blob: fa8239a9edd7478ceb6cb39cd5eb44203c85993f [file] [log] [blame]
/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/syscore_ops.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/err.h>
#include <asm/mach/irq.h>
#include <mach/msm_iomap.h>
#include <mach/gpiomux.h>
#include <mach/mpm.h>
#include "gpio-msm-common.h"
#ifdef CONFIG_GPIO_MSM_V3
enum msm_tlmm_register {
SDC4_HDRV_PULL_CTL = 0x0, /* NOT USED */
SDC3_HDRV_PULL_CTL = 0x0, /* NOT USED */
SDC2_HDRV_PULL_CTL = 0x2048,
SDC1_HDRV_PULL_CTL = 0x2044,
};
#else
enum msm_tlmm_register {
SDC4_HDRV_PULL_CTL = 0x20a0,
SDC3_HDRV_PULL_CTL = 0x20a4,
SDC2_HDRV_PULL_CTL = 0x0, /* NOT USED */
SDC1_HDRV_PULL_CTL = 0x20a0,
};
#endif
struct tlmm_field_cfg {
enum msm_tlmm_register reg;
u8 off;
};
static const struct tlmm_field_cfg tlmm_hdrv_cfgs[] = {
{SDC4_HDRV_PULL_CTL, 6}, /* TLMM_HDRV_SDC4_CLK */
{SDC4_HDRV_PULL_CTL, 3}, /* TLMM_HDRV_SDC4_CMD */
{SDC4_HDRV_PULL_CTL, 0}, /* TLMM_HDRV_SDC4_DATA */
{SDC3_HDRV_PULL_CTL, 6}, /* TLMM_HDRV_SDC3_CLK */
{SDC3_HDRV_PULL_CTL, 3}, /* TLMM_HDRV_SDC3_CMD */
{SDC3_HDRV_PULL_CTL, 0}, /* TLMM_HDRV_SDC3_DATA */
{SDC2_HDRV_PULL_CTL, 6}, /* TLMM_HDRV_SDC2_CLK */
{SDC2_HDRV_PULL_CTL, 3}, /* TLMM_HDRV_SDC2_CMD */
{SDC2_HDRV_PULL_CTL, 0}, /* TLMM_HDRV_SDC2_DATA */
{SDC1_HDRV_PULL_CTL, 6}, /* TLMM_HDRV_SDC1_CLK */
{SDC1_HDRV_PULL_CTL, 3}, /* TLMM_HDRV_SDC1_CMD */
{SDC1_HDRV_PULL_CTL, 0}, /* TLMM_HDRV_SDC1_DATA */
};
static const struct tlmm_field_cfg tlmm_pull_cfgs[] = {
{SDC4_HDRV_PULL_CTL, 14}, /* TLMM_PULL_SDC4_CLK */
{SDC4_HDRV_PULL_CTL, 11}, /* TLMM_PULL_SDC4_CMD */
{SDC4_HDRV_PULL_CTL, 9}, /* TLMM_PULL_SDC4_DATA */
{SDC3_HDRV_PULL_CTL, 14}, /* TLMM_PULL_SDC3_CLK */
{SDC3_HDRV_PULL_CTL, 11}, /* TLMM_PULL_SDC3_CMD */
{SDC3_HDRV_PULL_CTL, 9}, /* TLMM_PULL_SDC3_DATA */
{SDC2_HDRV_PULL_CTL, 14}, /* TLMM_PULL_SDC2_CLK */
{SDC2_HDRV_PULL_CTL, 11}, /* TLMM_PULL_SDC2_CMD */
{SDC2_HDRV_PULL_CTL, 9}, /* TLMM_PULL_SDC2_DATA */
{SDC1_HDRV_PULL_CTL, 13}, /* TLMM_PULL_SDC1_CLK */
{SDC1_HDRV_PULL_CTL, 11}, /* TLMM_PULL_SDC1_CMD */
{SDC1_HDRV_PULL_CTL, 9}, /* TLMM_PULL_SDC1_DATA */
};
/*
* Supported arch specific irq extension.
* Default make them NULL.
*/
struct irq_chip msm_gpio_irq_extn = {
.irq_eoi = NULL,
.irq_mask = NULL,
.irq_unmask = NULL,
.irq_retrigger = NULL,
.irq_set_type = NULL,
.irq_set_wake = NULL,
.irq_disable = NULL,
};
/**
* struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
*
* @enabled_irqs: a bitmap used to optimize the summary-irq handler. By
* keeping track of which gpios are unmasked as irq sources, we avoid
* having to do __raw_readl calls on hundreds of iomapped registers each time
* the summary interrupt fires in order to locate the active interrupts.
*
* @wake_irqs: a bitmap for tracking which interrupt lines are enabled
* as wakeup sources. When the device is suspended, interrupts which are
* not wakeup sources are disabled.
*
* @dual_edge_irqs: a bitmap used to track which irqs are configured
* as dual-edge, as this is not supported by the hardware and requires
* some special handling in the driver.
*/
struct msm_gpio_dev {
struct gpio_chip gpio_chip;
DECLARE_BITMAP(enabled_irqs, NR_MSM_GPIOS);
DECLARE_BITMAP(wake_irqs, NR_MSM_GPIOS);
DECLARE_BITMAP(dual_edge_irqs, NR_MSM_GPIOS);
struct irq_domain *domain;
};
static DEFINE_SPINLOCK(tlmm_lock);
static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
{
return container_of(chip, struct msm_gpio_dev, gpio_chip);
}
static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
{
int rc;
rc = __msm_gpio_get_inout(offset);
mb();
return rc;
}
static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val)
{
__msm_gpio_set_inout(offset, val);
mb();
}
static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
unsigned long irq_flags;
spin_lock_irqsave(&tlmm_lock, irq_flags);
__msm_gpio_set_config_direction(offset, 1, 0);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
return 0;
}
static int msm_gpio_direction_output(struct gpio_chip *chip,
unsigned offset,
int val)
{
unsigned long irq_flags;
spin_lock_irqsave(&tlmm_lock, irq_flags);
__msm_gpio_set_config_direction(offset, 0, val);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
return 0;
}
#ifdef CONFIG_OF
static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
{
struct msm_gpio_dev *g_dev = to_msm_gpio_dev(chip);
struct irq_domain *domain = g_dev->domain;
return irq_linear_revmap(domain, offset);
}
static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
{
struct irq_data *irq_data = irq_get_irq_data(irq);
return irq_data->hwirq;
}
#else
static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
{
return MSM_GPIO_TO_INT(offset - chip->base);
}
static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
{
return irq - MSM_GPIO_TO_INT(chip->base);
}
#endif
static int msm_gpio_request(struct gpio_chip *chip, unsigned offset)
{
return msm_gpiomux_get(chip->base + offset);
}
static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
{
msm_gpiomux_put(chip->base + offset);
}
static struct msm_gpio_dev msm_gpio = {
.gpio_chip = {
.label = "msmgpio",
.base = 0,
.ngpio = NR_MSM_GPIOS,
.direction_input = msm_gpio_direction_input,
.direction_output = msm_gpio_direction_output,
.get = msm_gpio_get,
.set = msm_gpio_set,
.to_irq = msm_gpio_to_irq,
.request = msm_gpio_request,
.free = msm_gpio_free,
},
};
static void switch_mpm_config(struct irq_data *d, unsigned val)
{
/* switch the configuration in the mpm as well */
if (!msm_gpio_irq_extn.irq_set_type)
return;
if (val)
msm_gpio_irq_extn.irq_set_type(d, IRQF_TRIGGER_FALLING);
else
msm_gpio_irq_extn.irq_set_type(d, IRQF_TRIGGER_RISING);
}
/* For dual-edge interrupts in software, since the hardware has no
* such support:
*
* At appropriate moments, this function may be called to flip the polarity
* settings of both-edge irq lines to try and catch the next edge.
*
* The attempt is considered successful if:
* - the status bit goes high, indicating that an edge was caught, or
* - the input value of the gpio doesn't change during the attempt.
* If the value changes twice during the process, that would cause the first
* test to fail but would force the second, as two opposite
* transitions would cause a detection no matter the polarity setting.
*
* The do-loop tries to sledge-hammer closed the timing hole between
* the initial value-read and the polarity-write - if the line value changes
* during that window, an interrupt is lost, the new polarity setting is
* incorrect, and the first success test will fail, causing a retry.
*
* Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
*/
static void msm_gpio_update_dual_edge_pos(struct irq_data *d, unsigned gpio)
{
int loop_limit = 100;
unsigned val, val2, intstat;
do {
val = __msm_gpio_get_inout(gpio);
__msm_gpio_set_polarity(gpio, val);
val2 = __msm_gpio_get_inout(gpio);
intstat = __msm_gpio_get_intr_status(gpio);
if (intstat || val == val2) {
switch_mpm_config(d, val);
return;
}
} while (loop_limit-- > 0);
pr_err("%s: dual-edge irq failed to stabilize, %#08x != %#08x\n",
__func__, val, val2);
}
static void msm_gpio_irq_ack(struct irq_data *d)
{
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
__msm_gpio_set_intr_status(gpio);
if (test_bit(gpio, msm_gpio.dual_edge_irqs))
msm_gpio_update_dual_edge_pos(d, gpio);
mb();
}
static void msm_gpio_irq_mask(struct irq_data *d)
{
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
unsigned long irq_flags;
spin_lock_irqsave(&tlmm_lock, irq_flags);
__msm_gpio_set_intr_cfg_enable(gpio, 0);
__clear_bit(gpio, msm_gpio.enabled_irqs);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
if (msm_gpio_irq_extn.irq_mask)
msm_gpio_irq_extn.irq_mask(d);
}
static void msm_gpio_irq_unmask(struct irq_data *d)
{
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
unsigned long irq_flags;
spin_lock_irqsave(&tlmm_lock, irq_flags);
__set_bit(gpio, msm_gpio.enabled_irqs);
__msm_gpio_set_intr_cfg_enable(gpio, 1);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
if (msm_gpio_irq_extn.irq_mask)
msm_gpio_irq_extn.irq_unmask(d);
}
static void msm_gpio_irq_disable(struct irq_data *d)
{
if (msm_gpio_irq_extn.irq_disable)
msm_gpio_irq_extn.irq_disable(d);
}
static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
unsigned long irq_flags;
spin_lock_irqsave(&tlmm_lock, irq_flags);
if (flow_type & IRQ_TYPE_EDGE_BOTH) {
__irq_set_handler_locked(d->irq, handle_edge_irq);
if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
__set_bit(gpio, msm_gpio.dual_edge_irqs);
else
__clear_bit(gpio, msm_gpio.dual_edge_irqs);
} else {
__irq_set_handler_locked(d->irq, handle_level_irq);
__clear_bit(gpio, msm_gpio.dual_edge_irqs);
}
__msm_gpio_set_intr_cfg_type(gpio, flow_type);
if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
msm_gpio_update_dual_edge_pos(d, gpio);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
if (msm_gpio_irq_extn.irq_set_type)
msm_gpio_irq_extn.irq_set_type(d, flow_type);
return 0;
}
/*
* When the summary IRQ is raised, any number of GPIO lines may be high.
* It is the job of the summary handler to find all those GPIO lines
* which have been set as summary IRQ lines and which are triggered,
* and to call their interrupt handlers.
*/
static irqreturn_t msm_summary_irq_handler(int irq, void *data)
{
unsigned long i;
struct irq_desc *desc = irq_to_desc(irq);
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
for (i = find_first_bit(msm_gpio.enabled_irqs, NR_MSM_GPIOS);
i < NR_MSM_GPIOS;
i = find_next_bit(msm_gpio.enabled_irqs, NR_MSM_GPIOS, i + 1)) {
if (__msm_gpio_get_intr_status(i))
generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
i));
}
chained_irq_exit(chip, desc);
return IRQ_HANDLED;
}
static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
{
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
if (on) {
if (bitmap_empty(msm_gpio.wake_irqs, NR_MSM_GPIOS))
irq_set_irq_wake(TLMM_MSM_SUMMARY_IRQ, 1);
set_bit(gpio, msm_gpio.wake_irqs);
} else {
clear_bit(gpio, msm_gpio.wake_irqs);
if (bitmap_empty(msm_gpio.wake_irqs, NR_MSM_GPIOS))
irq_set_irq_wake(TLMM_MSM_SUMMARY_IRQ, 0);
}
if (msm_gpio_irq_extn.irq_set_wake)
msm_gpio_irq_extn.irq_set_wake(d, on);
return 0;
}
static struct irq_chip msm_gpio_irq_chip = {
.name = "msmgpio",
.irq_mask = msm_gpio_irq_mask,
.irq_unmask = msm_gpio_irq_unmask,
.irq_ack = msm_gpio_irq_ack,
.irq_set_type = msm_gpio_irq_set_type,
.irq_set_wake = msm_gpio_irq_set_wake,
.irq_disable = msm_gpio_irq_disable,
};
/*
* This lock class tells lockdep that GPIO irqs are in a different
* category than their parent, so it won't report false recursion.
*/
static struct lock_class_key msm_gpio_lock_class;
/* TODO: This should be a real platform_driver */
static int __devinit msm_gpio_probe(void)
{
int ret;
#ifndef CONFIG_OF
int irq, i;
#endif
spin_lock_init(&tlmm_lock);
bitmap_zero(msm_gpio.enabled_irqs, NR_MSM_GPIOS);
bitmap_zero(msm_gpio.wake_irqs, NR_MSM_GPIOS);
bitmap_zero(msm_gpio.dual_edge_irqs, NR_MSM_GPIOS);
ret = gpiochip_add(&msm_gpio.gpio_chip);
if (ret < 0)
return ret;
#ifndef CONFIG_OF
for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
irq_set_lockdep_class(irq, &msm_gpio_lock_class);
irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
handle_level_irq);
set_irq_flags(irq, IRQF_VALID);
}
#endif
ret = request_irq(TLMM_MSM_SUMMARY_IRQ, msm_summary_irq_handler,
IRQF_TRIGGER_HIGH, "msmgpio", NULL);
if (ret) {
pr_err("Request_irq failed for TLMM_MSM_SUMMARY_IRQ - %d\n",
ret);
return ret;
}
return 0;
}
static int __devexit msm_gpio_remove(void)
{
int ret = gpiochip_remove(&msm_gpio.gpio_chip);
if (ret < 0)
return ret;
irq_set_handler(TLMM_MSM_SUMMARY_IRQ, NULL);
return 0;
}
#ifdef CONFIG_PM
static int msm_gpio_suspend(void)
{
unsigned long irq_flags;
unsigned long i;
spin_lock_irqsave(&tlmm_lock, irq_flags);
for_each_set_bit(i, msm_gpio.enabled_irqs, NR_MSM_GPIOS)
__msm_gpio_set_intr_cfg_enable(i, 0);
for_each_set_bit(i, msm_gpio.wake_irqs, NR_MSM_GPIOS)
__msm_gpio_set_intr_cfg_enable(i, 1);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
return 0;
}
void msm_gpio_show_resume_irq(void)
{
unsigned long irq_flags;
int i, irq, intstat;
if (!msm_show_resume_irq_mask)
return;
spin_lock_irqsave(&tlmm_lock, irq_flags);
for_each_set_bit(i, msm_gpio.wake_irqs, NR_MSM_GPIOS) {
intstat = __msm_gpio_get_intr_status(i);
if (intstat) {
irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
pr_warning("%s: %d triggered\n",
__func__, irq);
}
}
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
}
static void msm_gpio_resume(void)
{
unsigned long irq_flags;
unsigned long i;
msm_gpio_show_resume_irq();
spin_lock_irqsave(&tlmm_lock, irq_flags);
for_each_set_bit(i, msm_gpio.wake_irqs, NR_MSM_GPIOS)
__msm_gpio_set_intr_cfg_enable(i, 0);
for_each_set_bit(i, msm_gpio.enabled_irqs, NR_MSM_GPIOS)
__msm_gpio_set_intr_cfg_enable(i, 1);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
}
#else
#define msm_gpio_suspend NULL
#define msm_gpio_resume NULL
#endif
static struct syscore_ops msm_gpio_syscore_ops = {
.suspend = msm_gpio_suspend,
.resume = msm_gpio_resume,
};
static int __init msm_gpio_init(void)
{
msm_gpio_probe();
register_syscore_ops(&msm_gpio_syscore_ops);
return 0;
}
static void __exit msm_gpio_exit(void)
{
unregister_syscore_ops(&msm_gpio_syscore_ops);
msm_gpio_remove();
}
postcore_initcall(msm_gpio_init);
module_exit(msm_gpio_exit);
static void msm_tlmm_set_field(const struct tlmm_field_cfg *configs,
unsigned id, unsigned width, unsigned val)
{
unsigned long irqflags;
u32 mask = (1 << width) - 1;
u32 __iomem *reg = MSM_TLMM_BASE + configs[id].reg;
u32 reg_val;
spin_lock_irqsave(&tlmm_lock, irqflags);
reg_val = __raw_readl(reg);
reg_val &= ~(mask << configs[id].off);
reg_val |= (val & mask) << configs[id].off;
__raw_writel(reg_val, reg);
mb();
spin_unlock_irqrestore(&tlmm_lock, irqflags);
}
void msm_tlmm_set_hdrive(enum msm_tlmm_hdrive_tgt tgt, int drv_str)
{
msm_tlmm_set_field(tlmm_hdrv_cfgs, tgt, 3, drv_str);
}
EXPORT_SYMBOL(msm_tlmm_set_hdrive);
void msm_tlmm_set_pull(enum msm_tlmm_pull_tgt tgt, int pull)
{
msm_tlmm_set_field(tlmm_pull_cfgs, tgt, 2, pull);
}
EXPORT_SYMBOL(msm_tlmm_set_pull);
int gpio_tlmm_config(unsigned config, unsigned disable)
{
unsigned gpio = GPIO_PIN(config);
if (gpio > NR_MSM_GPIOS)
return -EINVAL;
__gpio_tlmm_config(config);
mb();
return 0;
}
EXPORT_SYMBOL(gpio_tlmm_config);
int msm_gpio_install_direct_irq(unsigned gpio, unsigned irq,
unsigned int input_polarity)
{
unsigned long irq_flags;
if (gpio >= NR_MSM_GPIOS || irq >= NR_TLMM_MSM_DIR_CONN_IRQ)
return -EINVAL;
spin_lock_irqsave(&tlmm_lock, irq_flags);
__msm_gpio_install_direct_irq(gpio, irq, input_polarity);
mb();
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
return 0;
}
EXPORT_SYMBOL(msm_gpio_install_direct_irq);
#ifdef CONFIG_OF
static int msm_gpio_irq_domain_xlate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
if (d->of_node != controller)
return -EINVAL;
if (intsize != 2)
return -EINVAL;
/* hwirq value */
*out_hwirq = intspec[0];
/* irq flags */
*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int msm_gpio_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_lockdep_class(irq, &msm_gpio_lock_class);
irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
handle_level_irq);
set_irq_flags(irq, IRQF_VALID);
return 0;
}
static struct irq_domain_ops msm_gpio_irq_domain_ops = {
.xlate = msm_gpio_irq_domain_xlate,
.map = msm_gpio_irq_domain_map,
};
int __init msm_gpio_of_init(struct device_node *node,
struct device_node *parent)
{
msm_gpio.domain = irq_domain_add_linear(node, NR_MSM_GPIOS,
&msm_gpio_irq_domain_ops, &msm_gpio);
if (!msm_gpio.domain) {
WARN(1, "Cannot allocate irq_domain\n");
return -ENOMEM;
}
return 0;
}
#endif
MODULE_AUTHOR("Gregory Bean <gbean@codeaurora.org>");
MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("sysdev:msmgpio");