| if (mm != NULL) { |
| up_write(&mm->mmap_sem); |
| mmput(mm); |
| } |
| } |
| |
| static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data, |
| struct mm_struct **locked_mm) |
| { |
| int ret = 0; |
| struct mm_struct *mm = NULL; |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| DLOG("pid %u(%s) file %p(%ld)\n", |
| current->pid, get_task_comm(currtask_name, current), |
| file, file_count(file)); |
| |
| *locked_mm = NULL; |
| lock_mm: |
| down_read(&data->sem); |
| if (PMEM_IS_SUBMAP(data)) { |
| mm = get_task_mm(data->task); |
| if (!mm) { |
| up_read(&data->sem); |
| #if PMEM_DEBUG |
| pr_alert("pmem: can't remap - task is gone!\n"); |
| #endif |
| return -1; |
| } |
| } |
| up_read(&data->sem); |
| |
| if (mm) |
| down_write(&mm->mmap_sem); |
| |
| down_write(&data->sem); |
| /* check that the file didn't get mmaped before we could take the |
| * data sem, this should be safe b/c you can only submap each file |
| * once */ |
| if (PMEM_IS_SUBMAP(data) && !mm) { |
| pmem_unlock_data_and_mm(data, mm); |
| DLOG("mapping contention, repeating mmap op\n"); |
| goto lock_mm; |
| } |
| /* now check that vma.mm is still there, it could have been |
| * deleted by vma_close before we could get the data->sem */ |
| if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) { |
| /* might as well release this */ |
| if (data->flags & PMEM_FLAGS_SUBMAP) { |
| put_task_struct(data->task); |
| data->task = NULL; |
| /* lower the submap flag to show the mm is gone */ |
| data->flags &= ~(PMEM_FLAGS_SUBMAP); |
| } |
| pmem_unlock_data_and_mm(data, mm); |
| #if PMEM_DEBUG |
| pr_alert("pmem: vma.mm went away!\n"); |
| #endif |
| return -1; |
| } |
| *locked_mm = mm; |
| return ret; |
| } |
| |
| int pmem_remap(struct pmem_region *region, struct file *file, |
| unsigned operation) |
| { |
| int ret; |
| struct pmem_region_node *region_node; |
| struct mm_struct *mm = NULL; |
| struct list_head *elt, *elt2; |
| int id = get_id(file); |
| struct pmem_data *data; |
| |
| DLOG("operation %#x, region offset %ld, region len %ld\n", |
| operation, region->offset, region->len); |
| |
| if (!is_pmem_file(file)) { |
| #if PMEM_DEBUG |
| pr_err("pmem: remap request for non-pmem file descriptor\n"); |
| #endif |
| return -EINVAL; |
| } |
| |
| /* is_pmem_file fails if !file */ |
| data = file->private_data; |
| |
| /* pmem region must be aligned on a page boundry */ |
| if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) || |
| !PMEM_IS_PAGE_ALIGNED(region->len))) { |
| #if PMEM_DEBUG |
| pr_err("pmem: request for unaligned pmem" |
| "suballocation %lx %lx\n", |
| region->offset, region->len); |
| #endif |
| return -EINVAL; |
| } |
| |
| /* if userspace requests a region of len 0, there's nothing to do */ |
| if (region->len == 0) |
| return 0; |
| |
| /* lock the mm and data */ |
| ret = pmem_lock_data_and_mm(file, data, &mm); |
| if (ret) |
| return 0; |
| |
| /* only the owner of the master file can remap the client fds |
| * that back in it */ |
| if (!is_master_owner(file)) { |
| #if PMEM_DEBUG |
| pr_err("pmem: remap requested from non-master process\n"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* check that the requested range is within the src allocation */ |
| if (unlikely((region->offset > pmem[id].len(id, data)) || |
| (region->len > pmem[id].len(id, data)) || |
| (region->offset + region->len > pmem[id].len(id, data)))) { |
| #if PMEM_DEBUG |
| pr_err("pmem: suballoc doesn't fit in src_file!\n"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| if (operation == PMEM_MAP) { |
| region_node = kmalloc(sizeof(struct pmem_region_node), |
| GFP_KERNEL); |
| if (!region_node) { |
| ret = -ENOMEM; |
| #if PMEM_DEBUG |
| pr_alert("pmem: No space to allocate remap metadata!"); |
| #endif |
| goto err; |
| } |
| region_node->region = *region; |
| list_add(®ion_node->list, &data->region_list); |
| } else if (operation == PMEM_UNMAP) { |
| int found = 0; |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| if (region->len == 0 || |
| (region_node->region.offset == region->offset && |
| region_node->region.len == region->len)) { |
| list_del(elt); |
| kfree(region_node); |
| found = 1; |
| } |
| } |
| if (!found) { |
| #if PMEM_DEBUG |
| pr_err("pmem: Unmap region does not map any" |
| " mapped region!"); |
| #endif |
| ret = -EINVAL; |
| goto err; |
| } |
| } |
| |
| if (data->vma && PMEM_IS_SUBMAP(data)) { |
| if (operation == PMEM_MAP) |
| ret = pmem_remap_pfn_range(id, data->vma, data, |
| region->offset, region->len); |
| else if (operation == PMEM_UNMAP) |
| ret = pmem_unmap_pfn_range(id, data->vma, data, |
| region->offset, region->len); |
| } |
| |
| err: |
| pmem_unlock_data_and_mm(data, mm); |
| return ret; |
| } |
| |
| static void pmem_revoke(struct file *file, struct pmem_data *data) |
| { |
| struct pmem_region_node *region_node; |
| struct list_head *elt, *elt2; |
| struct mm_struct *mm = NULL; |
| int id = get_id(file); |
| int ret = 0; |
| |
| data->master_file = NULL; |
| ret = pmem_lock_data_and_mm(file, data, &mm); |
| /* if lock_data_and_mm fails either the task that mapped the fd, or |
| * the vma that mapped it have already gone away, nothing more |
| * needs to be done */ |
| if (ret) |
| return; |
| /* unmap everything */ |
| /* delete the regions and region list nothing is mapped any more */ |
| if (data->vma) |
| list_for_each_safe(elt, elt2, &data->region_list) { |
| region_node = list_entry(elt, struct pmem_region_node, |
| list); |
| pmem_unmap_pfn_range(id, data->vma, data, |
| region_node->region.offset, |
| region_node->region.len); |
| list_del(elt); |
| kfree(region_node); |
| } |
| /* delete the master file */ |
| pmem_unlock_data_and_mm(data, mm); |
| } |
| |
| static void pmem_get_size(struct pmem_region *region, struct file *file) |
| { |
| /* called via ioctl file op, so file guaranteed to be not NULL */ |
| struct pmem_data *data = file->private_data; |
| int id = get_id(file); |
| |
| down_read(&data->sem); |
| if (!has_allocation(file)) { |
| region->offset = 0; |
| region->len = 0; |
| } else { |
| region->offset = pmem[id].start_addr(id, data); |
| region->len = pmem[id].len(id, data); |
| } |
| up_read(&data->sem); |
| DLOG("offset 0x%lx len 0x%lx\n", region->offset, region->len); |
| } |
| |
| |
| static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| /* called from user space as file op, so file guaranteed to be not |
| * NULL |
| */ |
| struct pmem_data *data = file->private_data; |
| int id = get_id(file); |
| #if PMEM_DEBUG_MSGS |
| char currtask_name[ |
| FIELD_SIZEOF(struct task_struct, comm) + 1]; |
| #endif |
| |
| DLOG("pid %u(%s) file %p(%ld) cmd %#x, dev %s(id: %d)\n", |
| current->pid, get_task_comm(currtask_name, current), |
| file, file_count(file), cmd, get_name(file), id); |
| |
| switch (cmd) { |
| case PMEM_GET_PHYS: |
| { |
| struct pmem_region region; |
| |
| DLOG("get_phys\n"); |
| down_read(&data->sem); |
| if (!has_allocation(file)) { |
| region.offset = 0; |
| region.len = 0; |
| } else { |
| region.offset = pmem[id].start_addr(id, data); |
| region.len = pmem[id].len(id, data); |
| } |
| up_read(&data->sem); |
| |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| |
| DLOG("pmem: successful request for " |
| "physical address of pmem region id %d, " |
| "offset 0x%lx, len 0x%lx\n", |
| id, region.offset, region.len); |
| |
| break; |
| } |
| case PMEM_MAP: |
| { |
| struct pmem_region region; |
| DLOG("map\n"); |
| if (copy_from_user(®ion, (void __user *)arg, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| return pmem_remap(®ion, file, PMEM_MAP); |
| } |
| break; |
| case PMEM_UNMAP: |
| { |
| struct pmem_region region; |
| DLOG("unmap\n"); |
| if (copy_from_user(®ion, (void __user *)arg, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| return pmem_remap(®ion, file, PMEM_UNMAP); |
| break; |
| } |
| case PMEM_GET_SIZE: |
| { |
| struct pmem_region region; |
| DLOG("get_size\n"); |
| pmem_get_size(®ion, file); |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| break; |
| } |
| case PMEM_GET_TOTAL_SIZE: |
| { |
| struct pmem_region region; |
| DLOG("get total size\n"); |
| region.offset = 0; |
| get_id(file); |
| region.len = pmem[id].size; |
| if (copy_to_user((void __user *)arg, ®ion, |
| sizeof(struct pmem_region))) |
| return -EFAULT; |
| break; |
| } |
| case PMEM_GET_FREE_SPACE: |
| { |
| struct pmem_freespace fs; |
| DLOG("get freespace on %s(id: %d)\n", |
| get_name(file), id); |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| pmem[id].free_space(id, &fs); |
| mutex_unlock(&pmem[id].arena_mutex); |
| |
| DLOG("%s(id: %d) total free %lu, largest %lu\n", |
| get_name(file), id, fs.total, fs.largest); |
| |
| if (copy_to_user((void __user *)arg, &fs, |
| sizeof(struct pmem_freespace))) |
| return -EFAULT; |
| break; |
| } |
| |
| case PMEM_ALLOCATE: |
| { |
| int ret = 0; |
| DLOG("allocate, id %d\n", id); |
| down_write(&data->sem); |
| if (has_allocation(file)) { |
| pr_err("pmem: Existing allocation found on " |
| "this file descrpitor\n"); |
| up_write(&data->sem); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| data->index = pmem_allocate_from_id(id, |
| arg, |
| SZ_4K); |
| mutex_unlock(&pmem[id].arena_mutex); |
| ret = data->index == -1 ? -ENOMEM : |
| data->index; |
| up_write(&data->sem); |
| return ret; |
| } |
| case PMEM_ALLOCATE_ALIGNED: |
| { |
| struct pmem_allocation alloc; |
| int ret = 0; |
| |
| if (copy_from_user(&alloc, (void __user *)arg, |
| sizeof(struct pmem_allocation))) |
| return -EFAULT; |
| DLOG("allocate id align %d %u\n", id, alloc.align); |
| down_write(&data->sem); |
| if (has_allocation(file)) { |
| pr_err("pmem: Existing allocation found on " |
| "this file descrpitor\n"); |
| up_write(&data->sem); |
| return -EINVAL; |
| } |
| |
| if (alloc.align & (alloc.align - 1)) { |
| pr_err("pmem: Alignment is not a power of 2\n"); |
| return -EINVAL; |
| } |
| |
| if (alloc.align != SZ_4K && |
| (pmem[id].allocator_type != |
| PMEM_ALLOCATORTYPE_BITMAP)) { |
| pr_err("pmem: Non 4k alignment requires bitmap" |
| " allocator on %s\n", pmem[id].name); |
| return -EINVAL; |
| } |
| |
| if (alloc.align > SZ_1M || |
| alloc.align < SZ_4K) { |
| pr_err("pmem: Invalid Alignment (%u) " |
| "specified\n", alloc.align); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&pmem[id].arena_mutex); |
| data->index = pmem_allocate_from_id(id, |
| alloc.size, |
| alloc.align); |
| mutex_unlock(&pmem[id].arena_mutex); |
| ret = data->index == -1 ? -ENOMEM : |
| data->index; |
| up_write(&data->sem); |
| return ret; |
| } |
| case PMEM_CONNECT: |
| DLOG("connect\n"); |
| return pmem_connect(arg, file); |
| case PMEM_CLEAN_INV_CACHES: |
| case PMEM_CLEAN_CACHES: |
| case PMEM_INV_CACHES: |
| { |
| struct pmem_addr pmem_addr; |
| |
| if (copy_from_user(&pmem_addr, (void __user *)arg, |
| sizeof(struct pmem_addr))) |
| return -EFAULT; |
| |
| return pmem_cache_maint(file, cmd, &pmem_addr); |
| } |
| default: |
| if (pmem[id].ioctl) |
| return pmem[id].ioctl(file, cmd, arg); |
| |
| DLOG("ioctl invalid (%#x)\n", cmd); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void ioremap_pmem(int id) |
| { |
| unsigned long addr; |
| const struct mem_type *type; |
| |
| DLOG("PMEMDEBUG: ioremaping for %s\n", pmem[id].name); |
| if (pmem[id].map_on_demand) { |
| addr = (unsigned long)pmem[id].area->addr; |
| if (pmem[id].cached) |
| type = get_mem_type(MT_DEVICE_CACHED); |
| else |
| type = get_mem_type(MT_DEVICE); |
| DLOG("PMEMDEBUG: Remap phys %lx to virt %lx on %s\n", |
| pmem[id].base, addr, pmem[id].name); |
| if (ioremap_page_range(addr, addr + pmem[id].size, |
| pmem[id].base, __pgprot(type->prot_pte))) { |
| pr_err("pmem: Failed to map pages\n"); |
| BUG(); |
| } |
| pmem[id].vbase = pmem[id].area->addr; |
| /* Flush the cache after installing page table entries to avoid |
| * aliasing when these pages are remapped to user space. |
| */ |
| flush_cache_vmap(addr, addr + pmem[id].size); |
| } else { |
| if (pmem[id].cached) |
| pmem[id].vbase = ioremap_cached(pmem[id].base, |
| pmem[id].size); |
| #ifdef ioremap_ext_buffered |
| else if (pmem[id].buffered) |
| pmem[id].vbase = ioremap_ext_buffered(pmem[id].base, |
| pmem[id].size); |
| #endif |
| else |
| pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size); |
| } |
| } |
| |
| int pmem_setup(struct android_pmem_platform_data *pdata, |
| long (*ioctl)(struct file *, unsigned int, unsigned long), |
| int (*release)(struct inode *, struct file *)) |
| { |
| int i, index = 0, id; |
| struct vm_struct *pmem_vma = NULL; |
| |
| if (id_count >= PMEM_MAX_DEVICES) { |
| pr_alert("pmem: %s: unable to register driver(%s) - no more " |
| "devices available!\n", __func__, pdata->name); |
| goto err_no_mem; |
| } |
| |
| if (!pdata->size) { |
| pr_alert("pmem: %s: unable to register pmem driver(%s) - zero " |
| "size passed in!\n", __func__, pdata->name); |
| goto err_no_mem; |
| } |
| |
| id = id_count++; |
| |
| pmem[id].id = id; |
| |
| if (pmem[id].allocate) { |
| pr_alert("pmem: %s: unable to register pmem driver - " |
| "duplicate registration of %s!\n", |
| __func__, pdata->name); |
| goto err_no_mem; |
| } |
| |
| pmem[id].allocator_type = pdata->allocator_type; |
| |
| /* 'quantum' is a "hidden" variable that defaults to 0 in the board |
| * files */ |
| pmem[id].quantum = pdata->quantum ?: PMEM_MIN_ALLOC; |
| if (pmem[id].quantum < PMEM_MIN_ALLOC || |
| !is_power_of_2(pmem[id].quantum)) { |
| pr_alert("pmem: %s: unable to register pmem driver %s - " |
| "invalid quantum value (%#x)!\n", |
| __func__, pdata->name, pmem[id].quantum); |
| goto err_reset_pmem_info; |
| } |
| |
| if (pdata->size % pmem[id].quantum) { |
| /* bad alignment for size! */ |
| pr_alert("pmem: %s: Unable to register driver %s - " |
| "memory region size (%#lx) is not a multiple of " |
| "quantum size(%#x)!\n", __func__, pdata->name, |
| pdata->size, pmem[id].quantum); |
| goto err_reset_pmem_info; |
| } |
| |
| pmem[id].cached = pdata->cached; |
| pmem[id].buffered = pdata->buffered; |
| pmem[id].size = pdata->size; |
| pmem[id].memory_type = pdata->memory_type; |
| strlcpy(pmem[id].name, pdata->name, PMEM_NAME_SIZE); |
| |
| pmem[id].num_entries = pmem[id].size / pmem[id].quantum; |
| |
| memset(&pmem[id].kobj, 0, sizeof(pmem[0].kobj)); |
| pmem[id].kobj.kset = pmem_kset; |
| |
| switch (pmem[id].allocator_type) { |
| case PMEM_ALLOCATORTYPE_ALLORNOTHING: |
| pmem[id].allocate = pmem_allocator_all_or_nothing; |
| pmem[id].free = pmem_free_all_or_nothing; |
| pmem[id].free_space = pmem_free_space_all_or_nothing; |
| pmem[id].len = pmem_len_all_or_nothing; |
| pmem[id].start_addr = pmem_start_addr_all_or_nothing; |
| pmem[id].num_entries = 1; |
| pmem[id].quantum = pmem[id].size; |
| pmem[id].allocator.all_or_nothing.allocated = 0; |
| |
| if (kobject_init_and_add(&pmem[id].kobj, |
| &pmem_allornothing_ktype, NULL, |
| "%s", pdata->name)) |
| goto out_put_kobj; |
| |
| break; |
| |
| case PMEM_ALLOCATORTYPE_BUDDYBESTFIT: |
| pmem[id].allocator.buddy_bestfit.buddy_bitmap = kmalloc( |
| pmem[id].num_entries * sizeof(struct pmem_bits), |
| GFP_KERNEL); |
| if (!pmem[id].allocator.buddy_bestfit.buddy_bitmap) |
| goto err_reset_pmem_info; |
| |
| memset(pmem[id].allocator.buddy_bestfit.buddy_bitmap, 0, |
| sizeof(struct pmem_bits) * pmem[id].num_entries); |
| |
| for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--) |
| if ((pmem[id].num_entries) & 1<<i) { |
| PMEM_BUDDY_ORDER(id, index) = i; |
| index = PMEM_BUDDY_NEXT_INDEX(id, index); |
| } |
| pmem[id].allocate = pmem_allocator_buddy_bestfit; |
| pmem[id].free = pmem_free_buddy_bestfit; |
| pmem[id].free_space = pmem_free_space_buddy_bestfit; |
| pmem[id].len = pmem_len_buddy_bestfit; |
| pmem[id].start_addr = pmem_start_addr_buddy_bestfit; |
| if (kobject_init_and_add(&pmem[id].kobj, |
| &pmem_buddy_bestfit_ktype, NULL, |
| "%s", pdata->name)) |
| goto out_put_kobj; |
| |
| break; |
| |
| case PMEM_ALLOCATORTYPE_BITMAP: /* 0, default if not explicit */ |
| pmem[id].allocator.bitmap.bitm_alloc = kmalloc( |
| PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS * |
| sizeof(*pmem[id].allocator.bitmap.bitm_alloc), |
| GFP_KERNEL); |
| if (!pmem[id].allocator.bitmap.bitm_alloc) { |
| pr_alert("pmem: %s: Unable to register pmem " |
| "driver %s - can't allocate " |
| "bitm_alloc!\n", |
| __func__, pdata->name); |
| goto err_reset_pmem_info; |
| } |
| |
| if (kobject_init_and_add(&pmem[id].kobj, |
| &pmem_bitmap_ktype, NULL, |
| "%s", pdata->name)) |
| goto out_put_kobj; |
| |
| for (i = 0; i < PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS; i++) { |
| pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1; |
| pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0; |
| } |
| |
| pmem[id].allocator.bitmap.bitmap_allocs = |
| PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS; |
| |
| pmem[id].allocator.bitmap.bitmap = |
| kcalloc((pmem[id].num_entries + 31) / 32, |
| sizeof(unsigned int), GFP_KERNEL); |
| if (!pmem[id].allocator.bitmap.bitmap) { |
| pr_alert("pmem: %s: Unable to register pmem " |
| "driver - can't allocate bitmap!\n", |
| __func__); |
| goto err_cant_register_device; |
| } |
| pmem[id].allocator.bitmap.bitmap_free = pmem[id].num_entries; |
| |
| pmem[id].allocate = pmem_allocator_bitmap; |
| pmem[id].free = pmem_free_bitmap; |
| pmem[id].free_space = pmem_free_space_bitmap; |
| pmem[id].len = pmem_len_bitmap; |
| pmem[id].start_addr = pmem_start_addr_bitmap; |
| |
| DLOG("bitmap allocator id %d (%s), num_entries %u, raw size " |
| "%lu, quanta size %u\n", |
| id, pdata->name, pmem[id].allocator.bitmap.bitmap_free, |
| pmem[id].size, pmem[id].quantum); |
| break; |
| |
| case PMEM_ALLOCATORTYPE_SYSTEM: |
| |
| INIT_LIST_HEAD(&pmem[id].allocator.system_mem.alist); |
| |
| pmem[id].allocator.system_mem.used = 0; |
| pmem[id].vbase = NULL; |
| |
| if (kobject_init_and_add(&pmem[id].kobj, |
| &pmem_system_ktype, NULL, |
| "%s", pdata->name)) |
| goto out_put_kobj; |
| |
| pmem[id].allocate = pmem_allocator_system; |
| pmem[id].free = pmem_free_system; |
| pmem[id].free_space = pmem_free_space_system; |
| pmem[id].len = pmem_len_system; |
| pmem[id].start_addr = pmem_start_addr_system; |
| pmem[id].num_entries = 0; |
| pmem[id].quantum = PAGE_SIZE; |
| |
| DLOG("system allocator id %d (%s), raw size %lu\n", |
| id, pdata->name, pmem[id].size); |
| break; |
| |
| default: |
| pr_alert("Invalid allocator type (%d) for pmem driver\n", |
| pdata->allocator_type); |
| goto err_reset_pmem_info; |
| } |
| |
| pmem[id].ioctl = ioctl; |
| pmem[id].release = release; |
| mutex_init(&pmem[id].arena_mutex); |
| mutex_init(&pmem[id].data_list_mutex); |
| INIT_LIST_HEAD(&pmem[id].data_list); |
| |
| pmem[id].dev.name = pdata->name; |
| pmem[id].dev.minor = id; |
| pmem[id].dev.fops = &pmem_fops; |
| pr_info("pmem: Initializing %s (user-space) as %s\n", |
| pdata->name, pdata->cached ? "cached" : "non-cached"); |
| |
| if (misc_register(&pmem[id].dev)) { |
| pr_alert("Unable to register pmem driver!\n"); |
| goto err_cant_register_device; |
| } |
| |
| pmem[id].base = allocate_contiguous_memory_nomap(pmem[id].size, |
| pmem[id].memory_type, PAGE_SIZE); |
| |
| pr_info("allocating %lu bytes at %p (%lx physical) for %s\n", |
| pmem[id].size, pmem[id].vbase, pmem[id].base, pmem[id].name); |
| |
| pmem[id].reusable = pdata->reusable; |
| /* reusable pmem requires map on demand */ |
| pmem[id].map_on_demand = pdata->map_on_demand || pdata->reusable; |
| if (pmem[id].map_on_demand) { |
| if (pmem[id].reusable) { |
| const struct fmem_data *fmem_info = fmem_get_info(); |
| pmem[id].area = fmem_info->area; |
| } else { |
| pmem_vma = get_vm_area(pmem[id].size, VM_IOREMAP); |
| if (!pmem_vma) { |
| pr_err("pmem: Failed to allocate virtual space for " |
| "%s\n", pdata->name); |
| goto out_put_kobj; |
| } |
| pr_err("pmem: Reserving virtual address range %lx - %lx for" |
| " %s\n", (unsigned long) pmem_vma->addr, |
| (unsigned long) pmem_vma->addr + pmem[id].size, |
| pdata->name); |
| pmem[id].area = pmem_vma; |
| } |
| } else |
| pmem[id].area = NULL; |
| |
| pmem[id].garbage_pfn = page_to_pfn(alloc_page(GFP_KERNEL)); |
| atomic_set(&pmem[id].allocation_cnt, 0); |
| |
| if (pdata->setup_region) |
| pmem[id].region_data = pdata->setup_region(); |
| |
| if (pdata->request_region) |
| pmem[id].mem_request = pdata->request_region; |
| |
| if (pdata->release_region) |
| pmem[id].mem_release = pdata->release_region; |
| |
| return 0; |
| |
| err_cant_register_device: |
| out_put_kobj: |
| kobject_put(&pmem[id].kobj); |
| if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT) |
| kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap); |
| else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) { |
| kfree(pmem[id].allocator.bitmap.bitmap); |
| kfree(pmem[id].allocator.bitmap.bitm_alloc); |
| } |
| err_reset_pmem_info: |
| pmem[id].allocate = 0; |
| pmem[id].dev.minor = -1; |
| err_no_mem: |
| return -1; |
| } |
| |
| static int pmem_probe(struct platform_device *pdev) |
| { |
| struct android_pmem_platform_data *pdata; |
| |
| if (!pdev || !pdev->dev.platform_data) { |
| pr_alert("Unable to probe pmem!\n"); |
| return -1; |
| } |
| pdata = pdev->dev.platform_data; |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| |
| return pmem_setup(pdata, NULL, NULL); |
| } |
| |
| static int pmem_remove(struct platform_device *pdev) |
| { |
| int id = pdev->id; |
| __free_page(pfn_to_page(pmem[id].garbage_pfn)); |
| pm_runtime_disable(&pdev->dev); |
| misc_deregister(&pmem[id].dev); |
| return 0; |
| } |
| |
| static int pmem_runtime_suspend(struct device *dev) |
| { |
| dev_dbg(dev, "pm_runtime: suspending...\n"); |
| return 0; |
| } |
| |
| static int pmem_runtime_resume(struct device *dev) |
| { |
| dev_dbg(dev, "pm_runtime: resuming...\n"); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops pmem_dev_pm_ops = { |
| .runtime_suspend = pmem_runtime_suspend, |
| .runtime_resume = pmem_runtime_resume, |
| }; |
| |
| static struct platform_driver pmem_driver = { |
| .probe = pmem_probe, |
| .remove = pmem_remove, |
| .driver = { .name = "android_pmem", |
| .pm = &pmem_dev_pm_ops, |
| } |
| }; |
| |
| |
| static int __init pmem_init(void) |
| { |
| /* create /sys/kernel/<PMEM_SYSFS_DIR_NAME> directory */ |
| pmem_kset = kset_create_and_add(PMEM_SYSFS_DIR_NAME, |
| NULL, kernel_kobj); |
| if (!pmem_kset) { |
| pr_err("pmem(%s):kset_create_and_add fail\n", __func__); |
| return -ENOMEM; |
| } |
| |
| return platform_driver_register(&pmem_driver); |
| } |
| |
| static void __exit pmem_exit(void) |
| { |
| platform_driver_unregister(&pmem_driver); |
| } |
| |
| module_init(pmem_init); |
| module_exit(pmem_exit); |
| |