| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * derived from drivers/kvm/kvm_main.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2008 Qumranet, Inc. |
| * Copyright IBM Corporation, 2008 |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Amit Shah <amit.shah@qumranet.com> |
| * Ben-Ami Yassour <benami@il.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include "irq.h" |
| #include "mmu.h" |
| #include "i8254.h" |
| #include "tss.h" |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/kvm.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| #include <linux/mman.h> |
| #include <linux/highmem.h> |
| #include <linux/iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/user-return-notifier.h> |
| #include <trace/events/kvm.h> |
| #undef TRACE_INCLUDE_FILE |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #include <asm/debugreg.h> |
| #include <asm/uaccess.h> |
| #include <asm/msr.h> |
| #include <asm/desc.h> |
| #include <asm/mtrr.h> |
| #include <asm/mce.h> |
| |
| #define MAX_IO_MSRS 256 |
| #define CR0_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ |
| | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ |
| | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) |
| #define CR4_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ |
| | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ |
| | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) |
| |
| #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) |
| |
| #define KVM_MAX_MCE_BANKS 32 |
| #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P |
| |
| /* EFER defaults: |
| * - enable syscall per default because its emulated by KVM |
| * - enable LME and LMA per default on 64 bit KVM |
| */ |
| #ifdef CONFIG_X86_64 |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; |
| #else |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; |
| #endif |
| |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries); |
| |
| struct kvm_x86_ops *kvm_x86_ops; |
| EXPORT_SYMBOL_GPL(kvm_x86_ops); |
| |
| int ignore_msrs = 0; |
| module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR); |
| |
| #define KVM_NR_SHARED_MSRS 16 |
| |
| struct kvm_shared_msrs_global { |
| int nr; |
| struct kvm_shared_msr { |
| u32 msr; |
| u64 value; |
| } msrs[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| struct kvm_shared_msrs { |
| struct user_return_notifier urn; |
| bool registered; |
| u64 current_value[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; |
| static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); |
| |
| struct kvm_stats_debugfs_item debugfs_entries[] = { |
| { "pf_fixed", VCPU_STAT(pf_fixed) }, |
| { "pf_guest", VCPU_STAT(pf_guest) }, |
| { "tlb_flush", VCPU_STAT(tlb_flush) }, |
| { "invlpg", VCPU_STAT(invlpg) }, |
| { "exits", VCPU_STAT(exits) }, |
| { "io_exits", VCPU_STAT(io_exits) }, |
| { "mmio_exits", VCPU_STAT(mmio_exits) }, |
| { "signal_exits", VCPU_STAT(signal_exits) }, |
| { "irq_window", VCPU_STAT(irq_window_exits) }, |
| { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
| { "halt_exits", VCPU_STAT(halt_exits) }, |
| { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
| { "hypercalls", VCPU_STAT(hypercalls) }, |
| { "request_irq", VCPU_STAT(request_irq_exits) }, |
| { "irq_exits", VCPU_STAT(irq_exits) }, |
| { "host_state_reload", VCPU_STAT(host_state_reload) }, |
| { "efer_reload", VCPU_STAT(efer_reload) }, |
| { "fpu_reload", VCPU_STAT(fpu_reload) }, |
| { "insn_emulation", VCPU_STAT(insn_emulation) }, |
| { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, |
| { "irq_injections", VCPU_STAT(irq_injections) }, |
| { "nmi_injections", VCPU_STAT(nmi_injections) }, |
| { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
| { "mmu_pte_write", VM_STAT(mmu_pte_write) }, |
| { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, |
| { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, |
| { "mmu_flooded", VM_STAT(mmu_flooded) }, |
| { "mmu_recycled", VM_STAT(mmu_recycled) }, |
| { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
| { "mmu_unsync", VM_STAT(mmu_unsync) }, |
| { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
| { "largepages", VM_STAT(lpages) }, |
| { NULL } |
| }; |
| |
| static void kvm_on_user_return(struct user_return_notifier *urn) |
| { |
| unsigned slot; |
| struct kvm_shared_msr *global; |
| struct kvm_shared_msrs *locals |
| = container_of(urn, struct kvm_shared_msrs, urn); |
| |
| for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
| global = &shared_msrs_global.msrs[slot]; |
| if (global->value != locals->current_value[slot]) { |
| wrmsrl(global->msr, global->value); |
| locals->current_value[slot] = global->value; |
| } |
| } |
| locals->registered = false; |
| user_return_notifier_unregister(urn); |
| } |
| |
| void kvm_define_shared_msr(unsigned slot, u32 msr) |
| { |
| int cpu; |
| u64 value; |
| |
| if (slot >= shared_msrs_global.nr) |
| shared_msrs_global.nr = slot + 1; |
| shared_msrs_global.msrs[slot].msr = msr; |
| rdmsrl_safe(msr, &value); |
| shared_msrs_global.msrs[slot].value = value; |
| for_each_online_cpu(cpu) |
| per_cpu(shared_msrs, cpu).current_value[slot] = value; |
| } |
| EXPORT_SYMBOL_GPL(kvm_define_shared_msr); |
| |
| static void kvm_shared_msr_cpu_online(void) |
| { |
| unsigned i; |
| struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs); |
| |
| for (i = 0; i < shared_msrs_global.nr; ++i) |
| locals->current_value[i] = shared_msrs_global.msrs[i].value; |
| } |
| |
| void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
| { |
| struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
| |
| if (((value ^ smsr->current_value[slot]) & mask) == 0) |
| return; |
| smsr->current_value[slot] = value; |
| wrmsrl(shared_msrs_global.msrs[slot].msr, value); |
| if (!smsr->registered) { |
| smsr->urn.on_user_return = kvm_on_user_return; |
| user_return_notifier_register(&smsr->urn); |
| smsr->registered = true; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_shared_msr); |
| |
| static void drop_user_return_notifiers(void *ignore) |
| { |
| struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
| |
| if (smsr->registered) |
| kvm_on_user_return(&smsr->urn); |
| } |
| |
| unsigned long segment_base(u16 selector) |
| { |
| struct descriptor_table gdt; |
| struct desc_struct *d; |
| unsigned long table_base; |
| unsigned long v; |
| |
| if (selector == 0) |
| return 0; |
| |
| kvm_get_gdt(&gdt); |
| table_base = gdt.base; |
| |
| if (selector & 4) { /* from ldt */ |
| u16 ldt_selector = kvm_read_ldt(); |
| |
| table_base = segment_base(ldt_selector); |
| } |
| d = (struct desc_struct *)(table_base + (selector & ~7)); |
| v = get_desc_base(d); |
| #ifdef CONFIG_X86_64 |
| if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) |
| v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; |
| #endif |
| return v; |
| } |
| EXPORT_SYMBOL_GPL(segment_base); |
| |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return vcpu->arch.apic_base; |
| else |
| return vcpu->arch.apic_base; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base); |
| |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) |
| { |
| /* TODO: reserve bits check */ |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_base(vcpu, data); |
| else |
| vcpu->arch.apic_base = data; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base); |
| |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| WARN_ON(vcpu->arch.exception.pending); |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.has_error_code = false; |
| vcpu->arch.exception.nr = nr; |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception); |
| |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, |
| u32 error_code) |
| { |
| ++vcpu->stat.pf_guest; |
| |
| if (vcpu->arch.exception.pending) { |
| switch(vcpu->arch.exception.nr) { |
| case DF_VECTOR: |
| /* triple fault -> shutdown */ |
| set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); |
| return; |
| case PF_VECTOR: |
| vcpu->arch.exception.nr = DF_VECTOR; |
| vcpu->arch.exception.error_code = 0; |
| return; |
| default: |
| /* replace previous exception with a new one in a hope |
| that instruction re-execution will regenerate lost |
| exception */ |
| vcpu->arch.exception.pending = false; |
| break; |
| } |
| } |
| vcpu->arch.cr2 = addr; |
| kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); |
| } |
| |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.nmi_pending = 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi); |
| |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| WARN_ON(vcpu->arch.exception.pending); |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.has_error_code = true; |
| vcpu->arch.exception.nr = nr; |
| vcpu->arch.exception.error_code = error_code; |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e); |
| |
| /* |
| * Checks if cpl <= required_cpl; if true, return true. Otherwise queue |
| * a #GP and return false. |
| */ |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) |
| { |
| if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
| return true; |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_require_cpl); |
| |
| /* |
| * Load the pae pdptrs. Return true is they are all valid. |
| */ |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
| int i; |
| int ret; |
| u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; |
| |
| ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, |
| offset * sizeof(u64), sizeof(pdpte)); |
| if (ret < 0) { |
| ret = 0; |
| goto out; |
| } |
| for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
| if (is_present_gpte(pdpte[i]) && |
| (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { |
| ret = 0; |
| goto out; |
| } |
| } |
| ret = 1; |
| |
| memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty); |
| out: |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(load_pdptrs); |
| |
| static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
| { |
| u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; |
| bool changed = true; |
| int r; |
| |
| if (is_long_mode(vcpu) || !is_pae(vcpu)) |
| return false; |
| |
| if (!test_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail)) |
| return true; |
| |
| r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); |
| if (r < 0) |
| goto out; |
| changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; |
| out: |
| |
| return changed; |
| } |
| |
| void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| if (cr0 & CR0_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", |
| cr0, vcpu->arch.cr0); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { |
| printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { |
| printk(KERN_DEBUG "set_cr0: #GP, set PG flag " |
| "and a clear PE flag\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->arch.shadow_efer & EFER_LME)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while PAE is disabled\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| if (cs_l) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while CS.L == 1\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| |
| } |
| } else |
| #endif |
| if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { |
| printk(KERN_DEBUG "set_cr0: #GP, pdptrs " |
| "reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| } |
| |
| kvm_x86_ops->set_cr0(vcpu, cr0); |
| vcpu->arch.cr0 = cr0; |
| |
| kvm_mmu_reset_context(vcpu); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr0); |
| |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lmsw); |
| |
| void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long old_cr4 = vcpu->arch.cr4; |
| unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE; |
| |
| if (cr4 & CR4_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & X86_CR4_PAE)) { |
| printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " |
| "in long mode\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
| && ((cr4 ^ old_cr4) & pdptr_bits) |
| && !load_pdptrs(vcpu, vcpu->arch.cr3)) { |
| printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if (cr4 & X86_CR4_VMXE) { |
| printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| kvm_x86_ops->set_cr4(vcpu, cr4); |
| vcpu->arch.cr4 = cr4; |
| vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled; |
| kvm_mmu_reset_context(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr4); |
| |
| void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { |
| kvm_mmu_sync_roots(vcpu); |
| kvm_mmu_flush_tlb(vcpu); |
| return; |
| } |
| |
| if (is_long_mode(vcpu)) { |
| if (cr3 & CR3_L_MODE_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| } else { |
| if (is_pae(vcpu)) { |
| if (cr3 & CR3_PAE_RESERVED_BITS) { |
| printk(KERN_DEBUG |
| "set_cr3: #GP, reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { |
| printk(KERN_DEBUG "set_cr3: #GP, pdptrs " |
| "reserved bits\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| } |
| /* |
| * We don't check reserved bits in nonpae mode, because |
| * this isn't enforced, and VMware depends on this. |
| */ |
| } |
| |
| /* |
| * Does the new cr3 value map to physical memory? (Note, we |
| * catch an invalid cr3 even in real-mode, because it would |
| * cause trouble later on when we turn on paging anyway.) |
| * |
| * A real CPU would silently accept an invalid cr3 and would |
| * attempt to use it - with largely undefined (and often hard |
| * to debug) behavior on the guest side. |
| */ |
| if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) |
| kvm_inject_gp(vcpu, 0); |
| else { |
| vcpu->arch.cr3 = cr3; |
| vcpu->arch.mmu.new_cr3(vcpu); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr3); |
| |
| void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (cr8 & CR8_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_tpr(vcpu, cr8); |
| else |
| vcpu->arch.cr8 = cr8; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr8); |
| |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return kvm_lapic_get_cr8(vcpu); |
| else |
| return vcpu->arch.cr8; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cr8); |
| |
| static inline u32 bit(int bitno) |
| { |
| return 1 << (bitno & 31); |
| } |
| |
| /* |
| * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
| * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
| * |
| * This list is modified at module load time to reflect the |
| * capabilities of the host cpu. This capabilities test skips MSRs that are |
| * kvm-specific. Those are put in the beginning of the list. |
| */ |
| |
| #define KVM_SAVE_MSRS_BEGIN 2 |
| static u32 msrs_to_save[] = { |
| MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_K6_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
| }; |
| |
| static unsigned num_msrs_to_save; |
| |
| static u32 emulated_msrs[] = { |
| MSR_IA32_MISC_ENABLE, |
| }; |
| |
| static void set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & efer_reserved_bits) { |
| printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", |
| efer); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if (is_paging(vcpu) |
| && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) { |
| printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| |
| if (efer & EFER_FFXSR) { |
| struct kvm_cpuid_entry2 *feat; |
| |
| feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
| if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) { |
| printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| } |
| |
| if (efer & EFER_SVME) { |
| struct kvm_cpuid_entry2 *feat; |
| |
| feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
| if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) { |
| printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n"); |
| kvm_inject_gp(vcpu, 0); |
| return; |
| } |
| } |
| |
| kvm_x86_ops->set_efer(vcpu, efer); |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->arch.shadow_efer & EFER_LMA; |
| |
| vcpu->arch.shadow_efer = efer; |
| |
| vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; |
| kvm_mmu_reset_context(vcpu); |
| } |
| |
| void kvm_enable_efer_bits(u64 mask) |
| { |
| efer_reserved_bits &= ~mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); |
| |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| return kvm_x86_ops->set_msr(vcpu, msr_index, data); |
| } |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| return kvm_set_msr(vcpu, index, *data); |
| } |
| |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
| { |
| static int version; |
| struct pvclock_wall_clock wc; |
| struct timespec now, sys, boot; |
| |
| if (!wall_clock) |
| return; |
| |
| version++; |
| |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| |
| /* |
| * The guest calculates current wall clock time by adding |
| * system time (updated by kvm_write_guest_time below) to the |
| * wall clock specified here. guest system time equals host |
| * system time for us, thus we must fill in host boot time here. |
| */ |
| now = current_kernel_time(); |
| ktime_get_ts(&sys); |
| boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys)); |
| |
| wc.sec = boot.tv_sec; |
| wc.nsec = boot.tv_nsec; |
| wc.version = version; |
| |
| kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); |
| |
| version++; |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| } |
| |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
| { |
| uint32_t quotient, remainder; |
| |
| /* Don't try to replace with do_div(), this one calculates |
| * "(dividend << 32) / divisor" */ |
| __asm__ ( "divl %4" |
| : "=a" (quotient), "=d" (remainder) |
| : "0" (0), "1" (dividend), "r" (divisor) ); |
| return quotient; |
| } |
| |
| static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) |
| { |
| uint64_t nsecs = 1000000000LL; |
| int32_t shift = 0; |
| uint64_t tps64; |
| uint32_t tps32; |
| |
| tps64 = tsc_khz * 1000LL; |
| while (tps64 > nsecs*2) { |
| tps64 >>= 1; |
| shift--; |
| } |
| |
| tps32 = (uint32_t)tps64; |
| while (tps32 <= (uint32_t)nsecs) { |
| tps32 <<= 1; |
| shift++; |
| } |
| |
| hv_clock->tsc_shift = shift; |
| hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); |
| |
| pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", |
| __func__, tsc_khz, hv_clock->tsc_shift, |
| hv_clock->tsc_to_system_mul); |
| } |
| |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
| |
| static void kvm_write_guest_time(struct kvm_vcpu *v) |
| { |
| struct timespec ts; |
| unsigned long flags; |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| void *shared_kaddr; |
| unsigned long this_tsc_khz; |
| |
| if ((!vcpu->time_page)) |
| return; |
| |
| this_tsc_khz = get_cpu_var(cpu_tsc_khz); |
| if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) { |
| kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock); |
| vcpu->hv_clock_tsc_khz = this_tsc_khz; |
| } |
| put_cpu_var(cpu_tsc_khz); |
| |
| /* Keep irq disabled to prevent changes to the clock */ |
| local_irq_save(flags); |
| kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp); |
| ktime_get_ts(&ts); |
| local_irq_restore(flags); |
| |
| /* With all the info we got, fill in the values */ |
| |
| vcpu->hv_clock.system_time = ts.tv_nsec + |
| (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset; |
| |
| /* |
| * The interface expects us to write an even number signaling that the |
| * update is finished. Since the guest won't see the intermediate |
| * state, we just increase by 2 at the end. |
| */ |
| vcpu->hv_clock.version += 2; |
| |
| shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); |
| |
| memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, |
| sizeof(vcpu->hv_clock)); |
| |
| kunmap_atomic(shared_kaddr, KM_USER0); |
| |
| mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); |
| } |
| |
| static int kvm_request_guest_time_update(struct kvm_vcpu *v) |
| { |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| |
| if (!vcpu->time_page) |
| return 0; |
| set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests); |
| return 1; |
| } |
| |
| static bool msr_mtrr_valid(unsigned msr) |
| { |
| switch (msr) { |
| case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: |
| case MSR_MTRRfix64K_00000: |
| case MSR_MTRRfix16K_80000: |
| case MSR_MTRRfix16K_A0000: |
| case MSR_MTRRfix4K_C0000: |
| case MSR_MTRRfix4K_C8000: |
| case MSR_MTRRfix4K_D0000: |
| case MSR_MTRRfix4K_D8000: |
| case MSR_MTRRfix4K_E0000: |
| case MSR_MTRRfix4K_E8000: |
| case MSR_MTRRfix4K_F0000: |
| case MSR_MTRRfix4K_F8000: |
| case MSR_MTRRdefType: |
| case MSR_IA32_CR_PAT: |
| return true; |
| case 0x2f8: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool valid_pat_type(unsigned t) |
| { |
| return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ |
| } |
| |
| static bool valid_mtrr_type(unsigned t) |
| { |
| return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ |
| } |
| |
| static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| int i; |
| |
| if (!msr_mtrr_valid(msr)) |
| return false; |
| |
| if (msr == MSR_IA32_CR_PAT) { |
| for (i = 0; i < 8; i++) |
| if (!valid_pat_type((data >> (i * 8)) & 0xff)) |
| return false; |
| return true; |
| } else if (msr == MSR_MTRRdefType) { |
| if (data & ~0xcff) |
| return false; |
| return valid_mtrr_type(data & 0xff); |
| } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { |
| for (i = 0; i < 8 ; i++) |
| if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) |
| return false; |
| return true; |
| } |
| |
| /* variable MTRRs */ |
| return valid_mtrr_type(data & 0xff); |
| } |
| |
| static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
| |
| if (!mtrr_valid(vcpu, msr, data)) |
| return 1; |
| |
| if (msr == MSR_MTRRdefType) { |
| vcpu->arch.mtrr_state.def_type = data; |
| vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; |
| } else if (msr == MSR_MTRRfix64K_00000) |
| p[0] = data; |
| else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
| p[1 + msr - MSR_MTRRfix16K_80000] = data; |
| else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
| p[3 + msr - MSR_MTRRfix4K_C0000] = data; |
| else if (msr == MSR_IA32_CR_PAT) |
| vcpu->arch.pat = data; |
| else { /* Variable MTRRs */ |
| int idx, is_mtrr_mask; |
| u64 *pt; |
| |
| idx = (msr - 0x200) / 2; |
| is_mtrr_mask = msr - 0x200 - 2 * idx; |
| if (!is_mtrr_mask) |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
| else |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
| *pt = data; |
| } |
| |
| kvm_mmu_reset_context(vcpu); |
| return 0; |
| } |
| |
| static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| |
| switch (msr) { |
| case MSR_IA32_MCG_STATUS: |
| vcpu->arch.mcg_status = data; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| if (data != 0 && data != ~(u64)0) |
| return -1; |
| vcpu->arch.mcg_ctl = data; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| /* only 0 or all 1s can be written to IA32_MCi_CTL */ |
| if ((offset & 0x3) == 0 && |
| data != 0 && data != ~(u64)0) |
| return -1; |
| vcpu->arch.mce_banks[offset] = data; |
| break; |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int lm = is_long_mode(vcpu); |
| u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 |
| : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; |
| u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 |
| : kvm->arch.xen_hvm_config.blob_size_32; |
| u32 page_num = data & ~PAGE_MASK; |
| u64 page_addr = data & PAGE_MASK; |
| u8 *page; |
| int r; |
| |
| r = -E2BIG; |
| if (page_num >= blob_size) |
| goto out; |
| r = -ENOMEM; |
| page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!page) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE)) |
| goto out_free; |
| if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) |
| goto out_free; |
| r = 0; |
| out_free: |
| kfree(page); |
| out: |
| return r; |
| } |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| switch (msr) { |
| case MSR_EFER: |
| set_efer(vcpu, data); |
| break; |
| case MSR_K7_HWCR: |
| data &= ~(u64)0x40; /* ignore flush filter disable */ |
| if (data != 0) { |
| pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
| data); |
| return 1; |
| } |
| break; |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| if (data != 0) { |
| pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
| "0x%llx\n", data); |
| return 1; |
| } |
| break; |
| case MSR_AMD64_NB_CFG: |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| if (!data) { |
| /* We support the non-activated case already */ |
| break; |
| } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { |
| /* Values other than LBR and BTF are vendor-specific, |
| thus reserved and should throw a #GP */ |
| return 1; |
| } |
| pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
| __func__, data); |
| break; |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_UCODE_WRITE: |
| case MSR_VM_HSAVE_PA: |
| case MSR_AMD64_PATCH_LOADER: |
| break; |
| case 0x200 ... 0x2ff: |
| return set_msr_mtrr(vcpu, msr, data); |
| case MSR_IA32_APICBASE: |
| kvm_set_apic_base(vcpu, data); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_write(vcpu, msr, data); |
| case MSR_IA32_MISC_ENABLE: |
| vcpu->arch.ia32_misc_enable_msr = data; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| vcpu->kvm->arch.wall_clock = data; |
| kvm_write_wall_clock(vcpu->kvm, data); |
| break; |
| case MSR_KVM_SYSTEM_TIME: { |
| if (vcpu->arch.time_page) { |
| kvm_release_page_dirty(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| |
| vcpu->arch.time = data; |
| |
| /* we verify if the enable bit is set... */ |
| if (!(data & 1)) |
| break; |
| |
| /* ...but clean it before doing the actual write */ |
| vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); |
| |
| vcpu->arch.time_page = |
| gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); |
| |
| if (is_error_page(vcpu->arch.time_page)) { |
| kvm_release_page_clean(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| |
| kvm_request_guest_time_update(vcpu); |
| break; |
| } |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
| return set_msr_mce(vcpu, msr, data); |
| |
| /* Performance counters are not protected by a CPUID bit, |
| * so we should check all of them in the generic path for the sake of |
| * cross vendor migration. |
| * Writing a zero into the event select MSRs disables them, |
| * which we perfectly emulate ;-). Any other value should be at least |
| * reported, some guests depend on them. |
| */ |
| case MSR_P6_EVNTSEL0: |
| case MSR_P6_EVNTSEL1: |
| case MSR_K7_EVNTSEL0: |
| case MSR_K7_EVNTSEL1: |
| case MSR_K7_EVNTSEL2: |
| case MSR_K7_EVNTSEL3: |
| if (data != 0) |
| pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
| "0x%x data 0x%llx\n", msr, data); |
| break; |
| /* at least RHEL 4 unconditionally writes to the perfctr registers, |
| * so we ignore writes to make it happy. |
| */ |
| case MSR_P6_PERFCTR0: |
| case MSR_P6_PERFCTR1: |
| case MSR_K7_PERFCTR0: |
| case MSR_K7_PERFCTR1: |
| case MSR_K7_PERFCTR2: |
| case MSR_K7_PERFCTR3: |
| pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
| "0x%x data 0x%llx\n", msr, data); |
| break; |
| default: |
| if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
| return xen_hvm_config(vcpu, data); |
| if (!ignore_msrs) { |
| pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", |
| msr, data); |
| return 1; |
| } else { |
| pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", |
| msr, data); |
| break; |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); |
| } |
| |
| static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
| |
| if (!msr_mtrr_valid(msr)) |
| return 1; |
| |
| if (msr == MSR_MTRRdefType) |
| *pdata = vcpu->arch.mtrr_state.def_type + |
| (vcpu->arch.mtrr_state.enabled << 10); |
| else if (msr == MSR_MTRRfix64K_00000) |
| *pdata = p[0]; |
| else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
| *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; |
| else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
| *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; |
| else if (msr == MSR_IA32_CR_PAT) |
| *pdata = vcpu->arch.pat; |
| else { /* Variable MTRRs */ |
| int idx, is_mtrr_mask; |
| u64 *pt; |
| |
| idx = (msr - 0x200) / 2; |
| is_mtrr_mask = msr - 0x200 - 2 * idx; |
| if (!is_mtrr_mask) |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
| else |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
| *pdata = *pt; |
| } |
| |
| return 0; |
| } |
| |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| |
| switch (msr) { |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| data = 0; |
| break; |
| case MSR_IA32_MCG_CAP: |
| data = vcpu->arch.mcg_cap; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| data = vcpu->arch.mcg_ctl; |
| break; |
| case MSR_IA32_MCG_STATUS: |
| data = vcpu->arch.mcg_status; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| data = vcpu->arch.mce_banks[offset]; |
| break; |
| } |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| |
| switch (msr) { |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_EBL_CR_POWERON: |
| case MSR_IA32_DEBUGCTLMSR: |
| case MSR_IA32_LASTBRANCHFROMIP: |
| case MSR_IA32_LASTBRANCHTOIP: |
| case MSR_IA32_LASTINTFROMIP: |
| case MSR_IA32_LASTINTTOIP: |
| case MSR_K8_SYSCFG: |
| case MSR_K7_HWCR: |
| case MSR_VM_HSAVE_PA: |
| case MSR_P6_PERFCTR0: |
| case MSR_P6_PERFCTR1: |
| case MSR_P6_EVNTSEL0: |
| case MSR_P6_EVNTSEL1: |
| case MSR_K7_EVNTSEL0: |
| case MSR_K7_PERFCTR0: |
| case MSR_K8_INT_PENDING_MSG: |
| case MSR_AMD64_NB_CFG: |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| data = 0; |
| break; |
| case MSR_MTRRcap: |
| data = 0x500 | KVM_NR_VAR_MTRR; |
| break; |
| case 0x200 ... 0x2ff: |
| return get_msr_mtrr(vcpu, msr, pdata); |
| case 0xcd: /* fsb frequency */ |
| data = 3; |
| break; |
| case MSR_IA32_APICBASE: |
| data = kvm_get_apic_base(vcpu); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_read(vcpu, msr, pdata); |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| data = vcpu->arch.ia32_misc_enable_msr; |
| break; |
| case MSR_IA32_PERF_STATUS: |
| /* TSC increment by tick */ |
| data = 1000ULL; |
| /* CPU multiplier */ |
| data |= (((uint64_t)4ULL) << 40); |
| break; |
| case MSR_EFER: |
| data = vcpu->arch.shadow_efer; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| data = vcpu->kvm->arch.wall_clock; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| data = vcpu->arch.time; |
| break; |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
| return get_msr_mce(vcpu, msr, pdata); |
| default: |
| if (!ignore_msrs) { |
| pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } else { |
| pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); |
| data = 0; |
| } |
| break; |
| } |
| *pdata = data; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i; |
| |
| vcpu_load(vcpu); |
| |
| down_read(&vcpu->kvm->slots_lock); |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| up_read(&vcpu->kvm->slots_lock); |
| |
| vcpu_put(vcpu); |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| int r, n; |
| unsigned size; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| r = -ENOMEM; |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = vmalloc(size); |
| if (!entries) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_from_user(entries, user_msrs->entries, size)) |
| goto out_free; |
| |
| r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
| if (r < 0) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| goto out_free; |
| |
| r = n; |
| |
| out_free: |
| vfree(entries); |
| out: |
| return r; |
| } |
| |
| int kvm_dev_ioctl_check_extension(long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_SET_TSS_ADDR: |
| case KVM_CAP_EXT_CPUID: |
| case KVM_CAP_CLOCKSOURCE: |
| case KVM_CAP_PIT: |
| case KVM_CAP_NOP_IO_DELAY: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_REINJECT_CONTROL: |
| case KVM_CAP_IRQ_INJECT_STATUS: |
| case KVM_CAP_ASSIGN_DEV_IRQ: |
| case KVM_CAP_IRQFD: |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_PIT2: |
| case KVM_CAP_PIT_STATE2: |
| case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
| case KVM_CAP_XEN_HVM: |
| case KVM_CAP_ADJUST_CLOCK: |
| case KVM_CAP_VCPU_EVENTS: |
| r = 1; |
| break; |
| case KVM_CAP_COALESCED_MMIO: |
| r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
| break; |
| case KVM_CAP_VAPIC: |
| r = !kvm_x86_ops->cpu_has_accelerated_tpr(); |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| case KVM_CAP_NR_MEMSLOTS: |
| r = KVM_MEMORY_SLOTS; |
| break; |
| case KVM_CAP_PV_MMU: /* obsolete */ |
| r = 0; |
| break; |
| case KVM_CAP_IOMMU: |
| r = iommu_found(); |
| break; |
| case KVM_CAP_MCE: |
| r = KVM_MAX_MCE_BANKS; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); |
| if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
| &emulated_msrs, |
| ARRAY_SIZE(emulated_msrs) * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SUPPORTED_CPUID: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
| u64 mce_cap; |
| |
| mce_cap = KVM_MCE_CAP_SUPPORTED; |
| r = -EFAULT; |
| if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) |
| goto out; |
| r = 0; |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| kvm_x86_ops->vcpu_load(vcpu, cpu); |
| if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) { |
| unsigned long khz = cpufreq_quick_get(cpu); |
| if (!khz) |
| khz = tsc_khz; |
| per_cpu(cpu_tsc_khz, cpu) = khz; |
| } |
| kvm_request_guest_time_update(vcpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->vcpu_put(vcpu); |
| kvm_put_guest_fpu(vcpu); |
| } |
| |
| static int is_efer_nx(void) |
| { |
| unsigned long long efer = 0; |
| |
| rdmsrl_safe(MSR_EFER, &efer); |
| return efer & EFER_NX; |
| } |
| |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *e, *entry; |
| |
| entry = NULL; |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (e->function == 0x80000001) { |
| entry = e; |
| break; |
| } |
| } |
| if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { |
| entry->edx &= ~(1 << 20); |
| printk(KERN_INFO "kvm: guest NX capability removed\n"); |
| } |
| } |
| |
| /* when an old userspace process fills a new kernel module */ |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r, i; |
| struct kvm_cpuid_entry *cpuid_entries; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -ENOMEM; |
| cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); |
| if (!cpuid_entries) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry))) |
| goto out_free; |
| for (i = 0; i < cpuid->nent; i++) { |
| vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; |
| vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; |
| vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; |
| vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; |
| vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; |
| vcpu->arch.cpuid_entries[i].index = 0; |
| vcpu->arch.cpuid_entries[i].flags = 0; |
| vcpu->arch.cpuid_entries[i].padding[0] = 0; |
| vcpu->arch.cpuid_entries[i].padding[1] = 0; |
| vcpu->arch.cpuid_entries[i].padding[2] = 0; |
| } |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| cpuid_fix_nx_cap(vcpu); |
| r = 0; |
| kvm_apic_set_version(vcpu); |
| |
| out_free: |
| vfree(cpuid_entries); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&vcpu->arch.cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| kvm_apic_set_version(vcpu); |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent < vcpu->arch.cpuid_nent) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(entries, &vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| return 0; |
| |
| out: |
| cpuid->nent = vcpu->arch.cpuid_nent; |
| return r; |
| } |
| |
| static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, |
| u32 index) |
| { |
| entry->function = function; |
| entry->index = index; |
| cpuid_count(entry->function, entry->index, |
| &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); |
| entry->flags = 0; |
| } |
| |
| #define F(x) bit(X86_FEATURE_##x) |
| |
| static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, |
| u32 index, int *nent, int maxnent) |
| { |
| unsigned f_nx = is_efer_nx() ? F(NX) : 0; |
| unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0; |
| #ifdef CONFIG_X86_64 |
| unsigned f_lm = F(LM); |
| #else |
| unsigned f_lm = 0; |
| #endif |
| |
| /* cpuid 1.edx */ |
| const u32 kvm_supported_word0_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) | |
| 0 /* Reserved, DS, ACPI */ | F(MMX) | |
| F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | |
| 0 /* HTT, TM, Reserved, PBE */; |
| /* cpuid 0x80000001.edx */ |
| const u32 kvm_supported_word1_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* Reserved */ | |
| f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | |
| F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ | |
| 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); |
| /* cpuid 1.ecx */ |
| const u32 kvm_supported_word4_x86_features = |
| F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ | |
| 0 /* DS-CPL, VMX, SMX, EST */ | |
| 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | |
| 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ | |
| 0 /* Reserved, DCA */ | F(XMM4_1) | |
| F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | |
| 0 /* Reserved, XSAVE, OSXSAVE */; |
| /* cpuid 0x80000001.ecx */ |
| const u32 kvm_supported_word6_x86_features = |
| F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ | |
| F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | |
| F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) | |
| 0 /* SKINIT */ | 0 /* WDT */; |
| |
| /* all calls to cpuid_count() should be made on the same cpu */ |
| get_cpu(); |
| do_cpuid_1_ent(entry, function, index); |
| ++*nent; |
| |
| switch (function) { |
| case 0: |
| entry->eax = min(entry->eax, (u32)0xb); |
| break; |
| case 1: |
| entry->edx &= kvm_supported_word0_x86_features; |
| entry->ecx &= kvm_supported_word4_x86_features; |
| /* we support x2apic emulation even if host does not support |
| * it since we emulate x2apic in software */ |
| entry->ecx |= F(X2APIC); |
| break; |
| /* function 2 entries are STATEFUL. That is, repeated cpuid commands |
| * may return different values. This forces us to get_cpu() before |
| * issuing the first command, and also to emulate this annoying behavior |
| * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ |
| case 2: { |
| int t, times = entry->eax & 0xff; |
| |
| entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; |
| entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| for (t = 1; t < times && *nent < maxnent; ++t) { |
| do_cpuid_1_ent(&entry[t], function, 0); |
| entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; |
| ++*nent; |
| } |
| break; |
| } |
| /* function 4 and 0xb have additional index. */ |
| case 4: { |
| int i, cache_type; |
| |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| /* read more entries until cache_type is zero */ |
| for (i = 1; *nent < maxnent; ++i) { |
| cache_type = entry[i - 1].eax & 0x1f; |
| if (!cache_type) |
| break; |
| do_cpuid_1_ent(&entry[i], function, i); |
| entry[i].flags |= |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| ++*nent; |
| } |
| break; |
| } |
| case 0xb: { |
| int i, level_type; |
| |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| /* read more entries until level_type is zero */ |
| for (i = 1; *nent < maxnent; ++i) { |
| level_type = entry[i - 1].ecx & 0xff00; |
| if (!level_type) |
| break; |
| do_cpuid_1_ent(&entry[i], function, i); |
| entry[i].flags |= |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| ++*nent; |
| } |
| break; |
| } |
| case 0x80000000: |
| entry->eax = min(entry->eax, 0x8000001a); |
| break; |
| case 0x80000001: |
| entry->edx &= kvm_supported_word1_x86_features; |
| entry->ecx &= kvm_supported_word6_x86_features; |
| break; |
| } |
| put_cpu(); |
| } |
| |
| #undef F |
| |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| struct kvm_cpuid_entry2 *cpuid_entries; |
| int limit, nent = 0, r = -E2BIG; |
| u32 func; |
| |
| if (cpuid->nent < 1) |
| goto out; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| cpuid->nent = KVM_MAX_CPUID_ENTRIES; |
| r = -ENOMEM; |
| cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); |
| if (!cpuid_entries) |
| goto out; |
| |
| do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); |
| limit = cpuid_entries[0].eax; |
| for (func = 1; func <= limit && nent < cpuid->nent; ++func) |
| do_cpuid_ent(&cpuid_entries[nent], func, 0, |
| &nent, cpuid->nent); |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); |
| limit = cpuid_entries[nent - 1].eax; |
| for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) |
| do_cpuid_ent(&cpuid_entries[nent], func, 0, |
| &nent, cpuid->nent); |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (copy_to_user(entries, cpuid_entries, |
| nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out_free; |
| cpuid->nent = nent; |
| r = 0; |
| |
| out_free: |
| vfree(cpuid_entries); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| vcpu_load(vcpu); |
| memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| vcpu_load(vcpu); |
| memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); |
| kvm_apic_post_state_restore(vcpu); |
| update_cr8_intercept(vcpu); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq < 0 || irq->irq >= 256) |
| return -EINVAL; |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return -ENXIO; |
| vcpu_load(vcpu); |
| |
| kvm_queue_interrupt(vcpu, irq->irq, false); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_inject_nmi(vcpu); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
| struct kvm_tpr_access_ctl *tac) |
| { |
| if (tac->flags) |
| return -EINVAL; |
| vcpu->arch.tpr_access_reporting = !!tac->enabled; |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
| u64 mcg_cap) |
| { |
| int r; |
| unsigned bank_num = mcg_cap & 0xff, bank; |
| |
| r = -EINVAL; |
| if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
| goto out; |
| if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) |
| goto out; |
| r = 0; |
| vcpu->arch.mcg_cap = mcg_cap; |
| /* Init IA32_MCG_CTL to all 1s */ |
| if (mcg_cap & MCG_CTL_P) |
| vcpu->arch.mcg_ctl = ~(u64)0; |
| /* Init IA32_MCi_CTL to all 1s */ |
| for (bank = 0; bank < bank_num; bank++) |
| vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
| struct kvm_x86_mce *mce) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u64 *banks = vcpu->arch.mce_banks; |
| |
| if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) |
| return -EINVAL; |
| /* |
| * if IA32_MCG_CTL is not all 1s, the uncorrected error |
| * reporting is disabled |
| */ |
| if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && |
| vcpu->arch.mcg_ctl != ~(u64)0) |
| return 0; |
| banks += 4 * mce->bank; |
| /* |
| * if IA32_MCi_CTL is not all 1s, the uncorrected error |
| * reporting is disabled for the bank |
| */ |
| if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) |
| return 0; |
| if (mce->status & MCI_STATUS_UC) { |
| if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || |
| !(vcpu->arch.cr4 & X86_CR4_MCE)) { |
| printk(KERN_DEBUG "kvm: set_mce: " |
| "injects mce exception while " |
| "previous one is in progress!\n"); |
| set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); |
| return 0; |
| } |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| vcpu->arch.mcg_status = mce->mcg_status; |
| banks[1] = mce->status; |
| kvm_queue_exception(vcpu, MC_VECTOR); |
| } else if (!(banks[1] & MCI_STATUS_VAL) |
| || !(banks[1] & MCI_STATUS_UC)) { |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| banks[1] = mce->status; |
| } else |
| banks[1] |= MCI_STATUS_OVER; |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| vcpu_load(vcpu); |
| |
| events->exception.injected = vcpu->arch.exception.pending; |
| events->exception.nr = vcpu->arch.exception.nr; |
| events->exception.has_error_code = vcpu->arch.exception.has_error_code; |
| events->exception.error_code = vcpu->arch.exception.error_code; |
| |
| events->interrupt.injected = vcpu->arch.interrupt.pending; |
| events->interrupt.nr = vcpu->arch.interrupt.nr; |
| events->interrupt.soft = vcpu->arch.interrupt.soft; |
| |
| events->nmi.injected = vcpu->arch.nmi_injected; |
| events->nmi.pending = vcpu->arch.nmi_pending; |
| events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
| |
| events->sipi_vector = vcpu->arch.sipi_vector; |
| |
| events->flags = 0; |
| |
| vcpu_put(vcpu); |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| if (events->flags) |
| return -EINVAL; |
| |
| vcpu_load(vcpu); |
| |
| vcpu->arch.exception.pending = events->exception.injected; |
| vcpu->arch.exception.nr = events->exception.nr; |
| vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
| vcpu->arch.exception.error_code = events->exception.error_code; |
| |
| vcpu->arch.interrupt.pending = events->interrupt.injected; |
| vcpu->arch.interrupt.nr = events->interrupt.nr; |
| vcpu->arch.interrupt.soft = events->interrupt.soft; |
| if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm)) |
| kvm_pic_clear_isr_ack(vcpu->kvm); |
| |
| vcpu->arch.nmi_injected = events->nmi.injected; |
| vcpu->arch.nmi_pending = events->nmi.pending; |
| kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
| |
| vcpu->arch.sipi_vector = events->sipi_vector; |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| struct kvm_lapic_state *lapic = NULL; |
| |
| switch (ioctl) { |
| case KVM_GET_LAPIC: { |
| r = -EINVAL; |
| if (!vcpu->arch.apic) |
| goto out; |
| lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!lapic) |
| goto out; |
| r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_LAPIC: { |
| r = -EINVAL; |
| if (!vcpu->arch.apic) |
| goto out; |
| lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!lapic) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof irq)) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_NMI: { |
| r = kvm_vcpu_ioctl_nmi(vcpu); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(vcpu, argp, kvm_get_msr, 1); |
| break; |
| case KVM_SET_MSRS: |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| break; |
| case KVM_TPR_ACCESS_REPORTING: { |
| struct kvm_tpr_access_ctl tac; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tac, argp, sizeof tac)) |
| goto out; |
| r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tac, sizeof tac)) |
| goto out; |
| r = 0; |
| break; |
| }; |
| case KVM_SET_VAPIC_ADDR: { |
| struct kvm_vapic_addr va; |
| |
| r = -EINVAL; |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&va, argp, sizeof va)) |
| goto out; |
| r = 0; |
| kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
| break; |
| } |
| case KVM_X86_SETUP_MCE: { |
| u64 mcg_cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); |
| break; |
| } |
| case KVM_X86_SET_MCE: { |
| struct kvm_x86_mce mce; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mce, argp, sizeof mce)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| r = -EFAULT; |
| if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| kfree(lapic); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
| { |
| int ret; |
| |
| if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
| return -1; |
| ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
| return ret; |
| } |
| |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
| u64 ident_addr) |
| { |
| kvm->arch.ept_identity_map_addr = ident_addr; |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
| u32 kvm_nr_mmu_pages) |
| { |
| if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
| return -EINVAL; |
| |
| down_write(&kvm->slots_lock); |
| spin_lock(&kvm->mmu_lock); |
| |
| kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
| kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
| |
| spin_unlock(&kvm->mmu_lock); |
| up_write(&kvm->slots_lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
| { |
| return kvm->arch.n_alloc_mmu_pages; |
| } |
| |
| gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| struct kvm_mem_alias *alias; |
| |
| for (i = 0; i < kvm->arch.naliases; ++i) { |
| alias = &kvm->arch.aliases[i]; |
| if (gfn >= alias->base_gfn |
| && gfn < alias->base_gfn + alias->npages) |
| return alias->target_gfn + gfn - alias->base_gfn; |
| } |
| return gfn; |
| } |
| |
| /* |
| * Set a new alias region. Aliases map a portion of physical memory into |
| * another portion. This is useful for memory windows, for example the PC |
| * VGA region. |
| */ |
| static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, |
| struct kvm_memory_alias *alias) |
| { |
| int r, n; |
| struct kvm_mem_alias *p; |
| |
| r = -EINVAL; |
| /* General sanity checks */ |
| if (alias->memory_size & (PAGE_SIZE - 1)) |
| goto out; |
| if (alias->guest_phys_addr & (PAGE_SIZE - 1)) |
| goto out; |
| if (alias->slot >= KVM_ALIAS_SLOTS) |
| goto out; |
| if (alias->guest_phys_addr + alias->memory_size |
| < alias->guest_phys_addr) |
| goto out; |
| if (alias->target_phys_addr + alias->memory_size |
| < alias->target_phys_addr) |
| goto out; |
| |
| down_write(&kvm->slots_lock); |
| spin_lock(&kvm->mmu_lock); |
| |
| p = &kvm->arch.aliases[alias->slot]; |
| p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; |
| p->npages = alias->memory_size >> PAGE_SHIFT; |
| p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; |
| |
| for (n = KVM_ALIAS_SLOTS; n > 0; --n) |
| if (kvm->arch.aliases[n - 1].npages) |
| break; |
| kvm->arch.naliases = n; |
| |
| spin_unlock(&kvm->mmu_lock); |
| kvm_mmu_zap_all(kvm); |
| |
| up_write(&kvm->slots_lock); |
| |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[0], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[1], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| r = kvm_get_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| spin_lock(&pic_irqchip(kvm)->lock); |
| memcpy(&pic_irqchip(kvm)->pics[0], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic_irqchip(kvm)->lock); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| spin_lock(&pic_irqchip(kvm)->lock); |
| memcpy(&pic_irqchip(kvm)->pics[1], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic_irqchip(kvm)->lock); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| kvm_pic_update_irq(pic_irqchip(kvm)); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); |
| kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, |
| sizeof(ps->channels)); |
| ps->flags = kvm->arch.vpit->pit_state.flags; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int r = 0, start = 0; |
| u32 prev_legacy, cur_legacy; |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| if (!prev_legacy && cur_legacy) |
| start = 1; |
| memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, |
| sizeof(kvm->arch.vpit->pit_state.channels)); |
| kvm->arch.vpit->pit_state.flags = ps->flags; |
| kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
| struct kvm_reinject_control *control) |
| { |
| if (!kvm->arch.vpit) |
| return -ENXIO; |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return 0; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| int r; |
| int n; |
| struct kvm_memory_slot *memslot; |
| int is_dirty = 0; |
| |
| down_write(&kvm->slots_lock); |
| |
| r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| if (r) |
| goto out; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (is_dirty) { |
| spin_lock(&kvm->mmu_lock); |
| kvm_mmu_slot_remove_write_access(kvm, log->slot); |
| spin_unlock(&kvm->mmu_lock); |
| memslot = &kvm->memslots[log->slot]; |
| n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| memset(memslot->dirty_bitmap, 0, n); |
| } |
| r = 0; |
| out: |
| up_write(&kvm->slots_lock); |
| return r; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -ENOTTY; |
| /* |
| * This union makes it completely explicit to gcc-3.x |
| * that these two variables' stack usage should be |
| * combined, not added together. |
| */ |
| union { |
| struct kvm_pit_state ps; |
| struct kvm_pit_state2 ps2; |
| struct kvm_memory_alias alias; |
| struct kvm_pit_config pit_config; |
| } u; |
| |
| switch (ioctl) { |
| case KVM_SET_TSS_ADDR: |
| r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
| if (r < 0) |
| goto out; |
| break; |
| case KVM_SET_IDENTITY_MAP_ADDR: { |
| u64 ident_addr; |
| |
| r = -EFAULT; |
| if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) |
| goto out; |
| r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
| if (r < 0) |
| goto out; |
| break; |
| } |
| case KVM_SET_MEMORY_REGION: { |
| struct kvm_memory_region kvm_mem; |
| struct kvm_userspace_memory_region kvm_userspace_mem; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) |
| goto out; |
| kvm_userspace_mem.slot = kvm_mem.slot; |
| kvm_userspace_mem.flags = kvm_mem.flags; |
| kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; |
| kvm_userspace_mem.memory_size = kvm_mem.memory_size; |
| r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
| if (r) |
| goto out; |
| break; |
| case KVM_GET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); |
| break; |
| case KVM_SET_MEMORY_ALIAS: |
| r = -EFAULT; |
| if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias))) |
| goto out; |
| r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias); |
| if (r) |
| goto out; |
| break; |
| case KVM_CREATE_IRQCHIP: { |
| struct kvm_pic *vpic; |
| |
| mutex_lock(&kvm->lock); |
| r = -EEXIST; |
| if (kvm->arch.vpic) |
| goto create_irqchip_unlock; |
| r = -ENOMEM; |
| vpic = kvm_create_pic(kvm); |
| if (vpic) { |
| r = kvm_ioapic_init(kvm); |
| if (r) { |
| kfree(vpic); |
| goto create_irqchip_unlock; |
| } |
| } else |
| goto create_irqchip_unlock; |
| smp_wmb(); |
| kvm->arch.vpic = vpic; |
| smp_wmb(); |
| r = kvm_setup_default_irq_routing(kvm); |
| if (r) { |
| mutex_lock(&kvm->irq_lock); |
| kfree(kvm->arch.vpic); |
| kfree(kvm->arch.vioapic); |
| kvm->arch.vpic = NULL; |
| kvm->arch.vioapic = NULL; |
| mutex_unlock(&kvm->irq_lock); |
| } |
| create_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CREATE_PIT: |
| u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
| goto create_pit; |
| case KVM_CREATE_PIT2: |
| r = -EFAULT; |
| if (copy_from_user(&u.pit_config, argp, |
| sizeof(struct kvm_pit_config))) |
| goto out; |
| create_pit: |
| down_write(&kvm->slots_lock); |
| r = -EEXIST; |
| if (kvm->arch.vpit) |
| goto create_pit_unlock; |
| r = -ENOMEM; |
| kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
| if (kvm->arch.vpit) |
| r = 0; |
| create_pit_unlock: |
| up_write(&kvm->slots_lock); |
| break; |
| case KVM_IRQ_LINE_STATUS: |
| case KVM_IRQ_LINE: { |
| struct kvm_irq_level irq_event; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq_event, argp, sizeof irq_event)) |
| goto out; |
| if (irqchip_in_kernel(kvm)) { |
| __s32 status; |
| status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
| irq_event.irq, irq_event.level); |
| if (ioctl == KVM_IRQ_LINE_STATUS) { |
| irq_event.status = status; |
| if (copy_to_user(argp, &irq_event, |
| sizeof irq_event)) |
| goto out; |
| } |
| r = 0; |
| } |
| break; |
| } |
| case KVM_GET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!chip) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(chip, argp, sizeof *chip)) |
| goto get_irqchip_out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto get_irqchip_out; |
| r = kvm_vm_ioctl_get_irqchip(kvm, chip); |
| if (r) |
| goto get_irqchip_out; |
| r = -EFAULT; |
| if (copy_to_user(argp, chip, sizeof *chip)) |
| goto get_irqchip_out; |
| r = 0; |
| get_irqchip_out: |
| kfree(chip); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!chip) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(chip, argp, sizeof *chip)) |
| goto set_irqchip_out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto set_irqchip_out; |
| r = kvm_vm_ioctl_set_irqchip(kvm, chip); |
| if (r) |
| goto set_irqchip_out; |
| r = 0; |
| set_irqchip_out: |
| kfree(chip); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_PIT2: { |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT2: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_REINJECT_CONTROL: { |
| struct kvm_reinject_control control; |
| r = -EFAULT; |
| if (copy_from_user(&control, argp, sizeof(control))) |
| goto out; |
| r = kvm_vm_ioctl_reinject(kvm, &control); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_XEN_HVM_CONFIG: { |
| r = -EFAULT; |
| if (copy_from_user(&kvm->arch.xen_hvm_config, argp, |
| sizeof(struct kvm_xen_hvm_config))) |
| goto out; |
| r = -EINVAL; |
| if (kvm->arch.xen_hvm_config.flags) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_CLOCK: { |
| struct timespec now; |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| s64 delta; |
| |
| r = -EFAULT; |
| if (copy_from_user(&user_ns, argp, sizeof(user_ns))) |
| goto out; |
| |
| r = -EINVAL; |
| if (user_ns.flags) |
| goto out; |
| |
| r = 0; |
| ktime_get_ts(&now); |
| now_ns = timespec_to_ns(&now); |
| delta = user_ns.clock - now_ns; |
| kvm->arch.kvmclock_offset = delta; |
| break; |
| } |
| case KVM_GET_CLOCK: { |
| struct timespec now; |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| |
| ktime_get_ts(&now); |
| now_ns = timespec_to_ns(&now); |
| user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
| user_ns.flags = 0; |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &user_ns, sizeof(user_ns))) |
| goto out; |
| r = 0; |
| break; |
| } |
| |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static void kvm_init_msr_list(void) |
| { |
| u32 dummy[2]; |
| unsigned i, j; |
| |
| /* skip the first msrs in the list. KVM-specific */ |
| for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { |
| if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
| continue; |
| if (j < i) |
| msrs_to_save[j] = msrs_to_save[i]; |
| j++; |
| } |
| num_msrs_to_save = j; |
| } |
| |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
| const void *v) |
| { |
| if (vcpu->arch.apic && |
| !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v)) |
| return 0; |
| |
| return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v); |
| } |
| |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
| { |
| if (vcpu->arch.apic && |
| !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v)) |
| return 0; |
| |
| return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v); |
| } |
| |
| static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) { |
| r = X86EMUL_PROPAGATE_FAULT; |
| goto out; |
| } |
| ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); |
| if (ret < 0) { |
| r = X86EMUL_UNHANDLEABLE; |
| goto out; |
| } |
| |
| bytes -= toread; |
| data += toread; |
| addr += toread; |
| } |
| out: |
| return r; |
| } |
| |
| static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) { |
| r = X86EMUL_PROPAGATE_FAULT; |
| goto out; |
| } |
| ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); |
| if (ret < 0) { |
| r = X86EMUL_UNHANDLEABLE; |
| goto out; |
| } |
| |
| bytes -= towrite; |
| data += towrite; |
| addr += towrite; |
| } |
| out: |
| return r; |
| } |
| |
| |
| static int emulator_read_emulated(unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| |
| if (vcpu->mmio_read_completed) { |
| memcpy(val, vcpu->mmio_data, bytes); |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
| vcpu->mmio_phys_addr, *(u64 *)val); |
| vcpu->mmio_read_completed = 0; |
| return X86EMUL_CONTINUE; |
| } |
| |
| gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (kvm_read_guest_virt(addr, val, bytes, vcpu) |
| == X86EMUL_CONTINUE) |
| return X86EMUL_CONTINUE; |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| |
| mmio: |
| /* |
| * Is this MMIO handled locally? |
| */ |
| if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val); |
| return X86EMUL_CONTINUE; |
| } |
| |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 0; |
| |
| return X86EMUL_UNHANDLEABLE; |
| } |
| |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const void *val, int bytes) |
| { |
| int ret; |
| |
| ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); |
| if (ret < 0) |
| return 0; |
| kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1); |
| return 1; |
| } |
| |
| static int emulator_write_emulated_onepage(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| |
| gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); |
| |
| if (gpa == UNMAPPED_GVA) { |
| kvm_inject_page_fault(vcpu, addr, 2); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (emulator_write_phys(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| mmio: |
| trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); |
| /* |
| * Is this MMIO handled locally? |
| */ |
| if (!vcpu_mmio_write(vcpu, gpa, bytes, val)) |
| return X86EMUL_CONTINUE; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 1; |
| memcpy(vcpu->mmio_data, val, bytes); |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_write_emulated(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| /* Crossing a page boundary? */ |
| if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
| int rc, now; |
| |
| now = -addr & ~PAGE_MASK; |
| rc = emulator_write_emulated_onepage(addr, val, now, vcpu); |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| addr += now; |
| val += now; |
| bytes -= now; |
| } |
| return emulator_write_emulated_onepage(addr, val, bytes, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(emulator_write_emulated); |
| |
| static int emulator_cmpxchg_emulated(unsigned long addr, |
| const void *old, |
| const void *new, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu) |
| { |
| printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
| #ifndef CONFIG_X86_64 |
| /* guests cmpxchg8b have to be emulated atomically */ |
| if (bytes == 8) { |
| gpa_t gpa; |
| struct page *page; |
| char *kaddr; |
| u64 val; |
| |
| gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); |
| |
| if (gpa == UNMAPPED_GVA || |
| (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto emul_write; |
| |
| if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
| goto emul_write; |
| |
| val = *(u64 *)new; |
| |
| page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val); |
| kunmap_atomic(kaddr, KM_USER0); |
| kvm_release_page_dirty(page); |
| } |
| emul_write: |
| #endif |
| |
| return emulator_write_emulated(addr, new, bytes, vcpu); |
| } |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return kvm_x86_ops->get_segment_base(vcpu, seg); |
| } |
| |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) |
| { |
| kvm_mmu_invlpg(vcpu, address); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulate_clts(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch (dr) { |
| case 0 ... 3: |
| *dest = kvm_x86_ops->get_dr(vcpu, dr); |
| return X86EMUL_CONTINUE; |
| default: |
| pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr); |
| return X86EMUL_UNHANDLEABLE; |
| } |
| } |
| |
| int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
| { |
| unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; |
| int exception; |
| |
| kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); |
| if (exception) { |
| /* FIXME: better handling */ |
| return X86EMUL_UNHANDLEABLE; |
| } |
| return X86EMUL_CONTINUE; |
| } |
| |
| void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) |
| { |
| u8 opcodes[4]; |
| unsigned long rip = kvm_rip_read(vcpu); |
| unsigned long rip_linear; |
| |
| if (!printk_ratelimit()) |
| return; |
| |
| rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); |
| |
| kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu); |
| |
| printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", |
| context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); |
| } |
| EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); |
| |
| static struct x86_emulate_ops emulate_ops = { |
| .read_std = kvm_read_guest_virt, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| }; |
| |
| static void cache_all_regs(struct kvm_vcpu *vcpu) |
| { |
| kvm_register_read(vcpu, VCPU_REGS_RAX); |
| kvm_register_read(vcpu, VCPU_REGS_RSP); |
| kvm_register_read(vcpu, VCPU_REGS_RIP); |
| vcpu->arch.regs_dirty = ~0; |
| } |
| |
| int emulate_instruction(struct kvm_vcpu *vcpu, |
| unsigned long cr2, |
| u16 error_code, |
| int emulation_type) |
| { |
| int r, shadow_mask; |
| struct decode_cache *c; |
| struct kvm_run *run = vcpu->run; |
| |
| kvm_clear_exception_queue(vcpu); |
| vcpu->arch.mmio_fault_cr2 = cr2; |
| /* |
| * TODO: fix emulate.c to use guest_read/write_register |
| * instead of direct ->regs accesses, can save hundred cycles |
| * on Intel for instructions that don't read/change RSP, for |
| * for example. |
| */ |
| cache_all_regs(vcpu); |
| |
| vcpu->mmio_is_write = 0; |
| vcpu->arch.pio.string = 0; |
| |
| if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
| int cs_db, cs_l; |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| |
| vcpu->arch.emulate_ctxt.vcpu = vcpu; |
| vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu); |
| vcpu->arch.emulate_ctxt.mode = |
| (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) |
| ? X86EMUL_MODE_REAL : cs_l |
| ? X86EMUL_MODE_PROT64 : cs_db |
| ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; |
| |
| r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); |
| |
| /* Only allow emulation of specific instructions on #UD |
| * (namely VMMCALL, sysenter, sysexit, syscall)*/ |
| c = &vcpu->arch.emulate_ctxt.decode; |
| if (emulation_type & EMULTYPE_TRAP_UD) { |
| if (!c->twobyte) |
| return EMULATE_FAIL; |
| switch (c->b) { |
| case 0x01: /* VMMCALL */ |
| if (c->modrm_mod != 3 || c->modrm_rm != 1) |
| return EMULATE_FAIL; |
| break; |
| case 0x34: /* sysenter */ |
| case 0x35: /* sysexit */ |
| if (c->modrm_mod != 0 || c->modrm_rm != 0) |
| return EMULATE_FAIL; |
| break; |
| case 0x05: /* syscall */ |
| if (c->modrm_mod != 0 || c->modrm_rm != 0) |
| return EMULATE_FAIL; |
| break; |
| default: |
| return EMULATE_FAIL; |
| } |
| |
| if (!(c->modrm_reg == 0 || c->modrm_reg == 3)) |
| return EMULATE_FAIL; |
| } |
| |
| ++vcpu->stat.insn_emulation; |
| if (r) { |
| ++vcpu->stat.insn_emulation_fail; |
| if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) |
| return EMULATE_DONE; |
| return EMULATE_FAIL; |
| } |
| } |
| |
| if (emulation_type & EMULTYPE_SKIP) { |
| kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip); |
| return EMULATE_DONE; |
| } |
| |
| r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); |
| shadow_mask = vcpu->arch.emulate_ctxt.interruptibility; |
| |
| if (r == 0) |
| kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask); |
| |
| if (vcpu->arch.pio.string) |
| return EMULATE_DO_MMIO; |
| |
| if ((r || vcpu->mmio_is_write) && run) { |
| run->exit_reason = KVM_EXIT_MMIO; |
| run->mmio.phys_addr = vcpu->mmio_phys_addr; |
| memcpy(run->mmio.data, vcpu->mmio_data, 8); |
| run->mmio.len = vcpu->mmio_size; |
| run->mmio.is_write = vcpu->mmio_is_write; |
| } |
| |
| if (r) { |
| if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) |
| return EMULATE_DONE; |
| if (!vcpu->mmio_needed) { |
| kvm_report_emulation_failure(vcpu, "mmio"); |
| return EMULATE_FAIL; |
| } |
| return EMULATE_DO_MMIO; |
| } |
| |
| kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); |
| |
| if (vcpu->mmio_is_write) { |
| vcpu->mmio_needed = 0; |
| return EMULATE_DO_MMIO; |
| } |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(emulate_instruction); |
| |
| static int pio_copy_data(struct kvm_vcpu *vcpu) |
| { |
| void *p = vcpu->arch.pio_data; |
| gva_t q = vcpu->arch.pio.guest_gva; |
| unsigned bytes; |
| int ret; |
| |
| bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; |
| if (vcpu->arch.pio.in) |
| ret = kvm_write_guest_virt(q, p, bytes, vcpu); |
| else |
| ret = kvm_read_guest_virt(q, p, bytes, vcpu); |
| return ret; |
| } |
| |
| int complete_pio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pio_request *io = &vcpu->arch.pio; |
| long delta; |
| int r; |
| unsigned long val; |
| |
| if (!io->string) { |
| if (io->in) { |
| val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| memcpy(&val, vcpu->arch.pio_data, io->size); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, val); |
| } |
| } else { |
| if (io->in) { |
| r = pio_copy_data(vcpu); |
| if (r) |
| return r; |
| } |
| |
| delta = 1; |
| if (io->rep) { |
| delta *= io->cur_count; |
| /* |
| * The size of the register should really depend on |
| * current address size. |
| */ |
| val = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| val -= delta; |
| kvm_register_write(vcpu, VCPU_REGS_RCX, val); |
| } |
| if (io->down) |
| delta = -delta; |
| delta *= io->size; |
| if (io->in) { |
| val = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| val += delta; |
| kvm_register_write(vcpu, VCPU_REGS_RDI, val); |
| } else { |
| val = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| val += delta; |
| kvm_register_write(vcpu, VCPU_REGS_RSI, val); |
| } |
| } |
| |
| io->count -= io->cur_count; |
| io->cur_count = 0; |
| |
| return 0; |
| } |
| |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
| { |
| /* TODO: String I/O for in kernel device */ |
| int r; |
| |
| if (vcpu->arch.pio.in) |
| r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port, |
| vcpu->arch.pio.size, pd); |
| else |
| r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port, |
| vcpu->arch.pio.size, pd); |
| return r; |
| } |
| |
| static int pio_string_write(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pio_request *io = &vcpu->arch.pio; |
| void *pd = vcpu->arch.pio_data; |
| int i, r = 0; |
| |
| for (i = 0; i < io->cur_count; i++) { |
| if (kvm_io_bus_write(&vcpu->kvm->pio_bus, |
| io->port, io->size, pd)) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| pd += io->size; |
| } |
| return r; |
| } |
| |
| int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port) |
| { |
| unsigned long val; |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = vcpu->arch.pio.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1; |
| vcpu->run->io.port = vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = in; |
| vcpu->arch.pio.string = 0; |
| vcpu->arch.pio.down = 0; |
| vcpu->arch.pio.rep = 0; |
| |
| trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port, |
| size, 1); |
| |
| val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| memcpy(vcpu->arch.pio_data, &val, 4); |
| |
| if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { |
| complete_pio(vcpu); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio); |
| |
| int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in, |
| int size, unsigned long count, int down, |
| gva_t address, int rep, unsigned port) |
| { |
| unsigned now, in_page; |
| int ret = 0; |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = vcpu->arch.pio.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; |
| vcpu->run->io.port = vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = in; |
| vcpu->arch.pio.string = 1; |
| vcpu->arch.pio.down = down; |
| vcpu->arch.pio.rep = rep; |
| |
| trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port, |
| size, count); |
| |
| if (!count) { |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| if (!down) |
| in_page = PAGE_SIZE - offset_in_page(address); |
| else |
| in_page = offset_in_page(address) + size; |
| now = min(count, (unsigned long)in_page / size); |
| if (!now) |
| now = 1; |
| if (down) { |
| /* |
| * String I/O in reverse. Yuck. Kill the guest, fix later. |
| */ |
| pr_unimpl(vcpu, "guest string pio down\n"); |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| vcpu->run->io.count = now; |
| vcpu->arch.pio.cur_count = now; |
| |
| if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| |
| vcpu->arch.pio.guest_gva = address; |
| |
| if (!vcpu->arch.pio.in) { |
| /* string PIO write */ |
| ret = pio_copy_data(vcpu); |
| if (ret == X86EMUL_PROPAGATE_FAULT) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| if (ret == 0 && !pio_string_write(vcpu)) { |
| complete_pio(vcpu); |
| if (vcpu->arch.pio.count == 0) |
| ret = 1; |
| } |
| } |
| /* no string PIO read support yet */ |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); |
| |
| static void bounce_off(void *info) |
| { |
| /* nothing */ |
| } |
| |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i, send_ipi = 0; |
| |
| if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
| return 0; |
| if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
| return 0; |
| per_cpu(cpu_tsc_khz, freq->cpu) = freq->new; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->cpu != freq->cpu) |
| continue; |
| if (!kvm_request_guest_time_update(vcpu)) |
| continue; |
| if (vcpu->cpu != smp_processor_id()) |
| send_ipi++; |
| } |
| } |
| spin_unlock(&kvm_lock); |
| |
| if (freq->old < freq->new && send_ipi) { |
| /* |
| * We upscale the frequency. Must make the guest |
| * doesn't see old kvmclock values while running with |
| * the new frequency, otherwise we risk the guest sees |
| * time go backwards. |
| * |
| * In case we update the frequency for another cpu |
| * (which might be in guest context) send an interrupt |
| * to kick the cpu out of guest context. Next time |
| * guest context is entered kvmclock will be updated, |
| * so the guest will not see stale values. |
| */ |
| smp_call_function_single(freq->cpu, bounce_off, NULL, 1); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block kvmclock_cpufreq_notifier_block = { |
| .notifier_call = kvmclock_cpufreq_notifier |
| }; |
| |
| static void kvm_timer_init(void) |
| { |
| int cpu; |
| |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| for_each_online_cpu(cpu) { |
| unsigned long khz = cpufreq_get(cpu); |
| if (!khz) |
| khz = tsc_khz; |
| per_cpu(cpu_tsc_khz, cpu) = khz; |
| } |
| } else { |
| for_each_possible_cpu(cpu) |
| per_cpu(cpu_tsc_khz, cpu) = tsc_khz; |
| } |
| } |
| |
| int kvm_arch_init(void *opaque) |
| { |
| int r; |
| struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
| |
| if (kvm_x86_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| r = -EEXIST; |
| goto out; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| r = kvm_mmu_module_init(); |
| if (r) |
| goto out; |
| |
| kvm_init_msr_list(); |
| |
| kvm_x86_ops = ops; |
| kvm_mmu_set_nonpresent_ptes(0ull, 0ull); |
| kvm_mmu_set_base_ptes(PT_PRESENT_MASK); |
| kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
| PT_DIRTY_MASK, PT64_NX_MASK, 0); |
| |
| kvm_timer_init(); |
| |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| void kvm_arch_exit(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| kvm_x86_ops = NULL; |
| kvm_mmu_module_exit(); |
| } |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.halt_exits; |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_HLT; |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, |
| unsigned long a1) |
| { |
| if (is_long_mode(vcpu)) |
| return a0; |
| else |
| return a0 | ((gpa_t)a1 << 32); |
| } |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| int r = 1; |
| |
| nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| |
| trace_kvm_hypercall(nr, a0, a1, a2, a3); |
| |
| if (!is_long_mode(vcpu)) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
| ret = -KVM_EPERM; |
| goto out; |
| } |
| |
| switch (nr) { |
| case KVM_HC_VAPIC_POLL_IRQ: |
| ret = 0; |
| break; |
| case KVM_HC_MMU_OP: |
| r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); |
| break; |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| out: |
| kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
| ++vcpu->stat.hypercalls; |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu) |
| { |
| char instruction[3]; |
| int ret = 0; |
| unsigned long rip = kvm_rip_read(vcpu); |
| |
| |
| /* |
| * Blow out the MMU to ensure that no other VCPU has an active mapping |
| * to ensure that the updated hypercall appears atomically across all |
| * VCPUs. |
| */ |
| kvm_mmu_zap_all(vcpu->kvm); |
| |
| kvm_x86_ops->patch_hypercall(vcpu, instruction); |
| if (emulator_write_emulated(rip, instruction, 3, vcpu) |
| != X86EMUL_CONTINUE) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| } |
| |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| } |
| |
| void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, |
| unsigned long *rflags) |
| { |
| kvm_lmsw(vcpu, msw); |
| *rflags = kvm_get_rflags(vcpu); |
| } |
| |
| unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) |
| { |
| unsigned long value; |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| switch (cr) { |
| case 0: |
| value = vcpu->arch.cr0; |
| break; |
| case 2: |
| value = vcpu->arch.cr2; |
| break; |
| case 3: |
| value = vcpu->arch.cr3; |
| break; |
| case 4: |
| value = vcpu->arch.cr4; |
| break; |
| case 8: |
| value = kvm_get_cr8(vcpu); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, |
| unsigned long *rflags) |
| { |
| switch (cr) { |
| case 0: |
| kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val)); |
| *rflags = kvm_get_rflags(vcpu); |
| break; |
| case 2: |
| vcpu->arch.cr2 = val; |
| break; |
| case 3: |
| kvm_set_cr3(vcpu, val); |
| break; |
| case 4: |
| kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val)); |
| break; |
| case 8: |
| kvm_set_cr8(vcpu, val & 0xfUL); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); |
| } |
| } |
| |
| static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) |
| { |
| struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; |
| int j, nent = vcpu->arch.cpuid_nent; |
| |
| e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; |
| /* when no next entry is found, the current entry[i] is reselected */ |
| for (j = i + 1; ; j = (j + 1) % nent) { |
| struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; |
| if (ej->function == e->function) { |
| ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| return j; |
| } |
| } |
| return 0; /* silence gcc, even though control never reaches here */ |
| } |
| |
| /* find an entry with matching function, matching index (if needed), and that |
| * should be read next (if it's stateful) */ |
| static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, |
| u32 function, u32 index) |
| { |
| if (e->function != function) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && |
| !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) |
| return 0; |
| return 1; |
| } |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function, u32 index) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *best = NULL; |
| |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| struct kvm_cpuid_entry2 *e; |
| |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (is_matching_cpuid_entry(e, function, index)) { |
| if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) |
| move_to_next_stateful_cpuid_entry(vcpu, i); |
| best = e; |
| break; |
| } |
| /* |
| * Both basic or both extended? |
| */ |
| if (((e->function ^ function) & 0x80000000) == 0) |
| if (!best || e->function > best->function) |
| best = e; |
| } |
| return best; |
| } |
| |
| int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); |
| if (best) |
| return best->eax & 0xff; |
| return 36; |
| } |
| |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| u32 function, index; |
| struct kvm_cpuid_entry2 *best; |
| |
| function = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| index = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, 0); |
| best = kvm_find_cpuid_entry(vcpu, function, index); |
| if (best) { |
| kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); |
| } |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| trace_kvm_cpuid(function, |
| kvm_register_read(vcpu, VCPU_REGS_RAX), |
| kvm_register_read(vcpu, VCPU_REGS_RBX), |
| kvm_register_read(vcpu, VCPU_REGS_RCX), |
| kvm_register_read(vcpu, VCPU_REGS_RDX)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |
| |
| /* |
| * Check if userspace requested an interrupt window, and that the |
| * interrupt window is open. |
| * |
| * No need to exit to userspace if we already have an interrupt queued. |
| */ |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
| { |
| return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && |
| vcpu->run->request_interrupt_window && |
| kvm_arch_interrupt_allowed(vcpu)); |
| } |
| |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
| kvm_run->cr8 = kvm_get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_run->ready_for_interrupt_injection = 1; |
| else |
| kvm_run->ready_for_interrupt_injection = |
| kvm_arch_interrupt_allowed(vcpu) && |
| !kvm_cpu_has_interrupt(vcpu) && |
| !kvm_event_needs_reinjection(vcpu); |
| } |
| |
| static void vapic_enter(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct page *page; |
| |
| if (!apic || !apic->vapic_addr) |
| return; |
| |
| page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
| |
| vcpu->arch.apic->vapic_page = page; |
| } |
| |
| static void vapic_exit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| if (!apic || !apic->vapic_addr) |
| return; |
| |
| down_read(&vcpu->kvm->slots_lock); |
| kvm_release_page_dirty(apic->vapic_page); |
| mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
| up_read(&vcpu->kvm->slots_lock); |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
| { |
| int max_irr, tpr; |
| |
| if (!kvm_x86_ops->update_cr8_intercept) |
| return; |
| |
| if (!vcpu->arch.apic) |
| return; |
| |
| if (!vcpu->arch.apic->vapic_addr) |
| max_irr = kvm_lapic_find_highest_irr(vcpu); |
| else |
| max_irr = -1; |
| |
| if (max_irr != -1) |
| max_irr >>= 4; |
| |
| tpr = kvm_lapic_get_cr8(vcpu); |
| |
| kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); |
| } |
| |
| static void inject_pending_event(struct kvm_vcpu *vcpu) |
| { |
| /* try to reinject previous events if any */ |
| if (vcpu->arch.exception.pending) { |
| kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, |
| vcpu->arch.exception.has_error_code, |
| vcpu->arch.exception.error_code); |
| return; |
| } |
| |
| if (vcpu->arch.nmi_injected) { |
| kvm_x86_ops->set_nmi(vcpu); |
| return; |
| } |
| |
| if (vcpu->arch.interrupt.pending) { |
| kvm_x86_ops->set_irq(vcpu); |
| return; |
| } |
| |
| /* try to inject new event if pending */ |
| if (vcpu->arch.nmi_pending) { |
| if (kvm_x86_ops->nmi_allowed(vcpu)) { |
| vcpu->arch.nmi_pending = false; |
| vcpu->arch.nmi_injected = true; |
| kvm_x86_ops->set_nmi(vcpu); |
| } |
| } else if (kvm_cpu_has_interrupt(vcpu)) { |
| if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
| kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
| false); |
| kvm_x86_ops->set_irq(vcpu); |
| } |
| } |
| } |
| |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && |
| vcpu->run->request_interrupt_window; |
| |
| if (vcpu->requests) |
| if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) |
| kvm_mmu_unload(vcpu); |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| goto out; |
| |
| if (vcpu->requests) { |
| if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests)) |
| __kvm_migrate_timers(vcpu); |
| if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests)) |
| kvm_write_guest_time(vcpu); |
| if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests)) |
| kvm_mmu_sync_roots(vcpu); |
| if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) |
| kvm_x86_ops->tlb_flush(vcpu); |
| if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS, |
| &vcpu->requests)) { |
| vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
| r = 0; |
| goto out; |
| } |
| if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| r = 0; |
| goto out; |
| } |
| } |
| |
| preempt_disable(); |
| |
| kvm_x86_ops->prepare_guest_switch(vcpu); |
| kvm_load_guest_fpu(vcpu); |
| |
| local_irq_disable(); |
| |
| clear_bit(KVM_REQ_KICK, &vcpu->requests); |
| smp_mb__after_clear_bit(); |
| |
| if (vcpu->requests || need_resched() || signal_pending(current)) { |
| set_bit(KVM_REQ_KICK, &vcpu->requests); |
| local_irq_enable(); |
| preempt_enable(); |
| r = 1; |
| goto out; |
| } |
| |
| inject_pending_event(vcpu); |
| |
| /* enable NMI/IRQ window open exits if needed */ |
| if (vcpu->arch.nmi_pending) |
| kvm_x86_ops->enable_nmi_window(vcpu); |
| else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) |
| kvm_x86_ops->enable_irq_window(vcpu); |
| |
| if (kvm_lapic_enabled(vcpu)) { |
| update_cr8_intercept(vcpu); |
| kvm_lapic_sync_to_vapic(vcpu); |
| } |
| |
| up_read(&vcpu->kvm->slots_lock); |
| |
| kvm_guest_enter(); |
| |
| if (unlikely(vcpu->arch.switch_db_regs)) { |
| set_debugreg(0, 7); |
| set_debugreg(vcpu->arch.eff_db[0], 0); |
| set_debugreg(vcpu->arch.eff_db[1], 1); |
| set_debugreg(vcpu->arch.eff_db[2], 2); |
| set_debugreg(vcpu->arch.eff_db[3], 3); |
| } |
| |
| trace_kvm_entry(vcpu->vcpu_id); |
| kvm_x86_ops->run(vcpu); |
| |
| /* |
| * If the guest has used debug registers, at least dr7 |
| * will be disabled while returning to the host. |
| * If we don't have active breakpoints in the host, we don't |
| * care about the messed up debug address registers. But if |
| * we have some of them active, restore the old state. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_restore(); |
| |
| set_bit(KVM_REQ_KICK, &vcpu->requests); |
| local_irq_enable(); |
| |
| ++vcpu->stat.exits; |
| |
| /* |
| * We must have an instruction between local_irq_enable() and |
| * kvm_guest_exit(), so the timer interrupt isn't delayed by |
| * the interrupt shadow. The stat.exits increment will do nicely. |
| * But we need to prevent reordering, hence this barrier(): |
| */ |
| barrier(); |
| |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| |
| down_read(&vcpu->kvm->slots_lock); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| unsigned long rip = kvm_rip_read(vcpu); |
| profile_hit(KVM_PROFILING, (void *)rip); |
| } |
| |
| |
| kvm_lapic_sync_from_vapic(vcpu); |
| |
| r = kvm_x86_ops->handle_exit(vcpu); |
| out: |
| return r; |
| } |
| |
| |
| static int __vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { |
| pr_debug("vcpu %d received sipi with vector # %x\n", |
| vcpu->vcpu_id, vcpu->arch.sipi_vector); |
| kvm_lapic_reset(vcpu); |
| r = kvm_arch_vcpu_reset(vcpu); |
| if (r) |
| return r; |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| |
| down_read(&vcpu->kvm->slots_lock); |
| vapic_enter(vcpu); |
| |
| r = 1; |
| while (r > 0) { |
| if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) |
| r = vcpu_enter_guest(vcpu); |
| else { |
| up_read(&vcpu->kvm->slots_lock); |
| kvm_vcpu_block(vcpu); |
| down_read(&vcpu->kvm->slots_lock); |
| if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests)) |
| { |
| switch(vcpu->arch.mp_state) { |
| case KVM_MP_STATE_HALTED: |
| vcpu->arch.mp_state = |
| KVM_MP_STATE_RUNNABLE; |
| case KVM_MP_STATE_RUNNABLE: |
| break; |
| case KVM_MP_STATE_SIPI_RECEIVED: |
| default: |
| r = -EINTR; |
| break; |
| } |
| } |
| } |
| |
| if (r <= 0) |
| break; |
| |
| clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); |
| if (kvm_cpu_has_pending_timer(vcpu)) |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| if (dm_request_for_irq_injection(vcpu)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.request_irq_exits; |
| } |
| if (signal_pending(current)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| } |
| if (need_resched()) { |
| up_read(&vcpu->kvm->slots_lock); |
| kvm_resched(vcpu); |
| down_read(&vcpu->kvm->slots_lock); |
| } |
| } |
| |
| up_read(&vcpu->kvm->slots_lock); |
| post_kvm_run_save(vcpu); |
| |
| vapic_exit(vcpu); |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| sigset_t sigsaved; |
| |
| vcpu_load(vcpu); |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
| kvm_vcpu_block(vcpu); |
| clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
| r = -EAGAIN; |
| goto out; |
| } |
| |
| /* re-sync apic's tpr */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| kvm_set_cr8(vcpu, kvm_run->cr8); |
| |
| if (vcpu->arch.pio.cur_count) { |
| r = complete_pio(vcpu); |
| if (r) |
| goto out; |
| } |
| if (vcpu->mmio_needed) { |
| memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
| vcpu->mmio_read_completed = 1; |
| vcpu->mmio_needed = 0; |
| |
| down_read(&vcpu->kvm->slots_lock); |
| r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0, |
| EMULTYPE_NO_DECODE); |
| up_read(&vcpu->kvm->slots_lock); |
| if (r == EMULATE_DO_MMIO) { |
| /* |
| * Read-modify-write. Back to userspace. |
| */ |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) |
| kvm_register_write(vcpu, VCPU_REGS_RAX, |
| kvm_run->hypercall.ret); |
| |
| r = __vcpu_run(vcpu); |
| |
| out: |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
| #ifdef CONFIG_X86_64 |
| regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
| regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); |
| regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); |
| regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); |
| regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); |
| regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); |
| regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); |
| regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); |
| #endif |
| |
| regs->rip = kvm_rip_read(vcpu); |
| regs->rflags = kvm_get_rflags(vcpu); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); |
| kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); |
| kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); |
| #ifdef CONFIG_X86_64 |
| kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
| kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); |
| kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); |
| kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); |
| kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); |
| kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); |
| kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); |
| kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); |
| #endif |
| |
| kvm_rip_write(vcpu, regs->rip); |
| kvm_set_rflags(vcpu, regs->rflags); |
| |
| vcpu->arch.exception.pending = false; |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->get_segment(vcpu, var, seg); |
| } |
| |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.limit; |
| sregs->idt.base = dt.base; |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.limit; |
| sregs->gdt.base = dt.base; |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| sregs->cr0 = vcpu->arch.cr0; |
| sregs->cr2 = vcpu->arch.cr2; |
| sregs->cr3 = vcpu->arch.cr3; |
| sregs->cr4 = vcpu->arch.cr4; |
| sregs->cr8 = kvm_get_cr8(vcpu); |
| sregs->efer = vcpu->arch.shadow_efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| |
| memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
| |
| if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
| set_bit(vcpu->arch.interrupt.nr, |
| (unsigned long *)sregs->interrupt_bitmap); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| vcpu_load(vcpu); |
| mp_state->mp_state = vcpu->arch.mp_state; |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| vcpu_load(vcpu); |
| vcpu->arch.mp_state = mp_state->mp_state; |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| static void kvm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->set_segment(vcpu, var, seg); |
| } |
| |
| static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector, |
| struct kvm_segment *kvm_desct) |
| { |
| kvm_desct->base = get_desc_base(seg_desc); |
| kvm_desct->limit = get_desc_limit(seg_desc); |
| if (seg_desc->g) { |
| kvm_desct->limit <<= 12; |
| kvm_desct->limit |= 0xfff; |
| } |
| kvm_desct->selector = selector; |
| kvm_desct->type = seg_desc->type; |
| kvm_desct->present = seg_desc->p; |
| kvm_desct->dpl = seg_desc->dpl; |
| kvm_desct->db = seg_desc->d; |
| kvm_desct->s = seg_desc->s; |
| kvm_desct->l = seg_desc->l; |
| kvm_desct->g = seg_desc->g; |
| kvm_desct->avl = seg_desc->avl; |
| if (!selector) |
| kvm_desct->unusable = 1; |
| else |
| kvm_desct->unusable = 0; |
| kvm_desct->padding = 0; |
| } |
| |
| static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu, |
| u16 selector, |
| struct descriptor_table *dtable) |
| { |
| if (selector & 1 << 2) { |
| struct kvm_segment kvm_seg; |
| |
| kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR); |
| |
| if (kvm_seg.unusable) |
| dtable->limit = 0; |
| else |
| dtable->limit = kvm_seg.limit; |
| dtable->base = kvm_seg.base; |
| } |
| else |
| kvm_x86_ops->get_gdt(vcpu, dtable); |
| } |
| |
| /* allowed just for 8 bytes segments */ |
| static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, |
| struct desc_struct *seg_desc) |
| { |
| struct descriptor_table dtable; |
| u16 index = selector >> 3; |
| |
| get_segment_descriptor_dtable(vcpu, selector, &dtable); |
| |
| if (dtable.limit < index * 8 + 7) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc); |
| return 1; |
| } |
| return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu); |
| } |
| |
| /* allowed just for 8 bytes segments */ |
| static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, |
| struct desc_struct *seg_desc) |
| { |
| struct descriptor_table dtable; |
| u16 index = selector >> 3; |
| |
| get_segment_descriptor_dtable(vcpu, selector, &dtable); |
| |
| if (dtable.limit < index * 8 + 7) |
| return 1; |
| return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu); |
| } |
| |
| static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu, |
| struct desc_struct *seg_desc) |
| { |
| u32 base_addr = get_desc_base(seg_desc); |
| |
| return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr); |
| } |
| |
| static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment kvm_seg; |
| |
| kvm_get_segment(vcpu, &kvm_seg, seg); |
| return kvm_seg.selector; |
| } |
| |
| static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu, |
| u16 selector, |
| struct kvm_segment *kvm_seg) |
| { |
| struct desc_struct seg_desc; |
| |
| if (load_guest_segment_descriptor(vcpu, selector, &seg_desc)) |
| return 1; |
| seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg); |
| return 0; |
| } |
| |
| static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg) |
| { |
| struct kvm_segment segvar = { |
| .base = selector << 4, |
| .limit = 0xffff, |
| .selector = selector, |
| .type = 3, |
| .present = 1, |
| .dpl = 3, |
| .db = 0, |
| .s = 1, |
| .l = 0, |
| .g = 0, |
| .avl = 0, |
| .unusable = 0, |
| }; |
| kvm_x86_ops->set_segment(vcpu, &segvar, seg); |
| return 0; |
| } |
| |
| static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg) |
| { |
| return (seg != VCPU_SREG_LDTR) && |
| (seg != VCPU_SREG_TR) && |
| (kvm_get_rflags(vcpu) & X86_EFLAGS_VM); |
| } |
| |
| int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, |
| int type_bits, int seg) |
| { |
| struct kvm_segment kvm_seg; |
| |
| if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE)) |
| return kvm_load_realmode_segment(vcpu, selector, seg); |
| if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg)) |
| return 1; |
| kvm_seg.type |= type_bits; |
| |
| if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS && |
| seg != VCPU_SREG_LDTR) |
| if (!kvm_seg.s) |
| kvm_seg.unusable = 1; |
| |
| kvm_set_segment(vcpu, &kvm_seg, seg); |
| return 0; |
| } |
| |
| static void save_state_to_tss32(struct kvm_vcpu *vcpu, |
| struct tss_segment_32 *tss) |
| { |
| tss->cr3 = vcpu->arch.cr3; |
| tss->eip = kvm_rip_read(vcpu); |
| tss->eflags = kvm_get_rflags(vcpu); |
| tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
| tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); |
| tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); |
| tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); |
| tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); |
| tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS); |
| tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS); |
| tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR); |
| } |
| |
| static int load_state_from_tss32(struct kvm_vcpu *vcpu, |
| struct tss_segment_32 *tss) |
| { |
| kvm_set_cr3(vcpu, tss->cr3); |
| |
| kvm_rip_write(vcpu, tss->eip); |
| kvm_set_rflags(vcpu, tss->eflags | 2); |
| |
| kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp); |
| kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp); |
| kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi); |
| kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi); |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS)) |
| return 1; |
| return 0; |
| } |
| |
| static void save_state_to_tss16(struct kvm_vcpu *vcpu, |
| struct tss_segment_16 *tss) |
| { |
| tss->ip = kvm_rip_read(vcpu); |
| tss->flag = kvm_get_rflags(vcpu); |
| tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
| tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| |
| tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); |
| tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); |
| tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); |
| tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); |
| tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR); |
| } |
| |
| static int load_state_from_tss16(struct kvm_vcpu *vcpu, |
| struct tss_segment_16 *tss) |
| { |
| kvm_rip_write(vcpu, tss->ip); |
| kvm_set_rflags(vcpu, tss->flag | 2); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp); |
| kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp); |
| kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si); |
| kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di); |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) |
| return 1; |
| |
| if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) |
| return 1; |
| return 0; |
| } |
| |
| static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector, |
| u16 old_tss_sel, u32 old_tss_base, |
| struct desc_struct *nseg_desc) |
| { |
| struct tss_segment_16 tss_segment_16; |
| int ret = 0; |
| |
| if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16, |
| sizeof tss_segment_16)) |
| goto out; |
| |
| save_state_to_tss16(vcpu, &tss_segment_16); |
| |
| if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16, |
| sizeof tss_segment_16)) |
| goto out; |
| |
| if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), |
| &tss_segment_16, sizeof tss_segment_16)) |
| goto out; |
| |
| if (old_tss_sel != 0xffff) { |
| tss_segment_16.prev_task_link = old_tss_sel; |
| |
| if (kvm_write_guest(vcpu->kvm, |
| get_tss_base_addr(vcpu, nseg_desc), |
| &tss_segment_16.prev_task_link, |
| sizeof tss_segment_16.prev_task_link)) |
| goto out; |
| } |
| |
| if (load_state_from_tss16(vcpu, &tss_segment_16)) |
| goto out; |
| |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector, |
| u16 old_tss_sel, u32 old_tss_base, |
| struct desc_struct *nseg_desc) |
| { |
| struct tss_segment_32 tss_segment_32; |
| int ret = 0; |
| |
| if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32, |
| sizeof tss_segment_32)) |
| goto out; |
| |
| save_state_to_tss32(vcpu, &tss_segment_32); |
| |
| if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32, |
| sizeof tss_segment_32)) |
| goto out; |
| |
| if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), |
| &tss_segment_32, sizeof tss_segment_32)) |
| goto out; |
| |
| if (old_tss_sel != 0xffff) { |
| tss_segment_32.prev_task_link = old_tss_sel; |
| |
| if (kvm_write_guest(vcpu->kvm, |
| get_tss_base_addr(vcpu, nseg_desc), |
| &tss_segment_32.prev_task_link, |
| sizeof tss_segment_32.prev_task_link)) |
| goto out; |
| } |
| |
| if (load_state_from_tss32(vcpu, &tss_segment_32)) |
| goto out; |
| |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason) |
| { |
| struct kvm_segment tr_seg; |
| struct desc_struct cseg_desc; |
| struct desc_struct nseg_desc; |
| int ret = 0; |
| u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR); |
| u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR); |
| |
| old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base); |
| |
| /* FIXME: Handle errors. Failure to read either TSS or their |
| * descriptors should generate a pagefault. |
| */ |
| if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc)) |
| goto out; |
| |
| if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc)) |
| goto out; |
| |
| if (reason != TASK_SWITCH_IRET) { |
| int cpl; |
| |
| cpl = kvm_x86_ops->get_cpl(vcpu); |
| if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| } |
| |
| if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) { |
| kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc); |
| return 1; |
| } |
| |
| if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { |
| cseg_desc.type &= ~(1 << 1); //clear the B flag |
| save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc); |
| } |
| |
| if (reason == TASK_SWITCH_IRET) { |
| u32 eflags = kvm_get_rflags(vcpu); |
| kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT); |
| } |
| |
| /* set back link to prev task only if NT bit is set in eflags |
| note that old_tss_sel is not used afetr this point */ |
| if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) |
| old_tss_sel = 0xffff; |
| |
| if (nseg_desc.type & 8) |
| ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel, |
| old_tss_base, &nseg_desc); |
| else |
| ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel, |
| old_tss_base, &nseg_desc); |
| |
| if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) { |
| u32 eflags = kvm_get_rflags(vcpu); |
| kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT); |
| } |
| |
| if (reason != TASK_SWITCH_IRET) { |
| nseg_desc.type |= (1 << 1); |
| save_guest_segment_descriptor(vcpu, tss_selector, |
| &nseg_desc); |
| } |
| |
| kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS); |
| seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg); |
| tr_seg.type = 11; |
| kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR); |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_task_switch); |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int mmu_reset_needed = 0; |
| int pending_vec, max_bits; |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| dt.limit = sregs->idt.limit; |
| dt.base = sregs->idt.base; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| dt.limit = sregs->gdt.limit; |
| dt.base = sregs->gdt.base; |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->arch.cr2 = sregs->cr2; |
| mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; |
| vcpu->arch.cr3 = sregs->cr3; |
| |
| kvm_set_cr8(vcpu, sregs->cr8); |
| |
| mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer; |
| kvm_x86_ops->set_efer(vcpu, sregs->efer); |
| kvm_set_apic_base(vcpu, sregs->apic_base); |
| |
| kvm_x86_ops->decache_cr4_guest_bits(vcpu); |
| |
| mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0; |
| kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
| vcpu->arch.cr0 = sregs->cr0; |
| |
| mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4; |
| kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
| load_pdptrs(vcpu, vcpu->arch.cr3); |
| mmu_reset_needed = 1; |
| } |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| max_bits = (sizeof sregs->interrupt_bitmap) << 3; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, max_bits); |
| if (pending_vec < max_bits) { |
| kvm_queue_interrupt(vcpu, pending_vec, false); |
| pr_debug("Set back pending irq %d\n", pending_vec); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_pic_clear_isr_ack(vcpu->kvm); |
| } |
| |
| kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| update_cr8_intercept(vcpu); |
| |
| /* Older userspace won't unhalt the vcpu on reset. */ |
| if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
| sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
| !(vcpu->arch.cr0 & X86_CR0_PE)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| unsigned long rflags; |
| int i, r; |
| |
| vcpu_load(vcpu); |
| |
| if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
| r = -EBUSY; |
| if (vcpu->arch.exception.pending) |
| goto unlock_out; |
| if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| else |
| kvm_queue_exception(vcpu, BP_VECTOR); |
| } |
| |
| /* |
| * Read rflags as long as potentially injected trace flags are still |
| * filtered out. |
| */ |
| rflags = kvm_get_rflags(vcpu); |
| |
| vcpu->guest_debug = dbg->control; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
| vcpu->guest_debug = 0; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| for (i = 0; i < KVM_NR_DB_REGS; ++i) |
| vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; |
| vcpu->arch.switch_db_regs = |
| (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); |
| } else { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); |
| } |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| vcpu->arch.singlestep_cs = |
| get_segment_selector(vcpu, VCPU_SREG_CS); |
| vcpu->arch.singlestep_rip = kvm_rip_read(vcpu); |
| } |
| |
| /* |
| * Trigger an rflags update that will inject or remove the trace |
| * flags. |
| */ |
| kvm_set_rflags(vcpu, rflags); |
| |
| kvm_x86_ops->set_guest_debug(vcpu, dbg); |
| |
| r = 0; |
| |
| unlock_out: |
| vcpu_put(vcpu); |
| |
| return r; |
| } |
| |
| /* |
| * fxsave fpu state. Taken from x86_64/processor.h. To be killed when |
| * we have asm/x86/processor.h |
| */ |
| struct fxsave { |
| u16 cwd; |
| u16 swd; |
| u16 twd; |
| u16 fop; |
| u64 rip; |
| u64 rdp; |
| u32 mxcsr; |
| u32 mxcsr_mask; |
| u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ |
| #ifdef CONFIG_X86_64 |
| u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ |
| #else |
| u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ |
| #endif |
| }; |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| |
| vcpu_load(vcpu); |
| down_read(&vcpu->kvm->slots_lock); |
| gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr); |
| up_read(&vcpu->kvm->slots_lock); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; |
| |
| vcpu_load(vcpu); |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| void fx_init(struct kvm_vcpu *vcpu) |
| { |
| unsigned after_mxcsr_mask; |
| |
| /* |
| * Touch the fpu the first time in non atomic context as if |
| * this is the first fpu instruction the exception handler |
| * will fire before the instruction returns and it'll have to |
| * allocate ram with GFP_KERNEL. |
| */ |
| if (!used_math()) |
| kvm_fx_save(&vcpu->arch.host_fx_image); |
| |
| /* Initialize guest FPU by resetting ours and saving into guest's */ |
| preempt_disable(); |
| kvm_fx_save(&vcpu->arch.host_fx_image); |
| kvm_fx_finit(); |
| kvm_fx_save(&vcpu->arch.guest_fx_image); |
| kvm_fx_restore(&vcpu->arch.host_fx_image); |
| preempt_enable(); |
| |
| vcpu->arch.cr0 |= X86_CR0_ET; |
| after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); |
| vcpu->arch.guest_fx_image.mxcsr = 0x1f80; |
| memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask, |
| 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); |
| } |
| EXPORT_SYMBOL_GPL(fx_init); |
| |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 1; |
| kvm_fx_save(&vcpu->arch.host_fx_image); |
| kvm_fx_restore(&vcpu->arch.guest_fx_image); |
| } |
| EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); |
| |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 0; |
| kvm_fx_save(&vcpu->arch.guest_fx_image); |
| kvm_fx_restore(&vcpu->arch.host_fx_image); |
| ++vcpu->stat.fpu_reload; |
| } |
| EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.time_page) { |
| kvm_release_page_dirty(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
| unsigned int id) |
| { |
| return kvm_x86_ops->vcpu_create(kvm, id); |
| } |
| |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| /* We do fxsave: this must be aligned. */ |
| BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF); |
| |
| vcpu->arch.mtrr_state.have_fixed = 1; |
| vcpu_load(vcpu); |
| r = kvm_arch_vcpu_reset(vcpu); |
| if (r == 0) |
| r = kvm_mmu_setup(vcpu); |
| vcpu_put(vcpu); |
| if (r < 0) |
| goto free_vcpu; |
| |
| return 0; |
| free_vcpu: |
| kvm_x86_ops->vcpu_free(vcpu); |
| return r; |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.nmi_pending = false; |
| vcpu->arch.nmi_injected = false; |
| |
| vcpu->arch.switch_db_regs = 0; |
| memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
| vcpu->arch.dr6 = DR6_FIXED_1; |
| vcpu->arch.dr7 = DR7_FIXED_1; |
| |
| return kvm_x86_ops->vcpu_reset(vcpu); |
| } |
| |
| int kvm_arch_hardware_enable(void *garbage) |
| { |
| /* |
| * Since this may be called from a hotplug notifcation, |
| * we can't get the CPU frequency directly. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| int cpu = raw_smp_processor_id(); |
| per_cpu(cpu_tsc_khz, cpu) = 0; |
| } |
| |
| kvm_shared_msr_cpu_online(); |
| |
| return kvm_x86_ops->hardware_enable(garbage); |
| } |
| |
| void kvm_arch_hardware_disable(void *garbage) |
| { |
| kvm_x86_ops->hardware_disable(garbage); |
| drop_user_return_notifiers(garbage); |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return kvm_x86_ops->hardware_setup(); |
| } |
| |
| void kvm_arch_hardware_unsetup(void) |
| { |
| kvm_x86_ops->hardware_unsetup(); |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| kvm_x86_ops->check_processor_compatibility(rtn); |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| struct kvm *kvm; |
| int r; |
| |
| BUG_ON(vcpu->kvm == NULL); |
| kvm = vcpu->kvm; |
| |
| vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->arch.pio_data = page_address(page); |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto fail_free_pio_data; |
| |
| if (irqchip_in_kernel(kvm)) { |
| r = kvm_create_lapic(vcpu); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| } |
| |
| vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
| GFP_KERNEL); |
| if (!vcpu->arch.mce_banks) { |
| r = -ENOMEM; |
| goto fail_mmu_destroy; |
| } |
| vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
| |
| return 0; |
| |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| fail_free_pio_data: |
| free_page((unsigned long)vcpu->arch.pio_data); |
| fail: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| kvm_free_lapic(vcpu); |
| down_read(&vcpu->kvm->slots_lock); |
| kvm_mmu_destroy(vcpu); |
| up_read(&vcpu->kvm->slots_lock); |
| free_page((unsigned long)vcpu->arch.pio_data); |
| } |
| |
| struct kvm *kvm_arch_create_vm(void) |
| { |
| struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| |
| if (!kvm) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
| INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
| |
| /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
| set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
| |
| rdtscll(kvm->arch.vm_init_tsc); |
| |
| return kvm; |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| struct kvm_vcpu *vcpu; |
| |
| /* |
| * Unpin any mmu pages first. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_unload_vcpu_mmu(vcpu); |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_arch_vcpu_free(vcpu); |
| |
| mutex_lock(&kvm->lock); |
| for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
| kvm->vcpus[i] = NULL; |
| |
| atomic_set(&kvm->online_vcpus, 0); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| void kvm_arch_sync_events(struct kvm *kvm) |
| { |
| kvm_free_all_assigned_devices(kvm); |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| kvm_iommu_unmap_guest(kvm); |
| kvm_free_pit(kvm); |
| kfree(kvm->arch.vpic); |
| kfree(kvm->arch.vioapic); |
| kvm_free_vcpus(kvm); |
| kvm_free_physmem(kvm); |
| if (kvm->arch.apic_access_page) |
| put_page(kvm->arch.apic_access_page); |
| if (kvm->arch.ept_identity_pagetable) |
| put_page(kvm->arch.ept_identity_pagetable); |
| kfree(kvm); |
| } |
| |
| int kvm_arch_set_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| struct kvm_memory_slot old, |
| int user_alloc) |
| { |
| int npages = mem->memory_size >> PAGE_SHIFT; |
| struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot]; |
| |
| /*To keep backward compatibility with older userspace, |
| *x86 needs to hanlde !user_alloc case. |
| */ |
| if (!user_alloc) { |
| if (npages && !old.rmap) { |
| unsigned long userspace_addr; |
| |
| down_write(¤t->mm->mmap_sem); |
| userspace_addr = do_mmap(NULL, 0, |
| npages * PAGE_SIZE, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, |
| 0); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (IS_ERR((void *)userspace_addr)) |
| return PTR_ERR((void *)userspace_addr); |
| |
| /* set userspace_addr atomically for kvm_hva_to_rmapp */ |
| spin_lock(&kvm->mmu_lock); |
| memslot->userspace_addr = userspace_addr; |
| spin_unlock(&kvm->mmu_lock); |
| } else { |
| if (!old.user_alloc && old.rmap) { |
| int ret; |
| |
| down_write(¤t->mm->mmap_sem); |
| ret = do_munmap(current->mm, old.userspace_addr, |
| old.npages * PAGE_SIZE); |
| up_write(¤t->mm->mmap_sem); |
| if (ret < 0) |
| printk(KERN_WARNING |
| "kvm_vm_ioctl_set_memory_region: " |
| "failed to munmap memory\n"); |
| } |
| } |
| } |
| |
| spin_lock(&kvm->mmu_lock); |
| if (!kvm->arch.n_requested_mmu_pages) { |
| unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); |
| kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
| } |
| |
| kvm_mmu_slot_remove_write_access(kvm, mem->slot); |
| spin_unlock(&kvm->mmu_lock); |
| |
| return 0; |
| } |
| |
| void kvm_arch_flush_shadow(struct kvm *kvm) |
| { |
| kvm_mmu_zap_all(kvm); |
| kvm_reload_remote_mmus(kvm); |
| } |
| |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE |
| || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED |
| || vcpu->arch.nmi_pending || |
| (kvm_arch_interrupt_allowed(vcpu) && |
| kvm_cpu_has_interrupt(vcpu)); |
| } |
| |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu) |
| { |
| int me; |
| int cpu = vcpu->cpu; |
| |
| if (waitqueue_active(&vcpu->wq)) { |
| wake_up_interruptible(&vcpu->wq); |
| ++vcpu->stat.halt_wakeup; |
| } |
| |
| me = get_cpu(); |
| if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) |
| if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests)) |
| smp_send_reschedule(cpu); |
| put_cpu(); |
| } |
| |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops->interrupt_allowed(vcpu); |
| } |
| |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags; |
| |
| rflags = kvm_x86_ops->get_rflags(vcpu); |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| return rflags; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_rflags); |
| |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && |
| vcpu->arch.singlestep_cs == |
| get_segment_selector(vcpu, VCPU_SREG_CS) && |
| vcpu->arch.singlestep_rip == kvm_rip_read(vcpu)) |
| rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF; |
| kvm_x86_ops->set_rflags(vcpu, rflags); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_rflags); |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |